首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Production of MUC1 and MUC2 mucins by human tumor cell lines.   总被引:2,自引:0,他引:2  
A mucus secreting, clonal derivative (HT29-SB) of the human colonic adenocarcinoma cell line HT29, and the LS174T colon cancer cell line, secrete mucin into the culture medium as a viscoelastic gel. Mab BC2, which defines a peptide epitope present in the variable number of tandem repeats (VNTR) of the MUC1 core protein, reacted with this material after deglycosylation. Two high molecular weight bands were detected in TFMSA treated gel-formed mucin from HT29-SB and LS174T by western blotting (Mr 580 kDa and 420 kDa). A similar pattern of reactivity was seen with the culture supernatants from HT29-SB, the ovarian tumor cell line COLO-316, and the breast cancer cell line MCF-7. Mab CCP58 (anti-MUC2 VNTR) reacted with a 580 kDa band in gel-formed mucin produced by LS174T, but was not reactive with mucin produced by the other cell lines. The findings indicate that human colonic cell lines, in addition to breast and ovarian cell lines, may both express and secrete the MUC1 protein core, and that the LS174T cell line expresses and secretes both the MUC1 and MUC2 core proteins.  相似文献   

2.
3.
Bu XD  Li N  Tian XQ  Huang PL 《Tissue & cell》2011,43(3):201-206
To compare the differences in MUC2 and MUC5AC mRNA among four colon cancer cell lines and to identify the best in vitro models for studying mucin expression, quantitative real-time polymerase chain reaction was used to measure the expression of MUC2 and MUC5AC mRNA in Caco-2, HT29, LoVo, and LS174T cell lines. The levels of MUC2 mRNA expression in the four colon cancer cell lines ranked in order of mRNA abundance were: LS174T > LoVo > HT-29 > Caco-2. In contrast to MUC2, the abundances of MUC5AC mRNA were in the order: Caco-2 > HT-29 > LS174T > LoVo. Caco-2 (highest level of MUC5AC mRNA) and LS174T (highest level of MUC2 mRNA) were used to investigate the phenotypes. Morphologically, Caco-2 cells were larger with low electron density mucus-storing vacuoles, many cell surface microvilli, and no obvious intercellular spaces between cells, compared to LS174T cells. The proliferative and invasive capacities of LS174T cells were significantly higher than those of Caco-2 cells. Caco-2 and LS174T cells provide excellent in vitro models for studying mucin expression in colon cancer.  相似文献   

4.
Established lines of human colon cancer cells from several sources (LS180, LS174T, HT29, SW480, SW1345) had water proton nuclear magnetic resonance (NMR) spin-lattice relaxation times (T1) of 460 +/- 45 msec to 982 +/- 9 msec and spin-spin relaxation times (T2) of 83 +/- 6 msec to 176 +/- 6 msec. Two clones derived from single cells of line LS174T were similar in T1 and T2 to the parent line. Differences among the cell lines were not totally a function of cellular hydration. Normal adult and fetal human primary colon cells were wetter and had higher T1 and T2 values than established cell lines. Relaxation times in this study substantiate variations seen for human colon tumors in earlier studies. Established cell lines maintained water relaxation times similar to tumor tissue values. Along with other morphological and biochemical criteria, the relaxation times suggest that these established human colon cancer cell lines may serve as a good experimental model for the study of human colon cancer.  相似文献   

5.
The short fatty acid, butyrate, which is produced by intestinal anaerobic bacteria in the colon, has inhibitory activity on histone deacetylases (HDACs). Treatment of the human colon cancer cell line, LS174T, with 1-2 mM sodium butyrate stimulated MUC2 mucin production, as determined by histological PAS staining of carbohydrate chains of mucin, and confirmed at the protein and mRNA levels by immunoblotting with anti-MUC2 antibody and real-time RT-PCR, respectively. Increases in acetylated histone H3 in the LS174T cells treated with butyrate suggest inhibition of HDACs in these cells. Butyrate-stimulated MUC2 production in the LS174T cells was inhibited by the MEK inhibitor, U0126, implicating the involvement of extracellular signal-regulated kinase (ERK) cascades in this process. Proliferation of the LS174T cells was inhibited by butyrate treatment. Although apoptotic nuclear DNA fragmentation could not be detected, cell-cycle arrest at the G0/G1 phase in the butyrate-treated cells was demonstrated by flow cytometry. Thus butyrate, an HDAC inhibitor, inhibits proliferation of LS174T cells but stimulates MUC2 production in individual cells.  相似文献   

6.
Solid tumors exist in a hypoxic microenvironment, and possess high-glycolytic metabolites. To avoid the acidosis, tumor cells must exhibit a dynamic cytosolic pH regulation mechanism(s). The voltage-gated proton channel Hv1 mediates NADPH oxidase function by compensating cellular loss of electrons with protons. Here, we showed for the first time, that Hv1 expression is increased in colorectal tumor tissues and cell lines, associated with poor prognosis. Immunohistochemistry showed that Hv1 is strongly expressed in adenocarcinomas but not or lowly expressed in normal colorectal or hyperplastic polyps. Hv1 expression in colorectal cancer is significantly associated with the tumor size, tumor classification, lymph node status, clinical stage and p53 status. High Hv1 expression is associated significantly with shorter overall and recurrence-free survival. Furthermore, real-time RT-PCR and immunocytochemistry showed that Hv1 is highly expressed in colorectal cancer cell lines, SW620, HT29, LS174T and Colo205, but not in SW480. Inhibitions of Hv1 expression and activity in the highly metastatic SW620 cells by small interfering RNA (siRNA) and Zn2+ respectively, markedly decrease the cell invasion and migration, restraint proton extrusion and the intracellular pH recovery. Our results suggest that Hv1 may be used as a potential biomarker for diagnosis and prognosis of colorectal carcinoma, and a potential target for anticancer drugs in colorectal cancer therapy.  相似文献   

7.
The colon cancer cell line, HT29, produces a soluble substance (HT29 factor) that blocks mitogen-induced T cell proliferation and the production of interleukin 2 (IL 2). Inhibition of T cell proliferation by the HT29 factor is reversible and is not due to a decline in cell viability or an alteration in the kinetics of T cell proliferation. It occurs even when the HT29 factor is added only 24 hr before terminating the T cell cultures, indicating that the factor affects cell division after activation of T cells has already occurred. No inhibitory activity was found in medium conditioned by human colonic epithelial cells or fibroblasts. The factor has an apparent m.w. of 56,000 and an isoelectric point of 7.9. It is sensitive to endopeptidases, heating to 56 degrees C, and extremes of pH. The HT29 factor also suppresses IL 2 production by T cells. However, low IL 2 availability alone cannot account for the suppressive effect of the factor on T cell proliferation, because the addition of exogenous IL 2 does not reverse the inhibition. This block in IL 2 responsiveness is not primarily due to a decrease in IL 2 receptors because Tac expression on activated T cells is minimally decreased during a 24-hr exposure to the HT29 factor. In addition, IL 2-induced proliferation of mitogen-activated T cells is inhibited only slightly by the HT29 factor, indicating that a block in the interaction of IL 2 with its receptor is not its main mechanism of action. Thus the inhibition of T cell proliferation is likely to be due primarily to a mechanism independent of IL 2.  相似文献   

8.
BackgroundThe Ca2+-dependent C-type lectin receptor Macrophage Galactose-type Lectin (MGL) is highly expressed by tolerogenic dendritic cells (DC) and macrophages. MGL exhibits a high binding specificity for terminal alpha- and beta-linked GalNAc residues found in Tn, sTn and LacdiNAc antigens. These glycan epitopes are often overexpressed in colorectal cancer (CRC), and, as such, MGL can be used to discriminate tumor from the corresponding healthy tissues. Moreover, the high expression of MGL ligands is associated with poor disease-free survival in stage III of CRC tumors. Nonetheless, the glycoproteins expressed by tumor cells that are recognized by MGL have hitherto remained elusive.MethodsUsing a panel of three CRC cell lines (HCT116, HT29 and LS174T), recapitulating CRC diversity, we performed FACS staining and pull-down assays using a recombinant soluble form of MGL (and a mutant MGL as control) combined with mass spectrometry-based (glyco)proteomics.ResultsHCT116 and HT29, but not LS174T, are high MGL-binding CRC cell lines. On these cells, the major cell surface binding proteins are receptors (e.g. MET, PTK7, SORL1, PTPRF) and integrins (ITGB1, ITGA3). From these proteins, several N- and/or O-glycopeptides were identified, of which some carried either a LacdiNAc or Tn epitope.ConclusionsWe have identified cell surface MGL-ligands on CRC cell lines.General significanceAdvances in (glyco)proteomics have led to identification of candidate key mediators of immune-evasion and tumor growth in CRC.  相似文献   

9.
孕烷X受体(pregnane X receptor, PXR)可通过调节细胞色素P450同工酶3A4 -CYP3A4的表达而影响肿瘤细胞对化疗的敏感性,而其表达水平则会受到自身基因 甲基化的影响.本文研究了结肠癌组织中pxr基因甲基化的分布情况及其对pxr, cyp3a4表达的影响,并在多种结肠癌细胞系中分析了pxr基因甲基化是否与5-氟尿嘧 啶 (5-FU)耐药性相关.收集结肠癌病灶区、癌旁区及正常结肠组织样本,分别提取基因组DNA及RNA.PCR限制性酶切分析检测pxr基因外显子3甲基化;real-time PCR检测pxr及cyp3a4基因的表达.鉴定LOVO、LS180、LS174T、HT29、HCT116等5种结 肠癌细胞中pxr外显子3甲基化与pxr, cyp3a4表达的相关性并分别筛选出PXR高/低表达的细胞株进行5-FU耐药性分析.结果显示,结肠癌病灶组织中pxr外显子3甲基化频率显著增加,伴有pxr,cyp3a4表达的增强.在结肠组织及结肠癌细胞系中,pxr与cyp3a4的表达均密切相关,且均与pxr甲基化程度相关.PXR高表达细胞株LS180对5-FU的耐药性显著升高,以siRNA分别下调pxr及cyp3a4的表达,均可增加LS180对5 -FU的敏感性.结果提示,pxr基因外显子3区甲基化与PXR及CYP3A4的高表达密切相关,并与结肠癌细胞对5-FU的抗药性相关.  相似文献   

10.
Mucin glycoproteins are secreted in large quantities by mucosal epithelia and cell surface mucins are a prominent feature of the glycocalyx of all mucosal epithelia. Currently, studies investigating the gastrointestinal mucosal barrier use either animal experiments or non-in vivo like cell cultures. Many pathogens cause different pathology in mice compared to humans and the in vitro cell cultures used are suboptimal because they are very different from an in vivo mucosal surface, are often not polarized, lack important components of the glycocalyx, and often lack the mucus layer. Although gastrointestinal cell lines exist that produce mucins or polarize, human cell line models that reproducibly create the combination of a polarized epithelial cell layer, functional tight junctions and an adherent mucus layer have been missing until now. We trialed a range of treatments to induce polarization, 3D-organization, tight junctions, mucin production, mucus secretion, and formation of an adherent mucus layer that can be carried out using standard equipment. These treatments were tested on cell lines of intestinal (Caco-2, LS513, HT29, T84, LS174T, HT29 MTX-P8 and HT29 MTX-E12) and gastric (MKN7, MKN45, AGS, NCI-N87 and its hTERT Clone5 and Clone6) origins using Ussing chamber methodology and (immuno)histology. Semi-wet interface culture in combination with mechanical stimulation and DAPT caused HT29 MTX-P8, HT29 MTX-E12 and LS513 cells to polarize, form functional tight junctions, a three-dimensional architecture resembling colonic crypts, and produce an adherent mucus layer. Caco-2 and T84 cells also polarized, formed functional tight junctions and produced a thin adherent mucus layer after this treatment, but with less consistency. In conclusion, culture methods affect cell lines differently, and testing a matrix of methods vs. cell lines may be important to develop better in vitro models. The methods developed herein create in vitro mucosal surfaces suitable for studies of host-pathogen interactions at the mucosal surface.  相似文献   

11.
Silver J  Mei YF 《PloS one》2011,6(3):e17532
Replication-competent adenovirus type 5 (Ad5) vectors promise to be more efficient gene delivery vehicles than their replication-deficient counterparts, and chimeric Ad5 vectors that are capable of targeting CD46 are more effective than Ad5 vectors with native fibers. Although several strategies have been used to improve gene transduction and oncolysis, either by modifying their tropism or enhancing their replication capacity, some tumor cells are still relatively refractory to infection by chimeric Ad5. The oncolytic effects of the vectors are apparent in certain tumors but not in others. Here, we report the biological and oncolytic profiles of a replication-competent adenovirus 11p vector (RCAd11pGFP) in colon carcinoma cells. CD46 was abundantly expressed in all cells studied; however, the transduction efficiency of RCAd11pGFP varied. RCAd11pGFP efficiently transduced HT-29, HCT-8, and LS174T cells, but it transduced T84 cells, derived from a colon cancer metastasis in the lung, less efficiently. Interestingly, RCAd11p replicated more rapidly in the T84 cells than in HCT-8 and LS174T cells and as rapidly as in HT-29 cells. Cell toxicity and proliferation assays indicated that RCAd11pGFP had the highest cell-killing activities in HT29 and T84 cells, the latter of which also expressed the highest levels of glycoproteins of the carcinoma embryonic antigen (CEA) family. In vivo experiments showed significant growth inhibition of T84 and HT-29 tumors in xenograft mice treated with either RCAd11pGFP or Ad11pwt compared to untreated controls. Thus, RCAd11pGFP has a potent cytotoxic effect on colon carcinoma cells.  相似文献   

12.
Previously we have demonstrated a reciprocal deregulation of various homeobox genes (HOXB6, B8, C8 and C9 vs Cdx-1) in human colorectal cancer (CRC). In the present study, using RT-PCR, we have investigated the expression pattern of these homeobox genes in various human colon cell lines, representing various stages of colon cancer progression and differentiation. Thus, we have tested polyposis coli Pc/AA adenoma cells, Caco-2, HT-29 and LS174T adenocarcinoma cell lines. All cell lines, except LS174T, demonstrated a pattern of deregulated homeobox gene expression which resembled that of CRC. In contrast, the pattern of expression of these genes in the highly oncogenic LS174T cells, as well as in Caco-2 cells transfected with activated Ha-ras or Polyoma middle T oncogene, resembled that of the normal mucosa. The reciprocal deregulation of HOX and Cdx-1 genes in CRC and in CRC-derived cell lines suggests a possible role in human CRC development.  相似文献   

13.
We had previously shown that the expression of heparin/heparan sulfate interacting protein/ribosomal protein L29 (HIP/RPL29) was upregulated in colon cancer tissues. The present study investigated the role of HIP/RPL29 in differentiation in colon cancer cells. Inducing cellular differentiation in HT-29 cells by both sodium butyrate and glucose deprivation resulted in a significant downregulation of HIP/RPL29 expression. The beta-catenin/Tcf-4 pathway is the most important pathway controlling the switch between cellular differentiation and proliferation in intestinal epithelial cells. Inducing differentiation by dominant-negative inhibition of the beta-catenin/Tcf-4 complexes in LS174T cells also resulted in downregulation of HIP/RPL29. To determine whether a lower expression of HIP/RPL29 could induce differentiation in cancer cells, small interfering RNA (siRNA) targeting HIP/RPL29 was transfected into LS174T cells. The resultant knockdown of HIP/RPL29 expression induced cellular differentiation, as shown by the increased expression of two known markers of differentiation in LS174T cells, galectin-4 and mucin-2. In addition, the differentiation process induced by repression of HIP/RPL29 expression was accompanied by the upregulation of p21 and p53. In conclusion, HIP/RPL29 plays a role in the cellular differentiation process in colon cancer cells. The differentiation process is at least partially mediated by the upregulation of p21 and p53 pathways.  相似文献   

14.
Mucin expression was studied during proliferation and differentiation of the enterocyte-like Caco-2 and goblet cell-like LS174T cell lines. Caco-2 cells express mRNAs of MUC1, MUC3, MUC4 and MUC5A/C whereas MUC2 and MUC6 mRNAs are virtually absent. Furthermore, MUC3 mRNA is expressed in a differentiation dependent manner, as is the case for enterocytes. Concomitantly MUC3 protein precursor (550 kDa) was detected in Caco-2 cells. In LS174T cells mucin mRNAs of MUC1, MUC2 and MUC6 are constitutively expressed at high levels, whereas MUC3, MUC4 and MUC5A/C mRNAs are present at low levels. At the protein level LS174T cells express the goblet cell specific mucin protein precursors MUC2, MUC5A/C and MUC6 with apparent molecular masses of about 600 kDa, 470/500 kDa and 400 kDa respectively. MUC3 protein is not detectable. Furthermore, human gallbladder mucin protein (470 kDa precursor), of which the gene has not yet been identified, is expressed in LS174T cells. In addition, synthesis and secretion of the goblet cell specific mature MUC2, MUC5A/C and human gallbladder mucin was demonstrated in LS174T cells. It is concluded that Caco-2 and LS174T cell lines provide excellentin vitro models to elucidate the cell-type specific mechanisms responsible for mucin expression.Abbreviations SDS-PAGE sodium dodecylsulfate-polyacrylamide gel electrophoresis - DMEM Dulbecco's modified Eagle's medium - EMEM Eagle's minimum essential medium - Endo-H endo--N-acetylglucosaminidase H - HGBM human gallbladder mucin - dpc days past confluence - PBS phosphate buffered saline  相似文献   

15.
Cancer develops when molecular pathways that control the fine balance between proliferation, differentiation, autophagy and cell death undergo genetic deregulation. The prospects for further substantial advances in the management of colorectal cancer reside in a systematic genetic and functional dissection of these pathways in tumor cells. In an effort to evaluate the impact of p38 signaling on colorectal cancer cell fate, we treated HT29, Caco2, Hct116, LS174T and SW480 cell lines with the inhibitor SB202190 specific for p38alpha/beta kinases. We report that p38alpha is required for colorectal cancer cell homeostasis as the inhibition of its kinase function by pharmacological blockade or genetic inactivation causes cell cycle arrest, autophagy and cell death in a cell type-specific manner. Deficiency of p38alpha activity induces a tissue-restricted upregulation of the GABARAP gene, an essential component of autophagic vacuoles and autophagosomes, whereas simultaneous inhibition of autophagy significantly increases cell death by triggering apoptosis. These data identify p38alpha as a central mediator of colorectal cancer cell homeostasis and establish a rationale for the evaluation of the pharmacological manipulation of the p38alpha pathway in the treatment of colorectal cancer.  相似文献   

16.
The ability of tumor cells to metastasize hematogenously is regulated by their interactions with polymorphonuclear leukocytes (PMNs). However, the mechanisms mediating PMN binding to tumor cells under physiological shear forces remain largely unknown. This study was designed to characterize the molecular interactions between PMNs and tumor cells as a function of the dynamic shear environment, using two human colon adenocarcinoma cell lines (LS174T and HCT-8) as models. PMN and colon carcinoma cell suspensions, labeled with distinct fluorophores, were sheared in a cone-and-plate rheometer in the presence of the PMN activator fMLP. The size distribution and cellular composition of formed aggregates were determined by flow cytometry. PMN binding to LS174T cells was maximal at 100 s(-1) and decreased with increasing shear. At low shear (100 s(-1)) PMN CD11b alone mediates PMN-LS174T heteroaggregation. However, L-selectin, CD11a, and CD11b are all required for PMN binding to sialyl Lewis(x)-bearing LS174T cells at high shear (800 s(-1)). In contrast, sialyl Lewis(x)-low HCT-8 cells fail to aggregate with PMNs at high shear conditions, despite extensive adhesive interactions at low shear. Taken together, our data suggest that PMN L-selectin initiates LS174T cell tethering at high shear by binding to sialylated moieties on the carcinoma cell surface, whereas the subsequent involvement of CD11a and CD11b converts these transient tethers into stable adhesion. This study demonstrates that the shear environment of the vasculature modulates the dynamics and molecular constituents mediating PMN-tumor cell adhesion.  相似文献   

17.
Colorectal cancers are often composed of cell types representing various differentiated cell lineages, however little is known concerning the relationship of differentiation and drug resistance in these cancers. The present study was performed to develop and characterize a stable, differentiated clone of the human colon cancer cell line LS174T and to characterize the drug resistance of this cell line in relation to its undifferentiated parental cell line. LS174T cell line was treated with the differentiating agent sodium butyrate (0.5 mM) for 30 days, then recultured in standard medium. Foci of flat-appearing cells appeared and were isolated using cloning rings, and subcloned. One subclone was designated LS174T-D. The LS174T-D clone maintains a stable, differentiated phenotype in standard culture conditions in the absence of sodium butyrate. It is characterized by the formation of a polarized monolayer with dome formation and the presence of prominent apical microvilli and tight junctions. This cell line demonstrated reduced growth in soft agar and nude mice compared with the parental cell line. LS174T-D cells expressed immunoreactive intestinal mucin antigens and brush border enzymes dipeptidyl aminopeptidase (DAP)-IV and aminopeptidase. The activities of DAP-IV and aminopeptidase were increased 5.6-fold and 3.4-fold, respectively, in LS174T-D compared with parental cells. Proliferation assays demonstrated that, compared with the parental cell line, LS174T-D cells were more resistant to doxorubicin (93-fold), cisplatin (23-fold), 5-fluorouracil (12-fold), 5-fluorodeoxyuridine (31-fold), and methotrexate (12.5-fold). Intracellular uptake of (3H)-5-fluorodeoxyuridine did not differ significantly in the differentiated and undifferentiated cell lines. Levels of mdr-1 p-glycoprotein measured by Western blot and RNA Northern blot assays were also similarly low in both cell lines. However, total glutathione content and glutathione-S-transferase activities were increased in LS174T-D cells by sixfold and threefold, respectively, compared with parental cells. Depletion of glutathione by pretreatment with DL-buthionine sulfoximine reversed LS174T-D resistance to cisplatin. Long-term treatment with sodium butyrate induces or selects for colon cancer cells with features of enterocytic differentiation. This stably differentiated cell line is associated with glutathione-mediated multidrug resistance, and provides a model for further studies of differentiation in normal and cancerous colon. © 1994 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America
  •   相似文献   

    18.
    Engagement of vascular E-selectin and leukocyte L-selectin with relevant counter-receptors expressed on tumor cells contributes to the hematogenous spread of colon carcinoma. We recently demonstrated that the LS174T colon carcinoma cell line expresses the CD44 glycoform known as hematopoietic cell E-/L-selectin ligand (HCELL), which functions as a high affinity E- and L-selectin ligand on these cells. To define the contribution of HCELL to selectin-mediated adhesion on intact tumor cells, we measured the binding of LS174T cells transduced with CD44 short interfering RNA (siRNA) or with vector alone to 6-h interleukin-1beta-stimulated human umbilical vein endothelial cells (HUVEC) and to human peripheral blood mononuclear cells (PBMC) under physiological flow conditions. LS174T cell attachment to HUVEC was entirely E-selectin-dependent, and PBMC tethering to tumor cell monolayers was completely L-selectin-dependent. At physiological shear stress, CD44 siRNA transduction led to an approximately 50% decrease in the number of LS174T cells binding to stimulated HUVEC relative to vector alone-transduced cells. CD44 siRNA-transduced cells also rolled significantly faster than vector-transduced cells on HUVEC, indicating prominent HCELL participation in stabilizing tumor cell-endothelial adhesive interactions against fluid shear. Furthermore, HCELL was identified as the principal L-selectin ligand on LS174T cells, as PBMC binding to CD44 siRNA-transduced tumor cells was reduced approximately 80% relative to vector-transduced cells. These data indicate that expression of HCELL confers robust and predominant tumor cell binding to E- and L-selectin, highlighting a central role for HCELL in promoting shear-resistant adhesive interactions essential for hematogenous cancer dissemination.  相似文献   

    19.
    Bu X  Li L  Li N  Tian X  Huang P 《Cell biology international》2011,35(11):1121-1129
    Altered expression of MUC2 (mucin 2) is related to tumour development in colorectal cancer. Colorectal mucinous carcinomas are positive for MUC2 expression, whereas MUC2 is down-regulated in non-mucinous adenocarcinomas. In the present study, we down-regulated MUC2 expression by RNAi (RNA interference) and investigated the in vitro and in vivo effects on the proliferation and invasion/migration potential of the LS174T human colorectal cancer cells. The LS174T cell line is a goblet-cell-like colorectal cancer cell line that continuously produces high levels of MUC2. Inhibition of MUC2 expression in vitro by transfection of LS174T cells with the recombinant plasmid pcDNA6.2-GW/EmGFP-miR-MUC2 led to the production of a stably transfected MUC2-RNAi LS174T cell line. The proliferation and invasion/migration of MUC2-RNAi cells in vitro were significantly higher than those in control cells, as assessed by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide], colony formation and transwell assays. Subcutaneous injection of MUC2-RNAi LS174T cells into nude mice resulted in the development of subcutaneous tumours visible to the naked eye after 1 week. The growth rate of tumours derived from MUC2-RNAi LS174T cells was greater than that of tumours derived from control cells. Ki67 and matrix metalloproteinase-9 proteins were detected by immunohistochemistry in the xenografts. The expression levels of these proteins were higher in the MUC2-RNAi-derived xenografts than in xenografts derived from control cells. Although the role of MUC2 in colorectal tumorigenesis is not fully understood, these results strongly suggest a relationship between the proliferation and invasion of LS174T cells and the expression of MUC2.  相似文献   

    20.
    Intracellular pH (pH(i)), a major modulator of cell function, is regulated by acid/base transport across membranes. Excess intracellular H(+) ions (e.g. produced by respiration) are extruded by transporters such as Na(+)/H(+) exchange, or neutralized by HCO(3)(-) taken up by carriers such as Na(+)-HCO(3)(-) cotransport. Using fluorescence pH(i) imaging, we show that cancer-derived cell lines (colorectal HCT116 and HT29, breast MDA-MB-468, pancreatic MiaPaca2, and cervical HeLa) extrude acid by H(+) efflux and HCO(3)(-) influx, largely sensitive to dimethylamiloride and 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS), respectively. The magnitude of HCO(3)(-) influx was comparable among the cell lines and may represent a constitutive element of tumor pH(i) regulation. In contrast, H(+) efflux varied considerably (MDA-MB-468 > HCT116 > HT29 > MiaPaca2 > HeLa). When HCO(3)(-) flux was pharmacologically inhibited, acid extrusion in multicellular HT29 and HCT116 spheroids (~10,000 cells) was highly non-uniform and produced low pH(i) at the core. With depth, acid extrusion became relatively more DIDS-sensitive because the low extracellular pH at the spheroid core inhibits H(+) flux more than HCO(3)(-) flux. HCO(3)(-) flux inhibition also decelerated HCT116 spheroid growth. In the absence of CO(2)/HCO(3)(-), acid extrusion by H(+) flux in HCT116 and MDA-MB-468 spheroids became highly non-uniform and inadequate at the core. This is because H(+) transporters require extracellular mobile pH buffers, such as CO(2)/HCO(3)(-), to overcome low H(+) ion mobility and chaperone H(+) ions away from cells. CO(2)/HCO(3)(-) exerts a dual effect: as substrate for membrane-bound HCO(3)(-) transporters and as a mobile buffer for facilitating extracellular diffusion of H(+) ions extruded from cells. These processes can be augmented by carbonic anhydrase activity. We conclude that CO(2)/HCO(3)(-) is important for maintaining uniformly alkaline pH(i) in small, non-vascularized tumor growths and may be important for cancer disease progression.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号