首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The initiator of coliphage lambda DNA replication, lambda O protein, may be detected among other 35S-labeled phage and bacterial proteins by a method based on immunoprecipitation. This method makes it possible to study lambda O proteolytic degradation in lambda plasmid-harboring or lambda phage-infected cells; it avoids ultraviolet (u.v.)-irradiation of bacteria, used for depression of host protein synthesis, prior to lambda phage infection. We confirm the rapid decay of lambda O protein (half-time of 80 s), but we demonstrate the existence of a stable lambda O fraction. In the standard five minute pulse-chase experiments, 20% of synthesized lambda O is stable. The extension of the [35S]methionine pulse, possible in lambda plasmid-harboring cells, leads to a linear increase of this fraction, as if a part of the synthesized lambda O was constantly made resistant to proteolysis. Less than 5% of lambda O protein synthesized during one minute is transformed into a stable form. We presume that the stable lambda O is identical with lambda O present in the normal replication complex and thus protected from proteases. We cannot find any stable lambda O in Escherichia coli recA+ cells that were irradiated with u.v. light prior to lambda phage infection, but their recA- counterparts behave normally, suggesting that recA function interferes in the assembly of a normal replication complex in u.v.-irradiated bacteria. The stable lambda O found in lambda plasmid-harboring, amino acid-starved relA cells is responsible for the lambda O-dependent lambda plasmid replication that occurs in this system in the absence of lambda O synthesis. The existence of stable lambda O raises doubt concerning its role as the limiting initiator protein in the control of replication. Another significance of lambda O rapid degradation is proposed.  相似文献   

2.
Lambda dv plasmids having an amber mutation in an initiator gene, O or P, were constructed from mutant lambda phages by recombinant DNA techniques and several properties of such derivatives were investigated. These plasmids are perpetuated in suppressor-plus (amber-permissive) cells, but not in non-suppressor cells. The plasmid copy number in the suppressor-plus cells was low as compared to that of the plasmid without the amber mutation. In cells carrying a thermosensitive suppressor 2, raising the temperature is expected to block new production of amber proteins, but should not affect conservation of the protein made prior to heating. It was observed, however, that replication of the plasmids carrying an amber mutation in the O or P gene was abolished soon after raising the temperature, suggesting that neither of the initiator proteins can continue functioning unless replenished. Pulse-chase experiments demonstrated that O protein decays with a half-life of 8 min. Several lines of evidence suggest that this degradation occurs independently of the protein function. On the other hand, P protein was not degraded under the same experimental conditions. These observations are discussed in connection with functional instability of the initiator molecules. It appears that they do not work catalytically.  相似文献   

3.
A soluble enzyme system that specifically initiates lambda dv plasmid DNA replication at a bacteriophage lambda replication origin [Wold et al. (1982) Proc. Natl. Acad. Sci. USA 79, 6176-6180] is also capable of replicating the single-stranded circular chromosomes of phages M13 and phi X174 to a duplex form. This chain initiation on single-stranded templates is novel in that it is absolutely dependent on the lambda O and P protein chromosomal initiators and on several Escherichia coli proteins that are known to function in the replication of the lambda chromosome in vivo, including the host dnaB, dnaG (primase), dnaJ and dnaK replication proteins. Strand initiation occurs at multiple sites following an O and P protein-dependent pre-priming step in which the DNA is converted into an activated nucleoprotein complex containing the bacterial dnaB protein. We propose a scheme for the initiation of DNA synthesis on single-stranded templates in this enzyme system that may be relevant to strand initiation events that occur during replication of phage lambda in vivo.  相似文献   

4.
The bacteriophage lambda O protein is needed for initiation of lambda DNA replication. Several lines of evidence suggest that initiation requires that this protein interacts with a specific sequence called ori (for origin) in lambda DNA. We have purified this protein to near homogeneity and studied the protection against nuclease cleavage of the origin DNA sequences. Our data demonstrate that the O protein binds within an interval of about 95 base pairs (bp), which contains four tandemly arranged 19bp repeating sequences, ATCCCTCAAAACGA (G)GG GAT(A). At a low concentration of O protein, the inner two repeats are primarily covered, while binding to the outer two repeats requires a high concentration of O protein. From the molecular size of O protein (32,000 daltons), and the internal symmetry in each 19bp repeat, we inferred that the O protein may bind in dimeric form, and that the 95bp region may be filled only when four such dimers have bound. This interaction is discussed in connection with the "activation" of the ori by O protein leading to initiation of DNA synthesis.  相似文献   

5.
Non-defective arabinose transducing phage, λpara, were isolated in two steps: first, Escherichia coli strains containing rare insertions of λ DNA into the arabinose C or B genes were selected; and second, these lysogens were induced and transducing phage were selected from the resulting lysates. The approximate location of the bacterial substitution on the phage and the ara gene content of the substitution were determined genetically. The precise location of the substitution was determined by electron microscopy of DNA heteroduplexes.Transducing phage, derived from the strain possessing λ inserted into the araC gene, carried part of the araC gene, the ara regulatory region, and all of the araB gene. Transducing phage, derived from eight independent strains possessing λ inserted in the same orientation and in the same position in the araB gene, carried a portion of the araB gene, the ara regulatory region and all of the araC gene. In these nine cases the ara DNA on the phage was immediately adjacent to the normal phage attachment site, indicating that the transducing phage were formed by the same type of abnormal excision which produces gal or bio transducing λ phage. The relative orientations of ara and phage genes were deduced from the topology of such excisions. One anomalous transducing phage was also characterized.  相似文献   

6.
Under the condition of expression of lambda P protein at lethal level, the oriC DNA-binding activity is significantly affected in wild-type E. coli but not in the rpl mutant. In purified system, the lambda P protein inhibits the binding of both oriC DNA and ATP to the wild-type DnaA protein but not to the rpl DnaA protein. We conclude that the lambda P protein inhibits the binding of oriC DNA and ATP to the wild-type DnaA protein, which causes the inhibition of host DNA synthesis initiation that ultimately leads to bacterial death. A possible beneficial effect of this interaction of lambda P protein with E. coli DNA initiator protein DnaA for phage DNA replication has been proposed.  相似文献   

7.
DNA replication in coliphage λ occurs in two stages. The first round of replication generates mainly circular progeny DNA by a double-branched θ-type replicative form (Ogawa et al., 1968; Schnös &; Inman, 1970). In the late stage of λ DNA replication, however, σ-type rolling-circle replicative form DNA molecules, which produce multigenomic linear concatemers, are primarily found (Takahashi, 1974).At both early and later times, a temperature shift of λ Ots or Pts infected cells from 32 °C (permissive) to 43 °C (non-permissive temperature) caused a rapid reduction of the rate of radioactive precursor incorporation into λ DNA, showing that the gene O and P products are essential for the continuation of λ DNA synthesis. Observations on the molecular fine structure of the replicating fork after a temperature shift revealed characteristic long “single-strand connections” and single-strand “whiskers” at the branch point. These observations suggest that λ gene O and P products are directly involved in the propagation of daughter strands.  相似文献   

8.
The nucleotide sequence of the O gene in bacteriophage lambda DNA is presented. According to two possible initiator codons, the primary structure of the O protein deduced from the DNA sequence consists of 278 or 299 amino acid residues. Structure and function of the O protein--one of the two phage initiator proteins for lambda DNA replication--are discussed in the light of a secondary structure model for the O protein. The central part of the O gene contains a cluster of symmetrical sequences extending over 160 base pairs. The point mutation of the cis-dominant replication mutant ti12 is located in this region.  相似文献   

9.
10.
The bacteriophage lambda P protein promoters replication of the phage chromosome by recruiting a key component of the cellular replication machinery to the viral origin. Specifically, P protein delivers one or more molecules of Escherichia coli DnaB helicase to a nucleoprotein structure formed by the lambda O initiator at the lambda replication origin. Using purified proteins, we have examined the features of the pivotal host virus interaction between P and DnaB. These two proteins interact in vitro to form a P.DnaB protein complex that can be resolved by sedimentation or by chromatography on DEAE-cellulose from the individual free proteins. The sedimentation coefficient of the P.DnaB complex, 13 S, suggests a size larger than that of free DnaB hexamer (Mr = 313,600). The P.DnaB complex isolated by glycerol gradient sedimentation contains approximately three protomers of P/DnaB hexamer, consistent with a molecular weight of 393,000. The isolated P.DnaB complex functions in vitro in the initiation of lambda DNA replication. Interaction of P with DnaB strongly suppressed both the intrinsic DNA-dependent ATPase activity of DnaB, as well as the capacity of DnaB to assist E. coli primase in the general priming reaction. Formation of a P.DnaB protein complex also blocked DnaB from functioning in the initiation of E. coli DNA replication in vitro. The physical and functional properties of lambda P protein suggest that it is a viral analogue of the E. coli DnaC replication protein. Like P, DnaC also binds to DnaB (Wickner, S., and Hurwitz, J. (1975) Proc. Natl. Acad. Sci. U. S. A. 72, 921-925), but unlike P, DnaC stimulates DnaB-mediated general priming. When viral P and bacterial DnaC replication proteins were placed in direct competition with one another for binding to DnaB, the viral protein was clearly predominant. For example, a 5-fold molar excess of DnaC protein only partially reversed the inhibitory effect of P on general priming. Furthermore, when a preformed DnaC.DnaB protein complex was incubated briefly with P protein, it was readily converted into a P.DnaB protein complex and the bulk of the bound DnaC was released as free protein. It is likely that the capacity of the lambda P protein to outcompete the analogous host protein for binding to the bacterial DnaB helicase is the critical molecular event enabling infecting phage to recruit cellular replication proteins required for initiation of DNA synthesis at the viral origin.  相似文献   

11.
The lambda O and P gene products are required for the initiation of lambda DNA replication. In order to study the biochemistry of this process, we have constructed plasmids that carry the lambda O gene, P gene, and half of the O gene coding for the amino-terminal half of the O protein. Each is under the control of the inducible lambda promoter, PL. We have purified these three proteins from induced cells carrying the plasmids. Our results show that the amino-terminal portion of the O protein binds to the lambda origin of replication in a manner similar to the intact lambda O protein, demonstrating that the amino-terminal portion of O protein contains the DNA binding domain. Using chromatographic procedures, we have isolated a complex of lambda O and P proteins with lambda dv DNA. The amino-terminal portion of the O protein does not complex with P protein under the same conditions. This suggests that the specificity of the lambda O protein for P protein resides in the carboxyl-terminal half of the lambda O protein. Our results also show that, while the intact O protein is active in in vitro replication of lambda dv plasmid DNA, the amino-terminal portion of the O protein is inactive and is a competitive inhibitor of the lambda O protein in this reaction. These results confirm previous genetic observations that were interpreted as indicating a bifunctional structure for the lambda O protein with the amino-terminal domain recognizing the lambda origin of replication and the carboxyl-terminal domain interacting with the lambda P protein.  相似文献   

12.
The groE protein, which is involved in the morphogenesis of several bacteriophages, was isolated using a hybrid bacteriophage λ strain which overproduces it. The protein was characterized using biophysical methods, electron microscopy and digital image processing. We postulate that the gp groE complex contains 14 subunits in a cylindrical aggregate with 7-fold rotational symmetry. Possible mechanisms are discussed for the action of this complex in phage morphogenesis.  相似文献   

13.
K Zahn  F R Blattner 《The EMBO journal》1985,4(13A):3605-3616
We have characterized the binding of lambda phage replication initiation protein O to the phage origin of replication. The minimal DNA segment required for O binding is the single iteron, a 19-bp sequence of hyphenated dyad symmetry that is repeated with variations four times in the origin. The isolated amino terminus of O protein is also sufficient to bind DNA. Electrophoretic studies show that the amino terminus of O protein induces bending of a single iteron. The DNA-protein interaction was characterized by ethylation interference, dimethyl sulfate protection and neocarzinostatin footprinting. Points of DNA-protein contact are largely concentrated in two areas symmetrically disposed with respect to the dyad symmetry of the iteron. This suggests the protein interacts as a dimer with half sites in the DNA. However, a few non-symmetrical contacts are found, indicating that O protein may distort the helix. This may correlate with the bending effects demonstrated electrophoretically. Cylindrical DNA projections were used to model O protein binding to the lambda origin and compare it with the lambda repressor-operator interaction. Whereas bound repressor nearly encircles the DNA in the major groove, O protein leaves the major groove on the opposite side exposed.  相似文献   

14.
The Nu3 gene of bacteriophage lambda resides within a cluster of genes that specify structural components of the bacteriophage head. Previous experiments indicate that the Nu3 gene product (gpNu3) is associated with immature proheads but is not detectable in mature proheads or bacteriophage particles, hence its classification as a scaffolding protein. The Nu3 gene has been cloned and overexpressed, and its protein product has been purified. The purified protein is biologically active, as demonstrated by its ability to complement a gpNu3-deficient extract in an in vitro assembly reaction. The sequence of the amino terminus of the protein indicates that translation of Nu3 starts at nucleotide position 5,342 on the standard lambda DNA sequence, yielding a protein with a calculated Mr of 13,396. A combination of gel exclusion chromatography and velocity sedimentation gradient data indicates that gpNu3 possesses an unusually elongated shape.  相似文献   

15.
The cIII gene and protein of bacteriophage lambda   总被引:3,自引:0,他引:3  
The cIII and cII gene products of bacteriophage λ control the lysogenic response through positive regulation of the viral repressor and integration genes and negative regulation of lytic functions. Although many aspects of cII action have been defined biochemically, little is known about cIII. As a first step in defining the molecular role of cIII in the regulation of lysogeny, we have determined the precise location and DNA sequence of the cIII gene. In addition, we have identified the cIII gene product as a polypeptide with a molecular weight of approximately 6000.  相似文献   

16.
The prepriming steps in the initiation of bacteriophage lambda DNA replication depend on the action of the lambda O and P proteins and on the DnaB helicase, single-stranded DNA binding protein (SSB), and DnaJ and DnaK heat shock proteins of the E. coli host. The binding of multiple copies of the lambda O protein to the phage replication origin (ori lambda) initiates the ordered assembly of a series of nucleoprotein structures that form at ori lambda prior to DNA unwinding, priming and DNA synthesis steps. Since the initiation of lambda DNA replication is known to occur only on supercoiled templates in vivo and in vitro, we examined how the early steps in lambda DNA replication are influenced by superhelical tension. All initiation complexes formed prior to helicase-mediated DNA-unwinding form with high efficiency on relaxed ori lambda DNA. Nonetheless, the DNA templates in these structures must be negatively supertwisted before they can be replicated. Once DNA helicase unwinding is initiated at ori lambda, however, later steps in lambda DNA replication proceed efficiently in the absence of superhelical tension. We conclude that supercoiling is required during the initiation of lambda DNA replication to facilitate entry of a DNA helicase, presumably the DnaB protein, between the DNA strands.  相似文献   

17.
Two stages in the replication of bacteriophage lambda DNA   总被引:4,自引:0,他引:4  
  相似文献   

18.
19.
The maturation of bacteriophage lambda DNA and its packaging into preformed heads to produce infectious phage is under the control of the two leftmost genes on the lambda chromosome, i.e., Nu1 and A. Based on its ability to complement lambda A- phage-infected cell extracts for packaging of lambda DNA in vitro, a single protein, designated terminase (ter) has been extensively purified using adsorption, ion exchange, and affinity column chromatography. The final preparation represents an approximately 60,000-fold purification over the activity found in crude extracts and is about 30 to 80% homogeneous as judged by visualizing the protein after electrophoresis in sodium dodecyl sulfate-polyacrylamide gel. In addition to packaging, terminase can also catalyze the endonucleolytic cleavage of lambda cohesive-end site DNA; both of these reactions require ATP. In some preparations, certain terminase fractions of extreme purity require protein factors present in extracts of uninfected Escherichia coli in order to catalyze the cohesive-end site cleavage reaction. On ion exchange columns purified terminase co-chromatographs with a DNA-dependent ATPase activity, hydrolyzing ATP to ADP and Pi in the presence of any of several types of DNA tested including those of non-lambda origin. The molecular weight of the native enzyme is 117,000 and appears to be a hetero-oligomer composed of 2 nonidentical subunits. The most likely composition of terminase is one gpA (gene product of A), Mr = 74,000 and two gpNu1, Mr = 21,000.  相似文献   

20.
DNA replication in head mutants of bacteriophage lambda   总被引:10,自引:0,他引:10  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号