首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary The combined activities of the Agrobacterium tumefaciens T-DNA genes 1 and 2 are sufficient to induce tumorous growth on several plants, by introducing a new auxin biosynthetic pathway in infected cells. We have isolated Nicotiana tabacum plants containing only gene 1 or gene 2. These plants, respectively called rG1 and rG2, grow and develop in a normal fashion, indicating that neither the gene 1 nor the gene 2 activity by itself interferes with the endogenous auxin metabolism in plants. Previous evidence indicated that the auxin biosynthetic pathway of Pseudomonas savastanoi and that proposed to be encoded by the T-DNA of Agrobacterium tumefaciens are similar. When rG2 plants were infected with non-oncogenic A. tumefaciens or Escherichia coli strains that harbour the P. savastanoi iaaM gene (responsible for indole-3-acetamide synthesis) root and callus formation at the infection site was readily observed. This shows that the product of iaaM, indole-3-acetamide, is an in vivo substrate for the gene 2 encoded enzyme and supports the proposal that the gene 1-encoded enzyme is involved in the synthesis of indole-3-acetamide in transformed plants. This result offers new insights in evolution of bacteria and plants involved in pathogenic and symbiotic interactions.Abbreviations IAM indole-3-acetamide - IAA indole-3-acetic acid  相似文献   

3.
4.
【目的】吲哚-3-乙酸是调控植物生长发育和生理活动的重要激素,吲哚-3-乙酸N-乙酰转移酶YsnE在吲哚-3-乙酸合成中发挥重要作用,本研究拟解析解淀粉芽胞杆菌中YsnE参与吲哚-3-乙酸合成的代谢途径。【方法】通过基因ysnE缺失和强化表达,分析ysnE对吲哚-3-乙酸合成影响,结合吲哚-3-乙酸合成中间物(吲哚丙酮酸、吲哚乙酰胺、色胺和吲哚乙腈)添加和体外酶转化实验,解析ysnE参与吲哚-3-乙酸合成的代谢途径。【结果】明确了YsnE在解淀粉芽胞杆菌HZ-12吲哚-3-乙酸合成中发挥重要作用。发现ysnE缺失菌株中的吲哚丙酮酸、吲哚乙酰胺和吲哚乙腈利用显著降低,揭示了YsnE主要发挥吲哚丙酮酸脱羧酶YclB和吲哚乙酰胺水解酶/腈水解酶/腈水合酶YhcX的功能,并通过参与吲哚丙酮酸、吲哚乙酰胺和吲哚乙腈途径来影响吲哚-3-乙酸合成。【结论】初步揭示了YsnE通过影响吲哚丙酮酸、吲哚乙酰胺和吲哚乙腈途径参与吲哚-3-乙酸合成的代谢机理,为吲哚-3-乙酸合成途径解析和代谢工程育种构建吲哚-3-乙酸高产菌株奠定了基础。  相似文献   

5.
Summary We developed a model system for detecting and assaying the circular forms of T-DNA which may be generated in Agrobacterium by intramolecular recombination between the 25 bp border repeats of T-DNA. We demonstrated using this system that the DNA region flanked by the 25 bp direct repeats is in fact circularized by recombination between these repeats in cells of Agrobacterium cocultured with tobacco protoplasts. Furthermore, quantitative analysis of the recombination revealed the following: (1) the recombination is also induced when the agrobacterial cells are incubated in protoplast-free conditioned medium prepared by filtering the protoplast culture. The conditioned medium is effective, even after it has been heated at 100°C. (2) The DNA region encompassing the virulence region of the Ti-plasmid is required for recombination. (3) The recombination takes place only between 25 bp repeats with the same orientation. On the basis of these results, we conclude that the circular form of T-DNA is generated by homologous recombination between the border repeats which is mediated by gene product(s) encoded by the virulence region of the Ti-plasmid. Either the recombination itself, or the expression of the virulence gene(s) responsible for the recombination, is induced by diffusible and heatstable factor(s) secreted by plant cells.  相似文献   

6.
Summary The successful biocontrol agent for crown gall disease, Agrobacterium radiobacter strain K84, is unable to protect grapevines from infection. We have identified a strain of Agrobacterium tumefaciens, J73, which produces an agrocin active both in vitro and in vivo against grapevine pathogens (Webster et al. 1986). We now report on the curing of this strain of its nopaline-type Ti plasmid and the location, by transposon mutagenesis, of the genes involved in the production of the agrocin. The Ti plasmid was cured by the introduction of selectable plasmids carrying the origins of replication of either the nopaline Ti plasmid, pTiC58, or the octopine Ti plasmid, pTi15955. Tn5 mutagenesis indicated that the genes responsible for agrocin production and/or export are located both on the chromosome and on a plasmid, pAgJ73, which co-migrated in agarose gels with pTiJ73. As the two plasmids were separable after transposon mutagenesis, we postulate that during or after mutagenesis of the agrocin plasmid, DNA rearrangements occurred between it and pTiJ73, resulting in an increase in size of pAgJ73. We provide evidence that the rearrangements involved the duplication of nopaline catabolism genes from pTiJ73 and their insertion into pAgJ73, which facilitated the resolution of the two plasmids. As expected pTiJ73 has homology with the nopaline Ti plasmid, pTiC58.  相似文献   

7.
Strains of Bradyrhizobium japonicum with the ability to catabolize indole-3-acetic acid (IAA) and strains of B. japonicum, Rhizobium loti, and Rhizobium galegae, unable to catabolize IAA, were analyzed for enzymes involved in the pathway for IAA degradation. Two enzymes having isatin as substrate were detected. An isatin amidohydrolase catalyzing the hydrolysis of isatin into isatinic acid was found in some B. japonicum strains and in two Rhizobium species, R loti and R. galegae. The enzyme was inducible (4–5-fold) by its substrate, isatin, and the partially purified enzyme from R. loti showed an apparent KM of 11 M for isatin. A NADPH-dependent isatin reductase was measured in extracts from a strain of B. japonicum lacking the isatin amidohydrolase. The structure of the reaction product, dioxindole was verified by NMR spectroscopy. Isatin reductase activity was also detected in extracts of dry pea seeds, and present in at least two isoforms. A low KM of 10 M for isatin was found with a partially purified preparation of the pea enzyme. The presence of such an enzyme activity in pea indicates dioxindole and isatin as possible intermediates in IAA degradation in pea.  相似文献   

8.
Ubiquinone (UQ), a lipid-soluble component, acts as a mobile component of the respiratory chain by playing an essential role in the electron transport system in many organisms, and has been widely used in pharmaceuticals due to its antioxidant property. The biosynthesis of UQ involves 10 sequential reactions brought about by various enzymes. In this study, dps gene, which encodes decaprenyl diphosphate synthase, involved in ubiquinone biosynthesis from Agrobacterium tumefaciens, and coq2 gene of Saccharomyces cerevisiae, ppt1 gene of Schizosaccahromyces pombe and ubiA gene of Escherichia coli, all of them encoding 4-hydroxybenzoate:polyprenyl diphosphate (4-HB:PPP) transferase, were reconfigured into an operon under the control of a single promoter to yield various plasmids including pBIV-dps, pBIV-dpsq, pBIV-dpsp and pBIV-dpsca. The recombinant A. tumefaciens containing dps-ubiC-ubiA gene showed the highest level ubiquinone production than that of the other recombinants and the nonrecombinant bacterium. In an aerobic fed-batch fermentation, A. tumefaciens containing the pBIV-dpsca plasmid produced 25.2 mg of ubiquinone-10 per liter which was 1.68 times higher than that of nonrecombinant type. While in microaerobic fed-batch fermentation, recombinant cell pBIV-dpsca produced 30.8 mg L−1 of ubiquinone-10. Compared to the original A. tumefaciens, the ubiquinone-10 yield and productivities of the recombinant bacterium pBIV-dpsca increased 88.9% and 77.7%, respectively, under microaerobic fed-batch conditions.  相似文献   

9.
10.
11.
Auxin is thought to be an important factor in the induction of galls by galling insects. We have previously shown that both galling and nongalling insects synthesize indole-3-acetic acid (IAA) from tryptophan (Trp) via two intermediates, indole-3-acetaldoxime (IAOx) and indole-3-acetaldehyde (IAAld). In this study, we isolated an enzyme that catalyzes the last step “IAAld → IAA” from a silk-gland extract of Bombyx mori. The enzyme, designated “BmIAO1”, contains two 2Fe–2S iron–sulfur-cluster-binding domains, an FAD-binding domain, and a molybdopterin-binding domain, which are conserved in aldehyde oxidases. BmIAO1 causes the nonenzymatic conversion of Trp to IAAld and the enzymatic conversion of IAOx to IAA, suggesting that BmIAO1 alone is responsible for IAA production in B. mori. However, a detailed comparison of pure BmIAO1 and the crude silk-gland extract suggested the presence of other enzymes involved in IAA production from Trp.

Abbreviations: BA: benzoic acid; CE: collision energy; CXP: collision cell exit potential; DP: declustering potential; IAA: indole-3-acetic acid; IBI1: IAA biosynthetic inhibitor-1; IAAld: indole-3-acetaldehyde; ICA: indole-3-carboxylic acid; IAOx: indole-3-acetaldoxime; IEtOH: indole-3-ethanol; LC–MS/MS: liquid chromatography–tandem mass spectrometry; Trp: tryptophan  相似文献   


12.
Polar transport of the natural auxin indole-3-acetic acid (IAA) is important in a number of plant developmental processes. However, few studies have investigated the polar transport of other endogenous auxins, such as indole-3-butyric acid (IBA), in Arabidopsis. This study details the similarities and differences between IBA and IAA transport in several tissues of Arabidopsis. In the inflorescence axis, no significant IBA movement was detected, whereas IAA is transported in a basipetal direction from the meristem tip. In young seedlings, both IBA and IAA were transported only in a basipetal direction in the hypocotyl. In roots, both auxins moved in two distinct polarities and in specific tissues. The kinetics of IBA and IAA transport appear similar, with transport rates of 8 to 10 mm per hour. In addition, IBA transport, like IAA transport, is saturable at high concentrations of auxin, suggesting that IBA transport is protein mediated. Interestingly, IAA efflux inhibitors and mutations in genes encoding putative IAA transport proteins reduce IAA transport but do not alter IBA movement, suggesting that different auxin transport protein complexes are likely to mediate IBA and IAA transport. Finally, the physiological effects of IBA and IAA on hypocotyl elongation under several light conditions were examined and analyzed in the context of the differences in IBA and IAA transport. Together, these results present a detailed picture of IBA transport and provide the basis for a better understanding of the transport of these two endogenous auxins.  相似文献   

13.
Summary We have investigated the factors which contribute to the host specificity of a tumor inducing plasmid of Agrobacterium, pTiAg162, which confers a narrow host range. Determinants both within the T-DNA and virulence regions contribute to host specificity. Within the T-DNA a defective cytokinin biosynthetic gene limits host range. Nucleotide sequence analysis revealed a large deletion in the 5 coding region of this gene when compared with the homologous gene from the wide host range tumor inducing plasmid, pTiA6. Introduction of the wide host range cytokinin biosynthesis gene into the T-DNA of the limited host range strain expanded the host range and suppressed the rooty morphology of tumors incited by the limited host range strain. Two genes from the virulence region of the wide host range plasmid, designated virA and virC, must also be introduced into the limited host range strain in order to restore a wide host range phenotype. The wide host range strain is avirulent on some cultivars of Vitis plants on which the limited host range strain induces tumors. This avirulence is apparently due to a hypersensitive response in which infected plant cells are killed at the site of inoculation. Mutations within the virC locus of the wide host range plasmid prevented the hypersensitive response and allowed the formation of tumors by the wide host range strain.  相似文献   

14.
Summary Host range variations were noted when 23 wildtype strains of Agrobacterium tumefaciens were tested on 27 different plant species. Because we have shown previously that host range specificity is conferred by the pTi plasmid, these variations in host specificity implicated genetic differences among p Ti plasmids within the A. tumefaciens population that was tested. Host specificity was independent of the type of opine utilized and biotype of the strain used. These data suggested that separate genetic determinants operate for host specificity. This hypothesis was confirmed by Tn5 mutagenesis of the pTi plasmid, which generated mutants affected in host specificity. The regions of host specifying genes were located by displacement analysis of mutant pTi-plasmid-DNA restriction fragments. There are at least two sites on the pTiC58 plasmid: one within the T-region and the other about 75–77 kb to the right of this region. Mutations within the T-region were chemically complemented by indoleacetic acid, which restored the host range of the mutants. Such complementations were not observed with mutants outside the T-region.  相似文献   

15.
Summary Insertion of the bacterial transposon Tn7 was used to obtain mutants of an octopine Ti plasmid. Crown gall tumours induced on tobacco by an Agrobacterium tumefaciens strain carrying a particular mutant Ti plasmid (pGV2100) were found to give rise to shoots. These shoots were grown in vitro and one of them (rGV-1) was found to contain the T-DNA specific enzyme lysopine dehydrogenase (LpDH) and to form roots. After transfer to soil, rGV-1 developed into a morphologically and functionally normal tobacco plant. All cells of the regenerant and of vegetatively produced offspring were shown, by cloning of leaf protoplasts, to contain T-DNA and LpDH activity. rGV-1 and vegetatively produced offspring flowered normally. Plantlets obtained from haploid anther cultures were tested for LpDH activity Forty-one percent of these plantlets were LpDH positive. Moreover, both self-pollination of rGV-1 and crosses between rGV-1 and normal tobacco plants showed that the LpDH character was transmitted both through the pollen and through the eggs of rGV-1 as a single dominant factor with Mendelian segregation ratios typical for monohybrid crosses. By repeated selfing, homozygous plants were obtained which bred true with respect to LpDH. The importance of these findings with respect to the use of Agrobacterium tumefaciens and Ti plasmids for genetic engineering in plants is discussed.This paper is dedicated to Prof. Georg Melchers on the occasion of his 75th birthday, in recognition and gratitude for his relentless and enthousiastic pioneering efforts in the field of experimental plant genetics and cell biology  相似文献   

16.
Summary A DNA fragment covering the complete T-region of the Ti plasmid from Agrobacterium tumefaciens strain C58 was cloned in the Escherichia coli cosmid pHC79. This fragment was mutagenized by insertion of transposon Tn5. The isolated DNA from hybrid plasmids was used to transform cells of A. tumefaciens strain C58 applying the freeze-thaw method. Although the E. coli plasmids with the mutagenized Ti plasmid fragment cannot replicate in these cells, they can be rescued by recombination with the homologous region of the Ti plasmid. The cointegrates formed were resolved in a second recobination event, which was detected by loss of the drug resistance marker of the E. coli plasmid. Subcloning of the Ti plasmid fragments labeled with Tn5 showed that the frequency of rescue of the hybrid plasmid as a cointegrate and its segregation in agrobacteria depend on the degree of homology with the Ti plasmid. We also applied the strategy for site-directed Tn5 mutagenesis to insert specifically the replication origin of bacteriophage fd and the thymidine kinase gene from Herpes virus into the T-DNA of Ti plasmid-C58.  相似文献   

17.
Disruption of ipdC, a gene involved in indole-3-acetic acid (IAA) production by the indole pyruvate pathway in Azospirillum brasilense Sp7, resulted in a mutant strain that was not impaired in IAA production with lactate or pyruvate as the carbon source. A tryptophan auxotroph that is unable to convert indole to tryptophan produced IAA if tryptophan was present but did not synthesise IAA from indole. Similar results were obtained for a mutant strain with additional mutations in the genes ipdC and trpD. This suggests the existence of an alternative Trp-dependent route for IAA synthesis. On gluconate as a carbon source, IAA production by the ipdC mutant was inhibited, suggesting that the alternative route is regulated by catabolite repression. Using permeabilised cells we observed the enzymatic conversion of tryptamine and indole-3-acetonitrile to IAA, both in the wild-type and in the ipdC mutant. IAA production from tryptamine was strongly decreased when gluconate was the carbon source.  相似文献   

18.
The role of auxins in induction of roots byAgrobacterium rhizogenes was studied in carrot root disks. Transformed roots were produced on root disks by inoculation withA. rhizogenes, A4. Measurement of indole-3-acetic acid (IAA) by gas chromatography-mass spectrometry (GC-MS) indicated that there was a significant increase in the concentration of IAA in transformed callus and induced roots compared with initial IAA concentrations in carrot disks. Indole-3-butyric acid (IBA) was found to occur naturally in carrot roots. The presence of IBA, a potent root inducer, must be taken into account when assessing the role of auxin during transformation and induction of roots byA. rhizogenes.  相似文献   

19.
Zhao MR  Han YY  Feng YN  Li F  Wang W 《Plant cell reports》2012,31(4):671-685
Expansin protein is a component of the cell wall generally accepted to be the key regulator of cell wall extension during plant growth. Plant hormones regulate expansin gene expression as well as plant growth during drought stress. However, the relationship between expansin and plant hormone is far from clear. Here, we studied the involvement of expansin in plant cell growth mediated by the hormones indole-3-acetic acid (IAA) and abscisic acid (ABA) under osmotic stress which was induced by polyethylene glycol (PEG)-6000. Wheat coleoptiles from a drought-resistant cultivar HF9703 and a drought-sensitive cultivar 921842 were used to evaluate cell growth and expansin activity. Osmotic stress induced the accumulation of ABA. ABA induced expansin activity mainly by enhancing expansin expression, since ABA induced cell wall basification via decreasing plasma membrane H+-ATPase activity, which was unfavorable for expansin activity. Although ABA induced expansin activity and cell wall extension, treatment with exogenous ABA and/or fluridone (FLU, an ABA inhibitor) suggested that ABA was involved in the coleoptile growth inhibition during osmotic stress. IAA application to detached coleoptiles also enhanced coleoptile growth and increased expansin activity, but unlike ABA, IAA-induced expansin activity was mainly due to the decrease of cell wall pH by increasing plasma membrane H+-ATPase activity. Compared with drought-sensitive cultivar, the drought-resistant cultivar could maintain greater expansin activity and cell wall extension, which was contributive to its resultant faster growth under water stress.  相似文献   

20.
Summary The Agrobacterium tumefaciens octopine strain B6S3 and the nopaline strain C58 were compared for their ability to induce opine synthesis on Kalanchoe daigremontiana stem fragments. Whereas B6S3 induced high levels of octopine synthesis, C58 induced only low levels of nopaline synthesis. However, C58-induced nopaline synthesis was greatly increased by mixed infection with B6S3. This effect (called helper-effect) was shown to be due to the activity of a 5 kb fragment from the virulence region of the B6S3 Ti plasmid, since incorporation of this fragment into the C58 plasmid enabled C58 to induce high levels of nopaline synthesis in the absence of a helper strain. The 5kb region contains the vir F locus, as defined earlier (Hooykaas et al. 1984b). A possible correlation between the helper function and vir F is discussed. Our results show that large differences in virulence on particular host plants exist between natural Agrobacterium strains and can be overcome by mixed infections.Dedicated to Professor Georg Melchers to celebrate his 50-year association with the journal  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号