首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leukocyte adhesion is of pivotal functional importance, because most leukocyte functions depend on cell–cell contact. It must be strictly controlled, both at the level of specificity and strength of interaction, and therefore several molecular systems are involved. The most important leukocyte adhesion molecules are the selectins, the leukocyte-specific 2-integrins and the intercellular adhesion molecules. The selectins induce an initial weak contact between cells, whereas firm adhesion is achieved through integrin–intercellular adhesion molecular binding. Although studies during the past twenty years have revealed several important features of leukocyte adhesion much is still poorly understood, and further work dealing with several aspects of adhesion is urgently needed. In this short essay, we review some recent developments in the field.  相似文献   

2.
Intercellular protein trafficking through plasmodesmata   总被引:11,自引:0,他引:11  
Ding  Biao 《Plant molecular biology》1998,38(1-2):279-310
  相似文献   

3.
Guo Q  Liu M  Yang J 《Bio Systems》2011,106(2-3):130-135
Intercellular interactions, which are mediated by a variety of complex intercellular molecules through the processes of formation and dissociation of molecular bonds, play a critical role in regulating cellular functions in biological systems. Various approaches are applied to evaluate intercellular or molecular bonding forces. To quantify the intermolecular interaction forces, flow chamber has become a meaningful technique as it can ultimately mimic the cellular microenvironment in vivo under physiological flow conditions. Hydrodynamic forces are usually used to predict the intercellular forces down to the single molecular level. However, results show that only using hydrodynamic force will overestimate up to 30% of the receptor-ligand strength when the non-specific forces such as Derjaguin-Landau-Verway-Overbeek (DLVO) forces become un-neglected. Due to the nature of high ion concentration in the physiological condition, electrostatic force is largely screened which will cause DLVO force unbalanced. In this study, we propose to take account of the DLVO force, including van der Waals (VDW) force and electrostatic force, to predict the intermolecular forces of a cell doublet and cell-substrate model in a circulating system. Results also show that the DLVO force has a nonlinear effect as the cell-cell or cell-substrate distance changes. In addition, we used the framework of high accuracy hydrodynamic theories proved in colloidal systems. It is concluded that DLVO force could not be ignored in quantitative studies of molecular interaction forces in circulating system. More accurate prediction of intercellular forces needs to take account of both hydrodynamic force and DLVO force.  相似文献   

4.
Transfection of a mouse dihydrofolate reductase (DHFR) cDNA contained in a plasmid "expression vector" into DHFR deficient Chinese hamster cells, followed by progressive selection of cells in increasing concentrations of methotrexate (MTX), leads to marked amplification of the exogenous DHFR sequences in the recipient hamster cells. This gene amplification is evident at the cytological level, in the form of homogeneously staining chromosomal regions (HSRs), at a gene expression level, in the form of fluorescein-methotrexate binding, and at the DNA level. Flow sorting, based on variable fluorescein-MTX binding, or direct cellular cloning, followed by chromosome analysis, revealed intercellular heterogeneity of HSRs in size and distribution. This suggested that there was a rapid evolution of HSRs in MTX-resistant transfectants. Chromosomal analysis of HSR evolution in situ, by examining individual colonies presumably derived from one or a few cells, underscored this impression of chromosome structural fluidity. Rates of HSR change in excess of 0.01 per cell division, increased by low doses of the recombinogen, mitomycin C, were detected. The Chinese hamster DHFR transfectants described should be amenable to detailed, coordinate cytological and molecular characterization. Such an analysis should contribute to an understanding of processes such as homologous recombination in mediating HSR evolution in mammalian chromosomes.  相似文献   

5.
R W Joyner  H Sugiura    R C Tan 《Biophysical journal》1991,60(5):1038-1045
We have used pairs of electrically coupled cardiac cells to investigate the dependence of successful conduction of an action potential on three components of the conduction process: (a) the amount of depolarization required to be produced in the nonstimulated cell (the "sink" for current flow) to initiate an action potential in the nonstimulated cell, (b) the intercellular resistance as the path for intercellular current flow, and (c) the ability of the stimulated cell to maintain a high membrane potential to serve as the "source" of current during the conduction process. We present data from eight pairs of simultaneously recorded rabbit ventricular cells, with the two cells of each pair physically separated from each other. We used an electronic circuit to pass currents into and out of each cell such that these currents produced the effects of any desired level of intercellular resistance. The cells of equal size (as assessed by their current threshold and their input resistance for small depolarizations) show bidirectional failure of conduction at very high values of intercellular resistance which then converts to successful bidirectional conduction at lower values of intercellular resistance. For cell pairs with asymmetrical cell sizes, there is a large range of values of intercellular resistance over which unidirectional block occurs with conduction successful from the larger cell to the smaller cell but with conduction block from the smaller cell to the larger cell. We then further show that one important component which limits the conduction process is the large early repolarization which occurs in the stimulated cell during the process of conduction, a process that we term "source loading."  相似文献   

6.
Summary Transfection of a mouse dihydrofolate reductase (DHFR) cDNA contained in a plasmid expression vector into DHFR deficient Chinese hamster cells, followed by progressive selection of cells in increasing concentrations of methotrexate (MTX), leads to marked amplification of the exogenous DHFR sequences in the recipient hamster cells. The gene amplification is evident at the cytological level, in the form of homogeneously staining chromosomal regions (HRSs), at a gene expression level, in the form of fluorescein-methotrexate binding, and at the DNA level. Flow sorting, based on variable fluorescein-MTX binding, or direct cellular cloning, followed by chromosome analysis, revealed intercellular heterogeneity of HSRs in size and distribution.This suggested that there was a rapid evolution of HSRs an MTX-resistant transfectants. Chromosomal analysis of HSR evolution in situ, by examining individual colonies presumably derived from one or a few cells, underscored this impression of chromosome structural fluidity. Rates of HSR change in excess of 0.01 per cell division, increased by low doses of the recombinogen, mitomycin C were detected. The Chinese hamster DHFR transfectants described should be amenable to detailed, coordinate cytological and molecular characterization. Such an analysis should contribute to an understanding of processes such as homologous recombination in mediating HSR evolution in mammalian chromosomes.  相似文献   

7.
Exosomes: small vesicles participating in intercellular communication   总被引:1,自引:0,他引:1  
Exosomes are small membrane vesicles, which eukaryotic cells secrete into their extracellular environment. They are formed as intraluminal vesicles by inward budding of the limiting membrane into the lumen of late endosomes. Upon fusion of thus arising multivesicular bodies with the plasma membrane, these vesicles are released as exosomes and enter body fluids such as blood plasma, urine and saliva. Containing certain combinations of lipids, adhesion and intercellular signaling molecules as well as RNAs, exosomes participate in intercellular communication processes. Depending on their origin, exosomes can modulate immune-regulatory processes, set up tumor escape mechanisms and mediate regenerative or degenerative processes, amongst others. In summary, exosomes are molecular complex intercellular signaling organelles with multiple functions, which appear as promising new tools for the clinical diagnostics and potentially for novel therapeutic strategies.  相似文献   

8.
Ca2+ is known as a universal messenger mediating a wide variety of cellular processes, including cell death. In fact, this ion has been proposed as the ‘cell death master’, not only at the intracellular but also at the intercellular level. The most direct form of intercellular spread of cell death is mediated by gap junction channels. These channels have been shown to propagate cell death as well as cell survival signals between the cytoplasm of neighbouring cells, reflecting the dual role of Ca2+ signals, i.e. cell death versus survival. Its precursor, the unopposed hemichannel (half of a gap junction channel), has recently joined in as a toxic pore connecting the intracellular with the extracellular environment and allowing the passage of a range of substances. The biochemical nature of the so-called intercellular cell death molecule, transferred through gap junctions or released/taken up via hemichannels, remains elusive but several studies pinpoint Ca2+ itself or its messenger inositol trisphosphate as the responsible masters in crime. Although direct evidence is still lacking, indirect data including Ca2+ involvement in intercellular communication and cell death, and effects of intercellular communication on intracellular Ca2+ homeostasis, support this hypothesis. In addition, hemichannels and their molecular building blocks, connexin or pannexin proteins, may exert their effects on Ca2+-dependent cell death at the intracellular level, independently from their channel functions. This review provides a cutting edge overview of the current knowledge and underscores the intimate connection between intercellular communication, Ca2+ signalling and cell death.  相似文献   

9.
Properly regulated intercellular adhesion is critical for normal development of all metazoan organisms. Adherens junctions play an especially prominent role in development because they link the adhesive function of cadherin–catenin protein complexes to the dynamic forces of the actin cytoskeleton, which helps to orchestrate a spatially confined and very dynamic assembly of intercellular connections. Intriguingly, in addition to maintaining intercellular adhesion, cadherin–catenin proteins are linked to several major developmental signaling pathways crucial for normal morphogenesis. In this article we will highlight the key genetic studies that uncovered the role of cadherin–catenin proteins in vertebrate development and discuss the potential role of these proteins as molecular biosensors of external cellular microenvironment that may spatially confine signaling molecules and polarity cues to orchestrate cellular behavior throughout the complex process of normal morphogenesis.Development of any multicellular organism is impossible without a dynamic and properly regulated intercellular adhesion. Adhesive contacts between cells provide a physical anchoring system that is necessary to form highly organized tissues, and these contacts are essential for effective intercellular communication that ensures the homeostasis and survival of the entire organism. A number of unique developmental processes, including such early events as embryonic compaction and first cell fate specification, as well as later tissue morphogenesis and organogenesis, rely on a dynamic balance between cellular adhesion and migration. Cadherin–catenin protein complexes, which constitute the core of a specialized subtype of cellular adhesion structures termed adherens junctions (AJs), play a particularly important role during these processes. Apart from maintaining adhesive contacts at the cell–cell junctions, they are actively involved in epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions, which are crucial to sustain the tissue plasticity during development. Most importantly, the components of cadherin–catenin complexes are tightly linked to several major signaling networks controlling cell division, differentiation, and apoptosis and this feature is crucial for the broad roles of the AJs throughout the vertebrate development (see Cavey and Lecuit 2009).This article will focus on the role of cadherin–catenin proteins in regulating the signaling events critical for vertebrate development. Altering the expression pattern of particular cadherin–catenin complex components in the developing embryo often leads to major developmental defects, which reflect their role in both signaling and mechanical adhesion. In this article, we will highlight crucial findings suggesting that cadherin–catenin complexes provide not only the structural integrity of the tissue, but may also serve as biosensors of the external cellular microenvironment that modulate cellular behavior and make individual cells work together to ensure the fitness of the entire organism.  相似文献   

10.
For living beings, information is as fundamental as matter or energy. In this paper we show: a) inadequacies of quantitative theories of information, b) how a qualitative analysis leads to a classification of information systems and to a modelling of intercellular communication. From a quantitative point of view, the application in biology of information theories borrowed from communication techniques proved to be disappointing. These theories ignore deliberately the significance of messages, and do not give any definition of information. They refer to quantities, based upon arbitrarily defined probabilistic events. Probability is subjective. The receiver of the message needs to have ‘meta-knowledge’ of the events. The quantity of information depends on language, coding, and arbitrary definition of disorder. The suggested objectivity is fallacious. In common language, the word ‘information’ is synonymous with knowledge of order. Following common sense a message (letters, coded signals, etc.) is information just in case it is interpretable, i.e.if it fits to a previously acquired meaning (the words of an available language, etc.). The consequence is that calculation of quantities in the sense of Shannon can be used for transmissions, but it is itself meaningless (has no significance). In linguistics and semantics, information is composed of a ‘signifier’, a physical medium (letters, coded signals, etc.), and a ‘signified’ or significance. The nature of information is complex. The laws of linguistics and semantics are valid not only at the human, organismic level, but also at the cellular and molecular level. The physiology of sensations gives us many examples for application of a concept of information An electromagnetic wave of 0,7% give us the sensation of a red colour. Sensations have no physical reality. They are purely subjective. At the cellular level communication operates by means of chemical messengers (first messengers), which generally do not penetrate the plasmic membrane. Specific captors operate as transductors: external factors are converted into secondary messengers (cyclic AMP, Ca ion, etc.). Sometimes, electric signals (like depolarization waves) may also play a part in the intercellular communication. Such processes are characterized by changes in a sequence of different molecules carried by a physical signal. What is transmitted is themeaning of the message (significance) which can be memorized by the cell, providing a possible following use. At the molecular level one can find also the processes of linguistic nature. We know that the significance of a word is changed with changing the order of letters (ADD→DAD, etc.). In the same way bases C and U are coding for serine (UCC), leucine (CUC) or proline (CCU). Here, amino-acids express the significance. In spite of the fact that this key-lock mechanism may explain many reactions, the examples prove that other elements are necessary for understanding the information. The living cell is the receiver. The message actualizes only previously learned and memorized significances or actions (trigger effect). Significance is not an emergent property of the shape of the message. It depends on the receiver and the transmitter. A word can have more than one meaning. Similarly, a messenger can order different physiological responses: muscular tension, hormonal secretion, etc.. Thus a chemical messenger is a signal which is identified and interpreted by the receiver, depending upon specific languages and previous learning. These views are in harmony with immunological and Jerne's theory (of idiotypical net). The above mentioned considerations led the author to propose thetheory of data transfer, which takes into account significance. In this theory the quantity of information is the product of the probabilistic recognition of message and the value of significance as determined by its semantic level. (See: Acta biotheoretica vol. 41 No 1/2 June 1993.) The complex nature of information asks to propose a qualitative classification with respect to thematerial support and thesignificance.
  1. The material support may be linear in time (sequential reading, ADN translation)-The material support may be referred to non-temporally (drawings, logos, holograms) (Reading is instantaneous)-The material support may be in circulation, or in stock.
  2. The significance may be local (tissues, organs) or general (organisms). Asignificance may be a command to be executed (imperative, conditional order) or knowledge to bememorized. The purpose of significance may be a coding for space (for morphology) or for time (ontogeny, ageing).
Conclusion: Information cannot any longer be regarded as an object. Its nature is complex, at all levels of a living being. At the molecular level to memorize an information by modification of a molecule is comparable with writing words on a diary. The key-lock process does not suppress the question of the interpretation, i.e. relations existing between the shape of a microscopic element as a molecule, and its macroscopic effect, as an antenna or a leg. There are still many unclear points in these relations, e.g. the sweet taste of molecules of tomatine and monelline. The abstract nature of significance which at the human level is concerned to mental processes, is not only a philosophical problem. In fact, there is a hypothesis based on quantum mechanics which allows to consider a physical nature of significance. In any case, the important conclusion is that significance in bio-information must be considered in relation to the message-receiver. The receiver must no longer be considered a passive one. The qualitative classification of information will allow an understanding of circulation of information in organisms and between cells.  相似文献   

11.
12.
New knowledge in biology led us to a better understanding of organization and functioning of living organisms. Today, re-evaluation of our concept of human biology is taking place. Theoretical analysis shows that taking into account the complexity of the organism and frequency of spontaneous mutations, it is impossible to explain the real time of organismal life. Therefore, besides extant systems, other repair systems must also exist. There are three "levels" at which a cell population withstands mutational pressure. First - intracellular (repair), second - intercellular (all forms of informational flows), and third - cellular replacement. Stem cells undertake regenerative functions following damage at the level of the tissue. They are also influenced by mutations, and for stem cells, it is most important that they preserve and support their full activity.  相似文献   

13.
14.
Recent advances in our understanding of the roles of photoreceptors in light-dependent regulation of plant growth and development have been rapid and significant. Developments have been reported for numerous plant photoreceptor signaling pathways, yet researchers have made the most progress in increasing our comprehension of the roles of phytochrome family members, as well as the intracellular roles of phytochromes and phytochrome-interacting proteins in light-dependent signaling. An understudied, but vitally important, area of phytochrome biology centers on the roles phytochromes play in intercellular and interorgan signaling at the molecular level that results in the coordination of growth responses between distinct tissues and organs. This frontier of research into the spatiotemporal roles of phytochromes, and more generally plant photoreceptors, which is only beginning to be investigated and understood at the molecular genetic level, has a rich history of physiological data.Key words: cryptochrome, photomorphogenesis, photoreception, photoreceptor, phytochrome, spatiotemporal  相似文献   

15.
The connexins constitute a family of integral membrane proteins that form intercellular channels, enabling adjacent cells in solid tissues to directly exchange ions and small molecules. These channels assemble into distinct plasma membrane domains known as gap junctions. Gap junction intercellular communication plays critical roles in numerous cellular processes, including control of cell growth and differentiation, maintenance of tissue homeostasis and embryonic development. Gap junctions are dynamic plasma membrane domains, and there is increasing evidence that modulation of endocytosis and post-endocytic trafficking of connexins are important mechanisms for regulating the level of functional gap junctions at the plasma membrane. The emerging picture is that multiple pathways exist for endocytosis and sorting of connexins to lysosomes, and that these pathways are differentially regulated in response to physiological and pathophysiological stimuli. Recent studies suggest that endocytosis and lysosomal degradation of connexins is controlled by a complex interplay between phosphorylation and ubiquitination. This review summarizes recent progress in understanding the molecular mechanisms involved in endocytosis and post-endocytic sorting of connexins, and the relevance of these processes to the regulation of gap junction intercellular communication under normal and pathophysiological conditions. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.  相似文献   

16.
Salmonella bacteria cause more than three million deaths each year. They hijack cells and inject among other proteins SipA via a "molecular syringe" into the cell, which can tether actin subunits in opposing strands to form mechanically stabilized filaments which rapidly reshape the cells surface into extended ruffles, leading to bacterial internalization. Exactly how these ruffles form at a single filament level remains unknown. Our real time total internal fluorescence microscopy observations show that both bidirectional elongation of actin by SipA as well as end-to-end annealing of SipA-actin filaments are rapid processes. Complementary electron microscopy investigations demonstrate that crowding agents in vitro readily induce stiff bundles of SipA-actin filaments. Taken together these three effects, rapid SipA induced actin polymerization, filament annealing and bundle formation due to molecular crowding can explain how Salmonella invades cells at molecular level.  相似文献   

17.
As techniques evolve that allow molecular characterization of disease processes such as cancer, definition of "normal" at a molecular level becomes increasingly important. Increasingly large numbers of mutations are found at the genomic level, but whether all of those mutations contribute to the malignant state of a carcinoma cell is not clear. Without knowledge of what constitutes normality on the proteomic level in an organ or cell, we cannot determine what genomic changes are physiologically important. Traditionally, colon cancer is identified and classified by histological criteria. Margins of the colon are defined as "grossly uninvolved" when the histology is indistinguishable from that of normal (free from disease) colon. By using molecular pathology techniques and working backward from colon adenocarcinoma to hypoplastic polyps to presumably normal mucosa, we defined some of those protein differences. Our results may provide a molecular basis for identifying tumor formation and progression in situ.(J Histochem Cytochem 49:667-668, 2001)  相似文献   

18.
Connexins and cancer   总被引:22,自引:0,他引:22  
The hypothesis, that gap junctional intercellular communication plays a key role in carcinogenesis and more generally in growth control was formulated nearly 40 years ago. From this time, data accumulated, showing that this type of communication is frequently decreased or absent in cells treated with tumor promoting agents, among transformed cells or between transformed/tumor cells and normal cells. This observation has been made on various cell types and whatever their tissue and species origins, by using in vitro and in vivo models. It led to the general assumption that the inhibition of gap junctional intercellular communication may play a role in carcinogenesis at two levels: (1) during tumor promotion by favoring the clonal expansion of initiated cells and (2) after the phenotypic transformation of cells by preventing the diffusion of putative "normalizing" factors between tumor cells and surrounding normal cells. During the past decade, the discovery that gap junction proteins, the connexins (Cx), may act as tumour suppressors, by reverting the phenotype of transformed cells confirmed the idea that their lack of function would be actively involved in carcinogenesis. However, we still do not know precisely what are the molecular processes that gap junctional intercellular communication may regulate and still do have very few data concerning the gap junction situation in human cancers. All these aspects are presented from an historical point of view and discussed below.  相似文献   

19.
Summary Specimens of mouse cerebral cortex were preserved by freezing and drying and treated in vacuo with osmium tetroxide vapors. In the neuropil of the molecular layer dense, osmiophilic laminae, presumably plasma membranes of immediately adjacent cell processes, were found to be separated by an intercellular space, which appeared relatively electron lucent in unstained sections. In sections stained with uranyl acetate an intercellular substance was demonstrated, the visualized density of which was reduced when staining was accomplished at low pH. These reactions suggest the presence of a non-lipid, anionic intercellular substance which may contain acid mucopolysaccharide.This work was supported by U.S.P.H.S. Research Grants NB 05175, NB 07044 and Career Development Award 1K3 NB 4929.  相似文献   

20.
Exosomes and microvesicles (MV) are cell membranous sacs originating from multivesicular bodies and plasma membranes that facilitate long-distance intercellular communications. Their functional biology, however, remains incompletely understood. Macrophage exosomes and MV isolated by immunoaffinity and sucrose cushion centrifugation were characterized by morphologic, biochemical, and molecular assays. Lipidomic, proteomic, and cell biologic approaches uncovered novel processes by which exosomes and MV facilitate HIV-1 infection and dissemination. HIV-1 was "entrapped" in exosome aggregates. Robust HIV-1 replication followed infection with exosome-enhanced fractions isolated from infected cell supernatants. MV- and exosome-facilitated viral infections are affected by a range of cell surface receptors and adhesion proteins. HIV-1 containing exosomes readily completed its life cycle in human monocyte-derived macrophages but not in CD4(-) cells. The data support a significant role for exosomes as facilitators of viral infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号