首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While theoretical studies predict that inducible defences should be fine-tuned according to the qualities of the predator, very few studies have investigated how dangerousness of predators, i.e. the rate at which predators kill prey individuals, affects the strength of phenotypic responses and resulting benefits and costs of induced defences. We performed a comprehensive study on fitness consequences of predator-induced responses by involving four predators (leech, water scorpion, dragonfly larva and newt), evaluating costs and benefits of responses, testing differences in dangerousness between predators and measuring responses in several life history traits of prey. We raised Rana dalmatina tadpoles in the presence of free-ranging predators, in the presence of caged predators, and exposed naive and experienced tadpoles to free-ranging predators. Tadpoles adjusted the intensities of their behavioural and morphological defences to predator dangerousness. Survival was lower in the nonlethal presence of the most dangerous predator, while we could not detect costs of induced defences at or after metamorphosis. When exposed to free-ranging predators, small, but not large, tadpoles benefited from exhibiting an induced phenotype in terms of elevated survival when compared to naive tadpoles, but we did not observe higher survival either in tadpoles exhibiting more extreme phenotypes or in tadpoles exposed to the type of predator they were raised with. These results indicate that while predator-induced defences can mirror dangerousness of predators, costs and benefits do not necessarily scale to the magnitude of plastic responses.  相似文献   

2.
While deploying immune defences early in ontogeny can trade‐off with the production and maintenance of other important traits across the entire life cycle, it remains largely unexplored how features of the environment shape the magnitude or presence of these lifetime costs. Greater predation risk during the juvenile stage may particularly influence such costs by (1) magnifying the survival costs that arise from any handicap of juvenile avoidance traits and/or (2) intensifying allocation trade‐offs with important adult traits. Here, we tested for predator‐dependent costs of immune deployment within and across life stages using the dragonfly, Pachydiplax longipennis. We first examined how larval immune deployment affected two traits associated with larval vulnerability to predators: escape distance and foraging under predation risk. Larvae that were induced to mount an immune response had shorter escape distances but lower foraging activity in the presence of predator cues. We also induced immune responses in larvae and reared them through emergence in mesocosms that differed in the presence of large predatory dragonfly larvae (Aeshnidae spp.). Immune‐challenged larvae had later emergence overall and lower survival in pools with predators. Immune‐challenged males were also smaller at emergence and developed less sexually selected melanin wing coloration, but these effects were independent of predator treatment. Overall, these results highlight how mounting an immune defence early in ontogeny can have substantial ecological and physiological costs that manifest both within and across life stages.  相似文献   

3.
J. M. Jeschke  R. Tollrian 《Oecologia》2000,123(3):391-396
In this study, we show that the protective advantage of a defence depends on prey density. For our investigations, we used the predator-prey model system Chaoborus-Daphnia pulex. The prey, D. pulex, forms neckteeth as an inducible defence against chaoborid predators. This morphological response effectively reduces predator attack efficiency, i.e. number of successful attacks divided by total number of attacks. We found that neckteeth-defended prey suffered a distinctly lower predation rate (prey uptake per unit time) at low prey densities. The advantage of this defence decreased with increasing prey density. We expect this pattern to be general when a defence reduces predator success rate, i.e. when a defence reduces encounter rate, probability of detection, probability of attack, or efficiency of attack. In addition, we experimentally simulated the effects of defences which increase predator digestion time by using different sizes of Daphnia with equal vulnerabilities. This type of defence had opposite density-dependent effects: here, the relative advantage of defended prey increased with prey density. We expect this pattern to be general for defences which increase predator handling time, i.e. defences which increase attacking time, eating time, or digestion time. Many defences will have effects on both predator success rate and handling time. For these defences, the predator’s functional response should be decreased over the whole range of prey densities. Received: 15 September 1999 / Accepted: 23 December 1999  相似文献   

4.
David W. Kikuchi  William L. Allen  Kevin Arbuckle  Thomas G. Aubier  Emmanuelle S. Briolat  Emily R. Burdfield-Steel  Karen L. Cheney  Klára Daňková  Marianne Elias  Liisa Hämäläinen  Marie E. Herberstein  Thomas J. Hossie  Mathieu Joron  Krushnamegh Kunte  Brian C. Leavell  Carita Lindstedt  Ugo Lorioux-Chevalier  Melanie McClure  Callum F. McLellan  Iliana Medina  Viraj Nawge  Erika Páez  Arka Pal  Stano Pekár  Olivier Penacchio  Jan Raška  Tom Reader  Bibiana Rojas  Katja H. Rönkä  Daniela C. Rößler  Candy Rowe  Hannah M. Rowland  Arlety Roy  Kaitlin A. Schaal  Thomas N. Sherratt  John Skelhorn  Hannah R. Smart  Ted Stankowich  Amanda M. Stefan  Kyle Summers  Christopher H. Taylor  Rose Thorogood  Kate Umbers  Anne E. Winters  Justin Yeager  Alice Exnerová 《Journal of evolutionary biology》2023,36(7):975-991
Prey seldom rely on a single type of antipredator defence, often using multiple defences to avoid predation. In many cases, selection in different contexts may favour the evolution of multiple defences in a prey. However, a prey may use multiple defences to protect itself during a single predator encounter. Such “defence portfolios” that defend prey against a single instance of predation are distributed across and within successive stages of the predation sequence (encounter, detection, identification, approach (attack), subjugation and consumption). We contend that at present, our understanding of defence portfolio evolution is incomplete, and seen from the fragmentary perspective of specific sensory systems (e.g., visual) or specific types of defences (especially aposematism). In this review, we aim to build a comprehensive framework for conceptualizing the evolution of multiple prey defences, beginning with hypotheses for the evolution of multiple defences in general, and defence portfolios in particular. We then examine idealized models of resource trade-offs and functional interactions between traits, along with evidence supporting them. We find that defence portfolios are constrained by resource allocation to other aspects of life history, as well as functional incompatibilities between different defences. We also find that selection is likely to favour combinations of defences that have synergistic effects on predator behaviour and prey survival. Next, we examine specific aspects of prey ecology, genetics and development, and predator cognition that modify the predictions of current hypotheses or introduce competing hypotheses. We outline schema for gathering data on the distribution of prey defences across species and geography, determining how multiple defences are produced, and testing the proximate mechanisms by which multiple prey defences impact predator behaviour. Adopting these approaches will strengthen our understanding of multiple defensive strategies.  相似文献   

5.
Foraging theory suggests that predator responses to potential prey should be influenced by prey chemical defences, but the effects of ontogenetic variation in such defences on prey vulnerability to predators remain unclear. Cane toads (Rhinella marina) are toxic to anurophagous snakes, including the keelback (Tropidonophis mairii, a natricine colubrid that occurs within the toads' invasive range in Australia). Toxin levels and diversity change through toad ontogeny, decreasing from the egg stage to metamorphosis, then increasing in postmetamorphic toads. If the toxin content of a prey item influences predator responses, we predict that keelbacks should exhibit selective predation on toads close to metamorphosis. The results of our laboratory trials on adult (field-collected, and thus toad-experienced) and hatchling (laboratory-incubated, and thus toad-naive) keelbacks supported this prediction. The snakes selectively consumed later-stage rather than earlier-stage tadpoles, and earlier-stage rather than later-stage metamorphs. Our data are thus consistent with the hypothesis that ontogenetic changes in toxin content can affect individuals' vulnerability to predation.  相似文献   

6.
In natural systems, organisms are frequently exposed to spatial and temporal variation in predation risk. Prey organisms are known to develop a wide array of plastic defences to avoid being eaten. If inducible plastic defences are costly, prey living under fluctuating predation risk should be strongly selected to develop reversible plastic traits and adjust their defences to the current predation risk. Here, we studied the induction and reversibility of antipredator defences in common frog Rana temporaria tadpoles when confronted with a temporal switch in predation risk by dragonfly larvae. We examined the behaviour and morphology of tadpoles in experimental treatments where predators were added or withdrawn at mid larval development, and compared these to treatments with constant absence or presence of predators. As previous studies have overlooked the effects that developing reversible anti‐predator responses could have later in life (e.g. at life history switch points), we also estimated the impact that changes in antipredator responses had on the timing of and size at metamorphosis. In the presence of predators, tadpoles reduced their activity and developed wider bodies, and shorter and wider tails. When predators were removed tadpoles switched their behaviour within one hour to match that found in the constant environments. The morphology matched that in the constant environments in one week after treatment reversal. All these responses were highly symmetrical. Short time lags and symmetrical responses for the induction/reversal of defences suggest that a strategy with fast switches between phenotypes could be favoured in order to maximise growth opportunities even at the potential cost of phenotypic mismatches. We found no costs of developing reversible responses to predators in terms of life‐history traits, but a general cost of the induction of the defences for all the individuals experiencing predation risk during some part of the larval development (delayed metamorphosis). More studies examining the reversibility of plastic defences, including other type of costs (e.g. physiological), are needed to better understand the adaptive value of these flexible strategies.  相似文献   

7.
Inducible defences against predation are widespread in the natural world, allowing prey to economise on the costs of defence when predation risk varies over time or is spatially structured. Through interspecific interactions, inducible defences have major impacts on ecological dynamics, particularly predator–prey stability and phase lag. Researchers have developed multiple distinct approaches, each reflecting assumptions appropriate for particular ecological communities. Yet, the impact of inducible defences on ecological dynamics can be highly sensitive to the modelling approach used, making the choice of model a critical decision that affects interpretation of the dynamical consequences of inducible defences. Here, we review three existing approaches to modelling inducible defences: Switching Function, Fitness Gradient and Optimal Trait. We assess when and how the dynamical outcomes of these approaches differ from each other, from classic predator–prey dynamics and from commonly observed eco‐evolutionary dynamics with evolving, but non‐inducible, prey defences. We point out that the Switching Function models tend to stabilise population dynamics, and the Fitness Gradient models should be carefully used, as the difference with evolutionary dynamics is important. We discuss advantages of each approach for applications to ecological systems with particular features, with the goal of providing guidelines for future researchers to build on.  相似文献   

8.
Animal species differ considerably in their response to predation risks. Interspecific variability in prey behaviour and morphology can alter cascading effects of predators on ecosystem structure and functioning. We tested whether species‐specific morphological defenses may affect responses of leaf litter consuming invertebrate prey to sit‐and‐wait predators, the odonate Cordulegaster boltonii larvae, in aquatic food webs. Partly or completely blocking the predator mouthparts (mandibles and/or extensible labium), thus eliminating consumptive (i.e. lethal) predator effects, we created a gradient of predator‐prey interaction intensities (no predator < predator – no attack < predator – non‐lethal attacks < lethal predator). A field experiment was first used to assess both consumptive and non‐consumptive predator effects on leaf litter decomposition and prey abundances. Laboratory microcosms were then used to examine behavioural responses of armored and non‐armored prey to predation risk and their consequences on litter decomposition. Results show that armored and non‐armored prey responded to both acute (predator – non‐lethal attacks) and chronic (predator – no attack) predation risks. Acute predation risk had stronger effects on litter decomposition, prey feeding rate and prey habitat use than predator presence alone (chronic predation risk). Predator presence induced a reduction in feeding activity (i.e. resource consumption) of both prey types but a shift to predator‐free habitat patches in non‐armored detritivores only. Non‐consumptive predator effects on prey subsequently decreased litter decomposition rate. Species‐specific prey morphological defenses and behaviour should thus be considered when studying non‐consumptive predator effects on prey community structure and ecosystem functioning.  相似文献   

9.
The hypothesis of the selfish herd has been highly influential to our understanding of animal aggregation. Various movement strategies have been proposed by which individuals might aggregate to form a selfish herd as a defence against predation, but although the spatial benefits of these strategies have been extensively studied, little attention has been paid to the importance of predator attacks that occur while the aggregation is forming. We investigate the success of mutant aggregation strategies invading populations of individuals using alternative strategies and find that the invasion dynamics depend critically on the time scale of movement. If predation occurs early in the movement sequence, simpler strategies are likely to prevail. If predators attack later, more complex strategies invade. If there is variation in the timing of predator attacks (through variation within or between individual predators), we hypothesize that groups will consist of a mixture of strategies, dependent upon the distribution of predator attack times. Thus, behavioural diversity can evolve and be maintained in populations of animals experiencing a diverse range of predators differing solely in their attack behaviour. This has implications for our understanding of predator–prey dynamics, as the timing of predator attacks will exert selection pressure on prey behavioural responses, to which predators must respond.  相似文献   

10.
Suppression of a target prey by a predator can depend on its surrounding community, including the presence of nontarget, alternative prey. Basic theoretical models of two prey species that interact only via a shared predator predict that adding an alternative prey should increase predator numbers and ultimately lower target pest densities as compared to when the target pest is the only prey. While this is an alluring prediction, it does not explain the numerous responses empirically observed. To better understand and predict the indirect interactions produced by shared predation, we explore how additional prey species affect three broad ecological mechanisms, the predator's reproductive, movement, and functional responses. Specifically, we review current theoretical models of shared predation by focusing on these mechanisms, and make testable predictions about the effects of shared predation. We find that target predation is likely to be higher in the two prey system because of predator reproduction, especially when: predators are prey limited, alternative or total prey density is high, or alternative prey are available over time. Target predation may also be greater because of predator movement, but only under certain movement rules and spatial distributions. Predator foraging behavior is most likely to cause lower target predation in the two-prey system, when per capita predation is limited by something other than prey availability. It is clear from this review that no single theoretical generalization will accurately predict community-level effects for every system. However, we can provide testable hypotheses for future empirical and theoretical investigations of indirect interactions and help enhance their potential use in biological control.  相似文献   

11.
Prey can invest in a variety of defensive traits when balancing risk of predation against that of starvation. What remains unknown is the relative costs of different defensive traits and how prey reconcile investment into these traits when energetically limited. We tested the simple allocation model of prey defense, which predicts an additive effect of increasing predation risk and resource availability, resulting in the full deployment of defensive traits under conditions of high risk and resource saturation. We collected morphometric, developmental, and behavioural data in an experiment using dragonfly larvae (predator) and Northern leopard frog tadpoles (prey) subject to variable levels of food availability and predation risk. Larvae exposed to food restriction showed limited response to predation risk; larvae at food saturation altered behaviour, development, and growth in response to predation risk. Responses to risk varied through time, suggesting ontogeny may affect the deployment of particular defensive traits. The observed negative correlation between body size and activity level for food-restricted prey – and the absence of a similar response among adequately-fed prey – suggests that a trade-off exists between behavioural and growth responses when energy budgets are limited. Our research is the first to demonstrate how investment into these defensive traits is mediated along gradients of both predation risk and resource availability over time. The interactions we demonstrate between resource availability and risk level on deployment of inducible defenses provide evidence that both internal condition and extrinsic risk factors play a critical role in the production of inducible defenses over time.  相似文献   

12.
Predators commonly share prey with human exploiters, intuitively suggesting that there is an inherent human–predator conflict through competition for prey. Here we studied the effects of fishing and predation mortality on biomass distributions and yields of shared prey using a size‐structured model of competing populations, describing the life histories of Baltic Sea sprat and herring. Whereas both species responded in a similar fashion to increased fishing mortality, with decreasing juvenile and adult biomasses, we found that responses to predation mortality differed between species. Sprat only display weak compensatory responses with increasing predation mortality, while over a substantial range of mortalities there was a strong increase in adult (and total) herring biomass, i.e. overcompensation. The observed biomass overcompensation results from relaxed intraspecific competition as predation mortality increased, allowing for faster individual growth rates that in turn lead to a change in population composition (juvenile:adult biomass ratio). Our results suggest that the potential for biomass overcompensation is higher for species exhibiting substantial growth after maturation. Differences in size‐selectivity of predators and fishing mortality resulted in a positive effect of predation mortality on fisheries yields, which can be explained by an overcompensatory response in adult herring biomass. Thus, somewhat counter intuitive, our results suggest that fishermen, depending on prey life history, may actually benefit from allowing for a higher abundance of predators, despite competing for shared prey.  相似文献   

13.
Many classical models of food patch use under predation risk assume that predators impose patch-specific predation risks independent of prey behavior. These models predict that prey should leave a chosen patch only if and when the food depletes below some critical level. In nature, however, prey individuals may regularly move among food patches, even in the apparent absence of food depletion. We suggest that such prey movement is part of a predator-prey "shell game", in which predators attempt to learn prey location, and the prey attempt to be unpredictable in space. We investigate this shell game using an individual-based model that allows predators to update information about prey location, and permits prey to move with some random component among patches, but with reduced energy intake. Our results show the best prey strategy depends on what the predator does. A non-learning (randomly moving) predator favors non-moving prey – moving prey suffer higher starvation and predation. However, a learning predator favors prey movement. In general, the best prey strategy involves movement biased toward, but not completely committed to, the richer food patch. The strategy of prey movement remains beneficial even in combination with other anti-predator defenses, such as prey vigilance.  相似文献   

14.
Prey often respond to predator presence by increasing theiruse of refuges. However, because the use of refuges may entailseveral costs, the decision of when to come out from a refugeshould be optimized. In some circumstances, if predators remainwaiting outside the refuge and try new attacks or if predator density increases, the prey may suffer successive repeated attacksin a short time. Successive attacks may represent an increasein the risk of predation, but the costs of refuge use alsomay increase with time spent in the refuge. Thus, prey shouldmake multiple related decisions on when to emerge from the refuge after each new attack. We simulated in the field repeatedpredatory attacks to the same individuals of the lizard Lacertamonticola and specifically examined the variation in successivetimes to emergence from a refuge under different thermal conditions(i.e., different costs of refuge use). The results showed thatrisk of predation but also thermal costs of refuge use affectedthe emergence decisions. Lizards increased progressively theduration of time spent in the refuge between successive emergencetimes when the costs of refuge use were lower, but tended tomaintain or to decrease the duration of time spent in the refugebetween successive emergence times when cost of refuge useincreased. Additionally, lizards that entered the refuge withhigher body temperatures had overall emergence times of longer duration. Optimization of refuge use and flexibility in theantipredator responses might help lizards to cope with increasedpredation risk without incurring excessive costs of refugeuse.  相似文献   

15.
Prey use a wide variety of anti-predator defence strategies, including morphological and chemical defences as well as behavioural traits (risk-modulated habitat use, changes in activity patterns, foraging decisions and group living). The critical test of how effective anti-predator strategies are is to relate them to relative indices of mortality across predators. Here, we compare biases in predator diet composition with prey characteristics and show that chimpanzee (Pan troglodytes) and felid show the strongest and the most consistent predator bias towards small-brained prey. We propose that large-brained prey are likely to be more effective at evading predators because they can effectively alter their behavioural responses to specific predator encounters. Thus, we provide evidence for the hypothesis that brain size evolution is potentially driven by selection for more sophisticated and behaviourally flexible anti-predator strategies.  相似文献   

16.
Flexible architecture of inducible morphological plasticity   总被引:1,自引:0,他引:1  
1. Predator-induced morphological defences are produced in response to an emergent predator regime. In natural systems, prey organisms usually experience temporal shifting of the composition of the predator assemblage and of the intensity of predation risk from each predator species. Although, a repetitive morphological change in response to a sequential shift of the predator regime such as alteration of the predator species or diminution of the predation risk may be adaptive, such flexible inducible morphological defences are not ubiquitous. 2. We experimentally addressed whether a flexible inducible morphological defence is accomplished in response to serial changes in the predation regime, using a model prey species which adopt different defensive morphological phenotypes in response to different predator species. Rana pirica (Matsui) tadpoles increased body depth and tail depth against the predatory larval salamander Hynobius retardatus (Dunn); on the other hand, they only increased tail depth against the predatory larval dragonfly Aeshna nigroflava (Martin). 3. Rana pirica tadpoles with the predator-specific phenotypes were subjected to removal or exchange of the predator species. After removal of the predator species, tadpoles with each predator-specific phenotype changed their phenotype to the nondefensive basic one, suggesting that both predator-specific phenotypes are costly to maintain. After an exchange of the predator species, tadpoles with each predator-specific phenotype reciprocally, flexibly shifted their phenotype to the now more suitable predator-specific one only by modifying their body part. The partial modification can effectively reduce time and energy expenditures involved in repetitive morphological changes, and therefore suggest that the costs of the flexible morphological changes are reduced.  相似文献   

17.
Predation is a strong selective force acting on both morphology and behaviour of prey animals. While morphological defences (e.g. crypsis, presence of armours or spines or specific body morphologies) and antipredator behaviours (e.g. change in foraging or reproductive effort, or hiding and fleeing behaviours) have been widely studied separately, few studies have considered the interplay between the two. The question raised in our study is whether antipredator behaviours of a prey fish to predator odours could be influenced by the morphology of prey conspecifics in the diet of the predator. We used goldfish (Carassius auratus) as our test species; goldfish exposed to predation risk significantly increase their body depth to length ratio, which gives them a survival advantage against gape‐limited predators. We exposed shallow‐bodied and deep‐bodied goldfish to the odour of pike (Esox lucius) fed either form of goldfish. Deep‐bodied goldfish displayed lower intensity antipredator responses than shallow‐bodied ones, consistent with the hypothesis that individuals with morphological defences should exhibit less behavioural modification than those lacking such defences. Moreover, both shallow‐ and deep‐bodied goldfish displayed their strongest antipredator responses when exposed to the odour of pike fed conspecifics of their own morphology, indicating that goldfish are able to differentiate the morphology of conspecifics through predator diet cues. For a given individual, predator threat increases as the prey become more like the individual eaten, revealing a surprising level of sophistication of chemosensory assessment by prey fish.  相似文献   

18.
Ecosystems host multiple coexisting predator species whose interactions may strengthen or weaken top–down control of grazers. Grazer populations often exhibit size‐structure, but the nature of multiple predator effects on suppression of size‐structured prey has seldom been explicitly considered. In a southeastern US salt‐marsh, we used both field (additive design) and mesocosm (additive‐substitutive design) experiments to test the independent and combined effects of two species of predatory crab on the survival and predator‐avoidance behavior (i.e. a non‐consumptive effect) of both juveniles and adults of a dominant grazing snail. Results showed: 1) juvenile snails were more vulnerable to predation; 2) consumptive impacts of predators were hierarchically nested, i.e. the larger predator consumed both juvenile and adult snails, while the smaller‐bodied predator consumed only juvenile snails; 3) there were no emergent multiple predator effects on snail consumption; and 4) non‐consumptive effects differed from consumptive effects, with only the large predator inducing predator‐avoidance behavior of individuals within either snail ontogenetic class. The smaller predator therefore played a functionally redundant trophic role across the prey classes considered, augmenting and potentially stabilizing trophic regulation of juvenile snails. Meanwhile, the larger predator played a complementary and functionally unique role by both expanding the size‐spectrum of prey trophic regulation and non‐consumptively altering prey behavior. While our study suggests that nestedness of consumptive interactions determined by predator and prey body sizes may allow prediction of the functional redundancy of particular predator species, it also shows that traits beyond predator body size (e.g. habitat domain) may be required to predict potentially cascading non‐consumptive effects. Future studies of multiple predators (and predator biodiversity) should continue to strive towards greater realism by incorporating not only size‐structured prey, but also other aspects of resource and environmental heterogeneity typical of natural ecosystems.  相似文献   

19.
Extrapolation of predator functional responses from laboratory observations to the field is often necessary to predict predation rates and predator-prey dynamics at spatial and temporal scales that are difficult to observe directly. We use a spatially explicit individual-based model to explore mechanisms behind changes in functional responses when the scale of observation is increased. Model parameters were estimated from a predator-prey system consisting of the predator Delphastus catalinae (Coleoptera: Coccinellidae) and Bemisia tabaci biotype B (Hemiptera: Aleyrodidae) on tomato plants. The model explicitly incorporates prey and predator distributions within single plants, the search behavior of predators within plants, and the functional response to prey at the smallest scale of interaction (within leaflets) observed in the laboratory. Validation revealed that the model is useful in scaling up from laboratory observations to predation in whole tomato plants of varying sizes. Comparing predicted predation at the leaflet scale, as observed in laboratory experiments, with predicted predation on whole plants revealed that the predator functional response switches from type II within leaflets to type III within whole plants. We found that the magnitude of predation rates and the type of functional response at the whole plant scale are modulated by (1) the degree of alignment between predator and prey distributions and (2) predator foraging behavior, particularly the effect of area-concentrated search within plants when prey population density is relatively low. The experimental and modeling techniques we present could be applied to other systems in which active predators prey upon sessile or slow-moving species.  相似文献   

20.
John L. Quinn  Will Cresswell 《Oikos》2012,121(8):1328-1334
Theory and empirical evidence suggest that predator activity makes prey more wary and less vulnerable to predation. However if at least some prey in the population are energetically or spatially constrained, then predators may eventually increase local prey vulnerability because of the cumulative costs of anti‐predation behaviour. We tested whether repeated attacks by a predator might increase prey vulnerability in a system where redshanks on a saltmarsh are attacked regularly by sparrowhawks from adjacent woodland. Cumulative attack number led to a reduction in redshank numbers and flock size (but had no effect on how close redshanks fed to predator‐concealing cover) because some redshanks moved to safer but less profitable habitats, leaving smaller flocks on the saltmarsh. This effect held even though numbers of redshank on the saltmarsh increased with time of day. As a result of the change in flock size, predicted attack‐success increased up to 1.6‐fold for the sparrowhawk, while individual risk of capture for the redshank increased up to 4.5‐fold among those individuals remaining on the saltmarsh. The effect did not arise simply because hawks were more likely to attack smaller flocks because attack rate was not dependent on flock size or abundance. Our data demonstrate that when some individual prey are constrained in their ability to feed on alternative, safer foraging sites, their vulnerability to predation increases as predator attacks accumulate, although those, presumably better quality individuals that leave the immediate risky area will have lower vulnerability, so that the mean vulnerability across the entire population may not have changed substantially. This suggests that the selective benefits of multiple low‐cost attacks by predators on prey could potentially lead to 1) locally heightened trait‐mediated interactions, 2) locally reduced interference among competing predators, and 3) the evolution of active prey manipulation by predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号