首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An integral part of functional genomics studies is to assess the enrichment of specific biological terms in lists of genes found to be playing an important role in biological phenomena. Contrasting the observed frequency of annotated terms with those of the background is at the core of overrepresentation analysis (ORA). Gene Ontology (GO) is a means to consistently classify and annotate gene products and has become a mainstay in ORA. Alternatively, Medical Subject Headings (MeSH) offers a comprehensive life science vocabulary including additional categories that are not covered by GO. Although MeSH is applied predominantly in human and model organism research, its full potential in livestock genetics is yet to be explored. In this study, MeSH ORA was evaluated to discern biological properties of identified genes and contrast them with the results obtained from GO enrichment analysis. Three published datasets were employed for this purpose, representing a gene expression study in dairy cattle, the use of SNPs for genome‐wide prediction in swine and the identification of genomic regions targeted by selection in horses. We found that several overrepresented MeSH annotations linked to these gene sets share similar concepts with those of GO terms. Moreover, MeSH yielded unique annotations, which are not directly provided by GO terms, suggesting that MeSH has the potential to refine and enrich the representation of biological knowledge. We demonstrated that MeSH can be regarded as another choice of annotation to draw biological inferences from genes identified via experimental analyses. When used in combination with GO terms, our results indicate that MeSH can enhance our functional interpretations for specific biological conditions or the genetic basis of complex traits in livestock species.  相似文献   

2.
A new method to measure the semantic similarity of GO terms   总被引:4,自引:0,他引:4  
  相似文献   

3.
The Ontologizer is a Java application that can be used to perform statistical analysis for overrepresentation of Gene Ontology (GO) terms in sets of genes or proteins derived from an experiment. The Ontologizer implements the standard approach to statistical analysis based on the one-sided Fisher's exact test, the novel parent-child method, as well as topology-based algorithms. A number of multiple-testing correction procedures are provided. The Ontologizer allows users to visualize data as a graph including all significantly overrepresented GO terms and to explore the data by linking GO terms to all genes/proteins annotated to the term and by linking individual terms to child terms. AVAILABILITY: The Ontologizer application is available under the terms of the GNU GPL. It can be started as a WebStart application from the project homepage, where source code is also provided: http://compbio.charite.de/ontologizer. REQUIREMENTS: Ontologizer requires a Java SE 5.0 compliant Java runtime engine and GraphViz for the optional graph visualization tool.  相似文献   

4.

Background

Communalities between large sets of genes obtained from high-throughput experiments are often identified by searching for enrichments of genes with the same Gene Ontology (GO) annotations. The GO analysis tools used for these enrichment analyses assume that GO terms are independent and the semantic distances between all parent–child terms are identical, which is not true in a biological sense. In addition these tools output lists of often redundant or too specific GO terms, which are difficult to interpret in the context of the biological question investigated by the user. Therefore, there is a demand for a robust and reliable method for gene categorization and enrichment analysis.

Results

We have developed Categorizer, a tool that classifies genes into user-defined groups (categories) and calculates p-values for the enrichment of the categories. Categorizer identifies the biologically best-fit category for each gene by taking advantage of a specialized semantic similarity measure for GO terms. We demonstrate that Categorizer provides improved categorization and enrichment results of genetic modifiers of Huntington’s disease compared to a classical GO Slim-based approach or categorizations using other semantic similarity measures.

Conclusion

Categorizer enables more accurate categorizations of genes than currently available methods. This new tool will help experimental and computational biologists analyzing genomic and proteomic data according to their specific needs in a more reliable manner.  相似文献   

5.
6.
GOAT     
Understanding the composition of gene lists that result from high-throughput experiments requires elaborate processing of gene annotation lists. In this article we present GOAT (Gene Ontology Analysis Tool), a tool based on the statistical software 'R' for analysing Gene Ontologytrade mark (GO) term enrichment in gene lists. Given a gene list, GOAT calculates the enrichment and statistical significance of every GO term and generates graphical presentations of significantly enriched terms. GOAT works for any organism with a genome-scale GO annotation and allows easy updates of ontologies and annotations. AVAILABILITY: GOAT is freely available from http://dictygenome.org/software/GOAT/ CONTACT: Gad Shaulsky (gadi@bcm.tmc.edu).  相似文献   

7.
SUMMARY: Analysis of microarray data most often produces lists of genes with similar expression patterns, which are then subdivided into functional categories for biological interpretation. Such functional categorization is most commonly accomplished using Gene Ontology (GO) categories. Although there are several programs that identify and analyze functional categories for human, mouse and yeast genes, none of them accept Arabidopsis thaliana data. In order to address this need for A.thaliana community, we have developed a program that retrieves GO annotations for A.thaliana genes and performs functional category analysis for lists of genes selected by the user. AVAILABILITY: http://www.personal.psu.edu/nhs109/Clench  相似文献   

8.
The Gene Ontology (GO) provides biologists with a controlled terminology that describes how genes are associated with functions and how functional terms are related to one another. These term-term relationships encode how scientists conceive the organization of biological functions, and they take the form of a directed acyclic graph (DAG). Here, we propose that the network structure of gene-term annotations made using GO can be employed to establish an alternative approach for grouping functional terms that captures intrinsic functional relationships that are not evident in the hierarchical structure established in the GO DAG. Instead of relying on an externally defined organization for biological functions, our approach connects biological functions together if they are performed by the same genes, as indicated in a compendium of gene annotation data from numerous different sources. We show that grouping terms by this alternate scheme provides a new framework with which to describe and predict the functions of experimentally identified sets of genes.  相似文献   

9.
REVIGO summarizes and visualizes long lists of gene ontology terms   总被引:1,自引:0,他引:1  
Outcomes of high-throughput biological experiments are typically interpreted by statistical testing for enriched gene functional categories defined by the Gene Ontology (GO). The resulting lists of GO terms may be large and highly redundant, and thus difficult to interpret.REVIGO is a Web server that summarizes long, unintelligible lists of GO terms by finding a representative subset of the terms using a simple clustering algorithm that relies on semantic similarity measures. Furthermore, REVIGO visualizes this non-redundant GO term set in multiple ways to assist in interpretation: multidimensional scaling and graph-based visualizations accurately render the subdivisions and the semantic relationships in the data, while treemaps and tag clouds are also offered as alternative views. REVIGO is freely available at http://revigo.irb.hr/.  相似文献   

10.
Lee S  Cha JY  Kim H  Yu U 《BMB reports》2012,45(2):120-125
We have developed a biologist-friendly, Java GUI application (GoBean) for GO term enrichment analysis. It was designed to be a comprehensive and flexible GUI tool for GO term enrichment analysis, combining the merits of other programs and incorporating extensive graphic exploration of enrichment results. An intuitive user interface with multiple panels allows for extensive visual scrutiny of analysis results. The program includes many essential and useful features, such as enrichment analysis algorithms, multiple test correction methods, and versatile filtering of enriched GO terms for more focused analyses. A unique graphic interface reflecting the GO tree structure was devised to facilitate comparisons of multiple GO analysis results, which can provide valuable insights for biological interpretation. Additional features to enhance user convenience include built in ID conversion, evidence code-based gene-GO association filtering, set operations of gene lists and enriched GO terms, and user -provided data files. It is available at http://neon.gachon.ac.kr/GoBean/.  相似文献   

11.
GoSurfer   总被引:2,自引:0,他引:2  
The analysis of complex patterns of gene regulation is central to understanding the biology of cells, tissues and organisms. Patterns of gene regulation pertaining to specific biological processes can be revealed by a variety of experimental strategies, particularly microarrays and other highly parallel methods, which generate large datasets linking many genes. Although methods for detecting gene expression have improved substantially in recent years, understanding the physiological implications of complex patterns in gene expression data is a major challenge. This article presents GoSurfer, an easy-to-use graphical exploration tool with built-in statistical features that allow a rapid assessment of the biological functions represented in large gene sets. GoSurfer takes one or two list(s) of gene identifiers (Affymetrix probe set ID) as input and retrieves all the Gene Ontology (GO) terms associated with the input genes. GoSurfer visualises these GO terms in a hierarchical tree format. With GoSurfer, users can perform statistical tests to search for the GO terms that are enriched in the annotations of the input genes. These GO terms can be highlighted on the GO tree. Users can manipulate the GO tree in various ways and interactively query the genes associated with any GO term. The user-generated graphics can be saved as graphics files, and all the GO information related to the input genes can be exported as text files. AVAILABILITY: GoSurfer is a Windows-based program freely available for noncommercial use and can be downloaded at http://www.gosurfer.org. Datasets used to construct the trees shown in the figures in this article are available at http://www.gosurfer.org/download/GoSurfer.zip.  相似文献   

12.
Additional gene ontology structure for improved biological reasoning   总被引:5,自引:0,他引:5  
MOTIVATION: The Gene Ontology (GO) is a widely used terminology for gene product characterization in, for example, interpretation of biology underlying microarray experiments. The current GO defines term relationships within each of the independent subontologies: molecular function, biological process and cellular component. However, it is evident that there also exist biological relationships between terms of different subontologies. Our aim was to connect the three subontologies to enable GO to cover more biological knowledge, enable a more consistent use of GO and provide new opportunities for biological reasoning. RESULTS: We propose a new structure, the Second Gene Ontology Layer, capturing biological relations not directly reflected in the present ontology structure. Given molecular functions, these paths identify biological processes where the molecular functions are involved and cellular components where they are active. The current Second Layer contains 6271 validated paths, covering 54% of the molecular functions of GO and can be used to render existing gene annotation sets more complete and consistent. Applying Second Layer paths to a set of 4223 human genes, increased biological process annotations by 24% compared to publicly available annotations and reproduced 30% of them. AVAILABILITY: The Second GO is publicly available through the GO Annotation Toolbox (GOAT.no): http://www.goat.no.  相似文献   

13.
The Gene Ontology (GO) project provides a controlled vocabulary to facilitate high-quality functional gene annotation for all species. Genes in biological databases are linked to GO terms, allowing biologists to ask questions about gene function in a manner independent of species. This tutorial provides an introduction for biologists to the GO resources and covers three of the most common methods of querying GO: by individual gene, by gene function and by using a list of genes. [For the sake of brevity, the term 'gene' is used throughout this paper to refer to genes and their products (proteins and RNAs). GO annotations are always based on the characteristics of gene products, even though it may be the gene that is cited in the annotation.].  相似文献   

14.
MOTIVATION: Despite advances in the gene annotation process, the functions of a large portion of gene products remain insufficiently characterized. In addition, the in silico prediction of novel Gene Ontology (GO) annotations for partially characterized gene functions or processes is highly dependent on reverse genetic or functional genomic approaches. To our knowledge, no prediction method has been demonstrated to be highly accurate for sparsely annotated GO terms (those associated to fewer than 10 genes). RESULTS: We propose a novel approach, information theory-based semantic similarity (ITSS), to automatically predict molecular functions of genes based on existing GO annotations. Using a 10-fold cross-validation, we demonstrate that the ITSS algorithm obtains prediction accuracies (precision 97%, recall 77%) comparable to other machine learning algorithms when compared in similar conditions over densely annotated portions of the GO datasets. This method is able to generate highly accurate predictions in sparsely annotated portions of GO, where previous algorithms have failed. As a result, our technique generates an order of magnitude more functional predictions than previous methods. A 10-fold cross validation demonstrated a precision of 90% at a recall of 36% for the algorithm over sparsely annotated networks of the recent GO annotations (about 1400 GO terms and 11,000 genes in Homo sapiens). To our knowledge, this article presents the first historical rollback validation for the predicted GO annotations, which may represent more realistic conditions than more widely used cross-validation approaches. By manually assessing a random sample of 100 predictions conducted in a historical rollback evaluation, we estimate that a minimum precision of 51% (95% confidence interval: 43-58%) can be achieved for the human GO Annotation file dated 2003. AVAILABILITY: The program is available on request. The 97,732 positive predictions of novel gene annotations from the 2005 GO Annotation dataset and other supplementary information is available at http://phenos.bsd.uchicago.edu/ITSS/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

15.
一种新的基因注释语义相似度计算方法   总被引:1,自引:0,他引:1  
基因本体(GO)数据库为基因提供了统一的注释,有效地解决了不同数据库描述相同基因的不一致问题。但是,根据基因注释如何比较基因的功能相似性,这个问题仍然没有得到有效解决。本文提出一种新的基因注释语义相似度计算方法,这种方法在本质上是基于基因的生物学特性,其特点在于结点的语义相似度与结点所在集合无关,只与结点在GO图的位置有关,语义相似度可被重复利用。它既考虑了基因所映射的GO结点深度,又考虑了两GO结点之间所有路径对结点语义相似度的影响。文中以酵母菌的异亮氨酸降解代谢通路和谷氨酸合成代谢通路为实验,实验结果表明这种算法能准确地计算基因注释语义相似度。  相似文献   

16.
The search for feature enrichment is a widely used method to characterize a set of genes. While several tools have been designed for nominal features such as Gene Ontology annotations or KEGG Pathways, very little has been proposed to tackle numerical features such as the chromosomal positions of genes. For instance, microarray studies typically generate gene lists that are differentially expressed in the sample subgroups under investigation, and when studying diseases caused by genome alterations, it is of great interest to delineate the chromosomal regions that are significantly enriched in these lists. In this article, we present a positional gene enrichment analysis method (PGE) for the identification of chromosomal regions that are significantly enriched in a given set of genes. The strength of our method relies on an original query optimization approach that allows to virtually consider all the possible chromosomal regions for enrichment, and on the multiple testing correction which discriminates truly enriched regions versus those that can occur by chance. We have developed a Web tool implementing this method applied to the human genome (http://www.esat.kuleuven.be/~bioiuser/pge). We validated PGE on published lists of differentially expressed genes. These analyses showed significant overrepresentation of known aberrant chromosomal regions.  相似文献   

17.
Microarray technology has become employed widely for biological researchers to identify genes associated with conditions such as diseases and drugs. To date, many methods have been developed to analyze data covering a large number of genes, but they focus only on statistical significance and cannot decipher the data with biological concepts. Gene Ontology (GO) is utilized to understand the data with biological interpretation; however, it is restricted to specific ontology such as biological process, molecular function, and cellular component. Here, we attempted to apply MeSH (Medical Subject Headings) to interpret groups of genes from biological viewpoint. To assign MeSH terms to genes, in this study, contexts associated with genes are retrieved from full set of MEDLINE data using machine learning, and then extracted MeSH terms from retrieved articles. Utilizing the developed method, we implemented a software called BioCompass. It generates high-scoring lists and hierarchical lists for diseases MeSH terms associated with groups of genes to utilize MeSH and GO tree, and illustrated a wiring diagram by linking genes with extracted association from articles. Researchers can easily retrieve genes and keywords of interest, such as diseases and drugs, associated with groups of genes. Using retrieved MeSH terms and OMIM in conjunction with, we could obtain more disease information associated with target gene. BioCompass helps researchers to interpret groups of genes such as microarray data from a biological viewpoint.  相似文献   

18.
Genome-wide association studies (GWAS) are designed to identify the portion of single-nucleotide polymorphisms (SNPs) in genome sequences associated with a complex trait. Strategies based on the gene list enrichment concept are currently applied for the functional analysis of GWAS, according to which a significant overrepresentation of candidate genes associated with a biological pathway is used as a proxy to infer overrepresentation of candidate SNPs in the pathway. Here we show that such inference is not always valid and introduce the program SNP2GO, which implements a new method to properly test for the overrepresentation of candidate SNPs in biological pathways.  相似文献   

19.
A major challenge in microarray data analysis is the functional interpretation of gene lists. A common approach to address this is over-representation analysis (ORA), which uses the hypergeometric test (or its variants) to evaluate whether a particular functionally defined group of genes is represented more than expected by chance within a gene list. Existing applications of ORA have been largely limited to pre-defined terminologies such as GO and KEGG. We report our explorations of whether ORA can be applied to a wider mining of free-text. We found that a hitherto underappreciated feature of experimentally derived gene lists is that the constituents have substantially more annotation associated with them, as they have been researched upon for a longer period of time. This bias, a result of patterns of research activity within the biomedical community, is a major problem for classical hypergeometric test-based ORA approaches, which cannot account for such bias. We have therefore developed three approaches to overcome this bias, and demonstrate their usability in a wide range of published datasets covering different species. A comparison with existing tools that use GO terms suggests that mining PubMed abstracts can reveal additional biological insight that may not be possible by mining pre-defined ontologies alone.  相似文献   

20.
MOTIVATION: The result of a typical microarray experiment is a long list of genes with corresponding expression measurements. This list is only the starting point for a meaningful biological interpretation. Modern methods identify relevant biological processes or functions from gene expression data by scoring the statistical significance of predefined functional gene groups, e.g. based on Gene Ontology (GO). We develop methods that increase the explanatory power of this approach by integrating knowledge about relationships between the GO terms into the calculation of the statistical significance. RESULTS: We present two novel algorithms that improve GO group scoring using the underlying GO graph topology. The algorithms are evaluated on real and simulated gene expression data. We show that both methods eliminate local dependencies between GO terms and point to relevant areas in the GO graph that remain undetected with state-of-the-art algorithms for scoring functional terms. A simulation study demonstrates that the new methods exhibit a higher level of detecting relevant biological terms than competing methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号