首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Slipper limpets use different ciliary feeding mechanisms as larvae and adults. Veliger larvae of Crepidula fornicata developed part of the adult feeding apparatus, including ctenidial filaments, neck lobe, and radula, before metamorphosis, but ctenidial feeding did not begin until well after loss of the larval feeding apparatus (velum) at metamorphosis. Earlier initiation of ctenidial feeding by individuals that were older larvae when metamorphosis occurred suggests continued development toward ctenidial feeding during delay of metamorphosis. Early juveniles produced a ciliary current through the mantle cavity and moved the radula in a grasping action before they began to capture algal cells on mucous strands or form a food cord. Either early juveniles could not yet form mucous strands or they delayed their production until development of other necessary structures. The neck canal for transporting food from ctenidium to mouth cannot develop before velar loss. In their first feeding, juveniles fed much like the adults except that the neck canal was less developed and the path of the food cord toward the mouth sometimes varied. As suspension feeders, calyptraeids lack the elaborations of foregut that complicate transition to juvenile feeding for many caenogastropods, but a path for the food cord must develop after velar loss. Why individuals can initiate ctenidial feeding sooner when they are older at metamorphosis is not yet known. The juveniles became sedentary soon after metamorphosis and were not observed to feed by scraping the substratum with the radula, in contrast to the first feeding by juveniles of another calyptraeid species, observed by Montiel et al. ( 2005 ).  相似文献   

2.
Abstract Diapausing insect species have evolved a great diversity of life cycles, although overwintering occurs at a single development stage within most species. Understanding why diapause has evolved towards a given life stage requires investigation of both the ecological and physiological attributes. Notably, it is suggested that adult overwintering is more energy‐demanding than larval overwintering but it brings fitness gains by allowing adults to be synchronized with their seasonal requisites through an early spring emergence. This hypothesis is tested in field conditions in the nut weevil Curculio nucum, whose life cycle comprises an obligate 2‐year, nonfeeding underground phase, including a larval, followed by an adult, overwintering. In this species, adult wintering leads to an early spring emergence; at first glance, however, this does not enhance synchronization between weevils and their host because adults emerge more than 1 month before starting to breed. It is suggested that adult overwintering ultimately evolved in response to the phenology of the host, by allowing females to oviposit in nuts before their full sclerotinization. Adult overwintering appears to be costly because adults postpone reproduction for 1 year, incur a significant weight loss and require feeding before egg laying. Surprisingly, lipids are unaffected during diapause, lipogenesis even being likely in the summer metamorphosis. These results suggest that the lipids involved in egg production may entirely come from the larval stages, whereas the other nutrients are acquired through adult feeding but this remains to be tested.  相似文献   

3.
This study examined the effects of strain Beauveria bassiana (LPSC 1067) on nymphal development time, fecundity and adult survival in Dichroplus maculipennis and Ronderosia bergi under laboratory conditions. It was observed that infection with 1×103 conidia/ml altered nymphal development time, fecundity and adult survival in both species. Mortality of D. maculipennis during third through the last instar (sixth) was significantly higher among treated nymphs (66±3.8%) than in controls (15±1.7%). Similarly, mortality in R. bergi during third through the last instar (fifth) was higher in treated nymphs (71±2.8%) than in controls (19±1.5%). Nymphal development times of both infected D. maculipennis and R. bergi were longer than controls. On the other hand, among survivors of both the species, control adults lived longer than infected adults. Finally, control grasshoppers of both species were much more successful reproductively than infected grasshoppers.  相似文献   

4.
Protrusile jaws are a highly useful innovation that has been linked to extensive diversification in fish feeding ecology. Jaw protrusion can enhance the performance of multiple functions, such as suction production and capturing elusive prey. Identifying the developmental factors that alter protrusion ability will improve our understanding of fish diversification. In the zebrafish protrusion arises postmetamorphosis. Fish metamorphosis typically includes significant changes in trophic morphology, accompanies a shift in feeding niche and coincides with increased thyroid hormone production. We tested whether thyroid hormone affects the development of zebrafish feeding mechanics. We found that it affected all developmental stages examined, but that effects were most pronounced after metamorphosis. Thyroid hormone levels affected the development of jaw morphology, feeding mechanics, shape variation, and cranial ossification. Adult zebrafish utilize protrusile jaws, but an absence of thyroid hormone impaired development of the premaxillary bone, which is critical to jaw protrusion. Premaxillae from early juvenile zebrafish and hypothyroid adult zebrafish resemble those from adults in the genera Danionella, Devario, and Microdevario that show little to no jaw protrusion. Our findings suggest that evolutionary changes in how the developing skulls of danionin minnows respond to thyroid hormone may have promoted diversification into different feeding niches.  相似文献   

5.
The aquatic frog Pseudis platensis has a giant tadpole, long developmental time, and dissociated metamorphic events that include later offset of larval somatic morphologies. Moreover, when the tadpole metamorphoses, the young frog is nearly the size of an adult, suggesting that this species has low rates of postmetamorphic growth. Herein, we study the development of the skeleton during larval development up to the end of metamorphosis, which is denoted by the complete lost of the tail in P. platensis. Our study revealed heterochronic differences in skeletal development compared with that of most anurans; these involve the complete differentiation of skull bones and the extensive ossification of the postcranial skeleton before completion of metamorphosis. The skull of metamorphosing P. platensis has an ossified sphenethmoid and a fully formed plectral apparatus, thus differing with regard to the pattern observed in most anurans in which both developmental events take place during the postmetamorphic life. Despite the fact that the iliosacral articulation and the urostyle are present at the end of metamorphosis as in most anurans, ossification/calcification of carpus, tarsus, and limb epihyses during metamorphosis of P. platensis suggests that the postcranial skeleton lacks postmetamorphic growth. This study also includes a discussion of the pattern of development of the plectral apparatus, which allows us to propose a new hypothesis regarding pars externa plectri homology. J. Morphol., 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

6.
The feeding biomechanics of premetamorphic, metamorphic, and postmetamorphic southern flounder, Paralichthys lethostigma, were investigated to better understand the origin and design of adult pleuronectiform feeding mechanisms. Larval P. lethostigma were sampled from culture tanks every day from first feeding through metamorphosis. Fish were then fixed, cleared, and double stained for cartilage and bone. Postmetamorphic juvenile and adult fish were obtained from aquaculture facilities, fixed, and the muscles and bones of the head dissected. All fish were digitally photographed from both sides of the head. Measurements from digital images included head depth, head length, and quadratal angle (a measure of articular‐quadrate position). Measurements were also made of closing in‐lever, opening in‐lever, and out‐lever moment arm lengths for the determination of lower jaw opening and closing mechanical advantage. In premetamorphic larvae, quadratal angle increased from 40° to 80°, opening lever ratio increased from 0.10 to 0.37, and closing lever ratio increased from 0.06 to 0.40. From these measurements and observations of cleared and double‐stained specimens, it was determined that lower jaw depression and elevation changed from a hyoid‐based to an opercular‐based mechanism prior to the onset of metamorphosis. With migration of the right eye to the left side of the head, quadratal angle remained relatively unchanged at 72° to 84°, opening lever ratio decreased from a high of 0.32 to a low of 0.14, and closing lever ratio decreased to as low as 0.17. Postmetamorphic fish exhibited little change with a quadratal angle of 83° to 84°, an opening lever ratio of 0.19, and a closing lever ratio of 0.17 to 0.19. Paired measurements made on the left (ocular) and right (blind) sides of the head indicated that quadratal angle was asymmetrical during metamorphosis (P = 0.003, α = 0.017). Mechanical advantage for lower jaw elevation was also bilaterally asymmetrical following metamorphosis (P = 0.002, α = 0.013). Because mechanical advantage for lower jaw depression was not directionally asymmetrical in metamorphic or postmetamorphic P. lethostigma, functional asymmetry (lateral jaw flexion) is not predicted for jaw opening. These results suggest differences in the design and function of feeding mechanisms for premetamorphic, metamorphic, and postmetamorphic P. lethostigma. J. Morphol., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

7.
Synopsis Gymnocharacinus bergi is a rare Paranensean fish which is the only characiform almost lacking scales in the adult. It is endemic and the only species in a peculiar spot — a tributary of the Valcheta creek — in the Somuncurá plateau in northern Patagonia, Argentina, over 300 km from the nearest place with a paranensean fish fauna. Besides its geographical isolation, G. bergi occurs within an area with climatic features drastically different from those currently associated with fishes from Neotropical temperate zones. We tested the assumption that water temperature in the naked characin habitat do not agree with the northern Patagonia climate. We also considered the isolation of G. bergi within the framework of an increasing inpoverishment of the paranensean ichthyofauna along a NE-SW axis in the Buenos Aires province. For this we applied a decrement equation used in island biogeography. Our findings demonstrate that the existence of G. bergi in its isolated habitat is possible because of the thermal traits of the water at the sources of the creeks, its temperature being independent of the climate of the area. The chemical composition of water was found to be within the range of common environments in the Buenos Aires pampas inhabited by several species of Paranensean fishes. Geographically, G. bergi lives in the last of a series of habitats which show a decreasing number of species correlated with the increasing distance from the La Plata River. Conservation status of the species is briefly discussed.  相似文献   

8.
The adult skeleton and tadpole chondrocranium of the leptodcatylid frog, Ceratophrys cornuta (Ceratophryinae), are described in detail, including the ontogenetic development of the chondrocanium and the ossification sequence of the skeleton. The chondrocranium of the carnivorous larvae is unique in lacking a frontoparietal fontanelle and possessing a complete dorsal roof of cartilage. Furthermore, the chondrocranium is extremely robust, particularly those elements involved in the feeding mechanism; these include large palatoquadrate cartilages, stout Meckel's, supra- and infrarostral cartilages, and short, wide, cornua trabeculae. The chondrocranium of C. cornuta resembles that described for Ceratophrys cranwelli, but differs from the chondrocrania reported for the species of Lepidobatrachus. The large adult skull is hyperossified; most elements are fused into a single unit, and nearly all dermal elements are ornamented, casqued, and co-ossified. Calcification is present in nearly every cartilaginous element of the skeleton in larger (older) adults. Several osteological characters previously used in ceratophryine systematics, such as the otic ramus of the squamosal and the columella, are reassessed. Contrary to previous reports, the ossified, dorsal dermal shield above the vertebral column in many ceratophryine anurans is absent in C. cornuta. With few exceptions, the ossification sequence relative to metamorphosis is consistent with those that are known for other anurans. The squamosal arises from three distinct centers of ossification, including an otic element. The frontoparietal arises from two centers of ossification that fuse early in development. A robust postorbital arch is formed primarily by the otic flange of the frontoparietal, which articulates laterally with the medial border of the otic ramus of the squamosal. Changes in the timing of development, or heterochrony, are involved with the evolution of the unusual skull and skeleton of ceratophryine frogs. J Morphol 232:169–206, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
Unlike most rotifers (Rotifera), which are planktonic and direct developers, many gnesiotrochan rotifers (Monogononta: Gnesiotrocha) are sessile and have indirect development. Few details exist on larval metamorphosis in most gnesiotrochans, and considering the drastic transformation that takes place at metamorphosis—the replacement of the ciliated corona with a new head that bears ciliated tentacles (the infundibulum)—it is perhaps surprising that there are limited data on the process. Here, we document part of this metamorphosis by examining the presence and distribution of neurons with serotonin immunoreactivity in the nervous system of both planktonic larvae and sessile adult females. Using antibodies against serotonin combined with confocal laser‐scanning microscopy (CLSM) and 3D reconstruction software, we mapped the immunoreactive cell bodies and neurites in both life stages and found that relatively few changes occurred during metamorphosis. The larvae possessed a total of eight perikarya with serotonergic immunoreactivity (5HT‐IR) in the brain, with at least two pairs of perikarya outside the brain in the region of the corona. Cells with 5HT‐IR in the brain innervated the larval corona and also sent neurites to the trunk via the nerve cords. During metamorphosis, the corona was replaced by the infundibulum, which emerged from the larval mouth to become the new functional head. This change led to a posterior displacement of the brain and also involved the loss of 5HT‐IR in the lateral brain perikarya and the gain of two perikarya with 5HT‐IR in the anterior brain region. The innervation of the anterior end was retained in the adult; neurites that extended anteriorly to the mouth of the larva formed a distinct neural ring that encircled the infundibulum after metamorphosis. Significantly, there was no innervation of the infundibular tentacles by neurites with 5HT‐IR, which suggests that ciliary control is unlikely to be modulated by serotonin within the tentacles themselves.  相似文献   

10.
Gymnocharacinus bergi is a stenothermal endangered fish only found in the headwaters of a thermal stream within the temperate Somuncurá Plateau (Patagonia, Argentina). In spite of the presence of other fish species in the Valcheta Stream basin, none of these has been found at the headwaters. Temperature and salinity cannot account for the absence of extremely eurytopic Cnesterodon and Jenynsia. In addition, there is no evidence of diet overlapping or territory defence between these species and G. bergi. Therefore, we hypothesise that agonistic behaviour might be related to G. bergi's isolation. Experiments were performed in order to analyse interspecific interaction between G. bergi and individuals of the other two species. Cnesterodon decemmaculatus showed a submissive behaviour while Jenynsia multidentata was clearly aggressive. G. bergi decreased its aggressive behaviour towards C. decemmaculatus throughout the experiment. However, when placed with J. multidentata, its aggressive behaviour did not diminish. We suggest that the characteristics of the agonistic behaviour displayed by J. multidentata, opposite from those displayed by C. decemmaculatus, might account for the absence of J. multidentata in G. bergi's present habitat. With respect to C. decemmaculatus, other factors such as its low counter current swimming ability might play a major role in this phenomenon.  相似文献   

11.
1. Population dynamics and feeding ecology of adult and larval alpine newts (Triturus alpestris, Laurenti) were investigated in a high-altitude karts lake to estimate their feeding pressure on the copepod Arctodiaptomus alpinuf (Imhof). Estimates of population size for reproducing adults ranged from 666 to 864 individuals in the lake during July and August. Total abundance of larvae before the onset of ice cover varied considerably between 4400 and 25400 individuals in different years. 2. Arctodiaptomus alpinus was an important prey item for adult and larval alpine newts. During the second half of their aquatic period, adult newts moved to deeper water where the copepod reached its highest densities near the sediment. Adults and larvae exhibited no periodic feeding pattern. The feeding rhythm was more synchronized among the larvae than among the adults. 3. Daily food consumption, estimated using the Elliott & Persson (1978) model, reached 4–21 mg dry biomass in adults. The daily ration of larvae was about 7% of body dry weight in the temperature range 6-11°C. Compared to published estimates of daily food consumption in salmonid fishes, the feeding pressure of newts appears low.  相似文献   

12.
The damselfishes are one of the dominant coral reef fish lineages. Their ecological diversification has involved repeated transitions between pelagic feeding using fast bites and benthic feeding using forceful bites. A highly‐integrative approach that combined gene expression assays, shape analyses, and high‐speed video analyses was used to examine the development of trophic morphology in embryonic, larval, juvenile, and adult damselfishes. The anatomical characters that distinguish pelagic‐feeding and benthic‐feeding species do not appear until after larval development. Neither patterns of embryonic jaw morphogenesis, larval skull shapes nor larval bite mechanics significantly distinguished damselfishes from different adult trophic guilds. Analyses of skull shape and feeding performance identified two important transitions in the trophic development of a single species (the orange clownfish; Amphiprion percula): (a) a pronounced transformation in feeding mechanics during metamorphosis; and (b) more protracted cranial remodeling over the course of juvenile development. The results of this study indicate that changes in postlarval morphogenesis have played an important role in damselfish evolution. This is likely to be true for other fish lineages, particularly if they consist of marine species, the majority of which have planktonic larvae with different functional requirements for feeding in comparison to their adult forms.  相似文献   

13.
Evolution of pollen feeding in Heliconius has allowed exploitation of rich amino acid sources and dramatically reorganized life‐history traits. In Heliconius, eggs are produced mainly from adult‐acquired resources, leaving somatic development and maintenance to larva effort. This innovation may also have spurred evolution of chemical defence via amino acid‐derived cyanogenic glycosides. In contrast, nonpollen‐feeding heliconiines must rely almost exclusively on larval‐acquired resources for both reproduction and defence. We tested whether adult amino acid intake has an immediate influence on cyanogenesis in Heliconius. Because Heliconius are more distasteful to bird predators than close relatives that do not utilize pollen, we also compared cyanogenesis due to larval input across Heliconius species and nonpollen‐feeding relatives. Except for one species, we found that varying the amino acid diet of an adult Heliconius has negligible effect on its cyanide concentration. Adults denied amino acids showed no decrease in cyanide and no adults showed cyanide increase when fed amino acids. Yet, pollen‐feeding butterflies were capable of producing more defence than nonpollen‐feeding relatives and differences were detectable in freshly emerged adults, before input of adult resources. Our data points to a larger role of larval input in adult chemical defence. This coupled with the compartmentalization of adult nutrition to reproduction and longevity suggests that one evolutionary consequence of pollen feeding, shifting the burden of reproduction to adults, is to allow the evolution of greater allocation of host plant amino acids to defensive compounds by larvae.  相似文献   

14.
A sessile predator, the ciliated protozoanTokophrya lemnarum, produces a motile embryo. The embryo attaches to a substrate and secretes a stalk at metamorphosis. Production of the offspring is closely synchronized with the feeding schedule, so that fecundity per individual varies directly with the food level. Some embryos produced by an adult do not attach at metamorphosis but become freely floating adults. The percentage of nonattaching embryos is compared between adults fed high or low level diets. Adults on the low level diet produce 25% or more nonattaching embryos compared to 10% or less produced by adults on a high level diet. If the adult is switched from a low level diet to a high level diet, or from high to low, the percentage of nonattaching embryos produced on each diet remains relatively constant. It is suggested that nonattachment provides one means for individuals to escape areas of low prey density and availability.  相似文献   

15.
Arginine vasotocin (AVT) is a neurotransmitter in the amphibian central nervous system and is released from the neurohypophysis in the regulation of hydromineral balance and other homeostatic functions. Many amphibians experience drastic changes in habitat with respect to water availability during their transformation from aquatic larvae to terrestrial adults. To examine whether metamorphosis is accompanied by a reorganization of central vasotocinergic neurons, the developmental organization of vasotocin neurons and nerve fibers was studied with immunocytochemistry in the brains of bullfrogs (Rana catesbeiana) and woodfrogs (R. sylvatica). In bullfrogs, early limb-bud-stage tadpoles had AVT-immunoreactive neurons and nerve fibers in the lateral septal nucleus, amygdala, preoptic hypothalamus, suprachiasmatic nucleus, and posterodorsal tegmentum. Woodfrog larvae showed similar patterns of hypothalamic AVT immunoreactivity, although neuronal staining in the amygdala did not appear until metamorphic climax, and never appeared in septal neurons or in the posterodorsal tegmentum. Whereas the highly terrestrialR. sylvatica adults must adapt to an adult habitat with prolonged periods of dehydration,R. catesbeiana adults remain semiaquatic and, as such, need not develop extreme mechanisms for water retention. Nonetheless, vasotocinergic pathways showed developmental similarities in the two species. The early appearance of AVT innervation in bothRana suggests that AVT has neuroregulatory functions well before metamorphosis.  相似文献   

16.
A new culture method for lesser mealworm, Alphitobius diaperinus (Panzer), was developed to provide large numbers of adult lesser mealworms of approximately the same age for insecticide resistance testing. Culturing entailed allowing 100 adults to reproduce for 4 days in a wheat‐based culture medium contained inside a plastic culture box, removing the adults from the medium, and then rearing their progeny to adulthood therein, in approximately 56 days at 32°C and 55% RH. During their development, progeny were supplied water via apple slices at 0, 21 and 35 days, and a foam substrate in which to pupate, also at 35 days. During 2004–2005, adult lesser mealworms were collected from six broiler‐house populations and then cultured with this method. Each population produced 4500 adults required to complete resistance testing with one insecticide within ten culture boxes, at an average of 798 adults per culture box.  相似文献   

17.
Gymnocharacinus bergi (Pisces, Characidae) is classified as 'endangered' (IUCN 1996). It has been given particular attention among Patagonian fishes due to the reduction of some of its morphological structures, particularly scales, its extreme southern distribution among the Characiformes and its strong adaptation to a thermal environment in northeastern Patagonia. This paper describes the main aspects of gametogenesis, induced breeding, spawning and development of G. bergi, whose life history traits are related to the peculiar characteristics of its restricted environment. The temperature and flow stability of the Valcheta Stream make many of the environmental variables predictable. Other variables related to photoperiod undergo predictable fluctuation during the year. Gymnocharacinus bergi has synchronous gametogenesis and a rather short breeding season, which is earlier than for Paranensean characids. Its reproductive mode, courtship and spawning behaviour, and the absence of sexual dimorphism are common to other small characins from lotic environments. Gymnocharacinus bergi is a sedentary species with precocial characters, such as low fecundity and slightly adhesive, yolk-rich oocytes which are large in relation to the small size of the female. Larvae are robust, development is indirect and adulthood prolonged. These peculiar characteristics indicate a reproductive style very different from that of the main groups of Patagonian fish fauna.  相似文献   

18.
Ants of the genus Pheidole are important seed consumers in several desert ecosystems. In South American deserts, although several Pheidole spp. have been characterized as seed harvesters, studies on their diet and ecological role are still missing. Pheidole spininodis (Mayr) and Pheidole bergi (Mayr) are capable of removing seeds in the central Monte desert. The aim of this study was to quantify and compare the diet of these species and to interpret the results in the context of seed–granivore interactions. Diet was estimated during mid-summer by collecting items brought back to the nest by foragers in ten colonies per species. While P. spininodis was mainly granivorous, P. bergi was mainly insectivorous. However, they both collected ~40% of other types of items. Among seeds, the diet of P. spininodis included mostly grass seeds, whereas the diet of P. bergi was mainly made up of shrub and tree seeds, usually retrieved cooperatively. This behavior allowed P. bergi to carry larger seeds, resulting in diet partitioning in terms of seed size. However, diet of P. spininodis is very similar to that of three sympatric Pogonomyrmex species. Thus, specialized harvester ants remove large quantities of grass seeds in the central Monte desert during the summer, potentially affecting their abundance in the soil seed bank. P. bergi directs its feeding pressure to shrub and tree seeds, and although seeds constitute ~10% of its diet, its high colony density and high activity levels, added to the lower proportion of large seeds in the soil seed bank, indicate that their importance as seed consumers cannot be ruled out.  相似文献   

19.
Aerial photographs were analyzed to investigate the feeding habits of the Bering‐Chukchi‐Beaufort (BCB) population of bowhead whales (Balaena mysticetus), particularly epibenthic feeding near Barrow, Alaska. Evidence of epibenthic feeding was based on mud visible on the dorsal surface of whales, resulting from feeding near the seafloor. Other cues used to assess feeding were an open mouth or the presence of feces in photographs. Over 3,600 photographs were analyzed including photos from surveys in spring and late summer and in both the western and eastern Beaufort Sea. Of all the photographs analyzed, 64% were scored as definitively muddy. In spring, ratios ranged from a low of 27% in 2003 to a high of 76% in 2004. When all May sample sets off Barrow were combined (1985, 1986, 2003, 2004), there was a significant difference (t‐test, P < 0.004) between the proportion of muddy juveniles to the proportion of muddy adults, with muddy adults being more common. The Barrow area was a commonly used feeding ground during migrations in both the spring (61% of the sample were feeding; 55% epibenthically) and autumn (99% of the sample; 97% epibenthically). Bowheads both migrate and feed through areas where petroleum extraction is underway and anticipated; hence, exposure to oil after a spill is of considerable concern to Native communities and management agencies.  相似文献   

20.
In larval sea lampreys (Petromyzon marinus), a small, relatively inconspicuous olfactory organ sac contains small, densely packed olfactory receptor neurons and sustentacular cells. During metamorphosis, the larval organ transforms into a prominent lamellar structure with large distinct olfactory epithelial cells that is characteristic of the adult lamprey. In the present study, scanning electron microscopy and light microscopy are used to examine changes during the seven stages (1–7) of metamorphosis. The magnitude of growth over the course of metamorphosis is evident from the doubling of the relative weight of the nasal sac. During early metamorphosis (stages 1 and 2), the larval olfactory organ enlarges, and by stage 3 specific adult structures begin to form, namely a nasal valve between the nasal tube and the organ, lamellar folds, and diverticuli of the accessory olfactory organ. Subsequent development involves widening of the cells lining the lamellar folds to the form characteristic of postmetamorphic lampreys. Although the cells in the troughs initially retain numerical density values that are significantly higher than those on the lamellar surfaces, by stage 7 values decline both in troughs and along lamellar surfaces to those observed in adults. These results show that although expansion of the olfactory organ is ongoing throughout metamorphosis, remodeling occurs early (by stage 3). This timing provides space for extensive olfactory receptor neuron neurogenesis and differentiation and correlates with the transformation of some organs that were previously examined. This is the first report in any species of olfactory receptor neuron zonation based on morphometric characteristics. J. Morphol. 231:41–52, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号