首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Some of the most exciting advances in pollination biology have resulted from interdisciplinary research combining ecological and evolutionary perspectives. For example, these two approaches have been essential for understanding the functional ecology of floral traits, the dynamics of pollen transport, competition for pollinator services, and patterns of specialization and generalization in plant–pollinator interactions. However, as research in these and other areas has progressed, many pollination biologists have become more specialized in their research interests, focusing their attention on either evolutionary or ecological questions. We believe that the continuing vigour of a synthetic and interdisciplinary field like pollination biology depends on renewed connections between ecological and evolutionary approaches.

Scope

In this Viewpoint paper we highlight the application of ecological and evolutionary approaches to two themes in pollination biology: (1) links between pollinator behaviour and plant mating systems, and (2) generalization and specialization in pollination systems. We also describe how mathematical models and synthetic analyses have broadened our understanding of pollination biology, especially in human-modified landscapes. We conclude with several suggestions that we hope will stimulate future research. This Viewpoint also serves as the introduction to this Special Issue on the Ecology and Evolution of Plant–Pollinator Interactions. These papers provide inspiring examples of the synergy between evolutionary and ecological approaches, and offer glimpses of great accomplishments yet to come.Key words: Floral traits, generalization and specialization, global change, male fitness, mating systems, multiple paternity, plant–pollinator networks, pollen and gene dispersal, pollinator behaviour, pollination syndromes, pollination webs, self-fertilization  相似文献   

2.
The flora of southern Africa has exceptional species richness and endemism, making it an ideal system for studying the patterns and processes of evolutionary diversification. Using a wealth of recent case studies, I examine the evidence for pollinator-driven diversification in this flora. Pollination systems, which represent available niches for ecological diversification, are characterized in southern Africa by a high level of ecological and evolutionary specialization on the part of plants, and, in some cases, by pollinators as well. These systems are asymmetric, with entire plant guilds commonly specialized for a particular pollinator species or functional type, resulting in obvious convergent floral evolution among guild members. Identified modes of plant lineage diversification involving adaptation to pollinators in these guilds include (i) shifts between pollination systems, (ii) divergent use of the same pollinator, (iii) coevolution, (iv) trait tracking, and (v) floral mimicry of different model species. Microevolutionary studies confirm that pollinator shifts can be precipitated when a plant species encounters a novel pollinator fauna on its range margin, and macroevolutionary studies confirm frequent pollinator shifts associated with lineage diversification. As Darwin first noted, evolutionary specialization for particular pollinators, when resulting in ecological dependency, may increase the risk of plant extinction. I thus also consider the evidence that disturbance provokes pollination failure in some southern African plants with specialized pollination systems.  相似文献   

3.
Pollination systems frequently reflect adaptations to particular groups of pollinators. Such systems are indicative of evolutionary specialization and have been important in angiosperm diversification. We studied the evolution of pollination systems in the large genus Ruellia. Phylogenetic analyses, morphological ordinations, ancestral state reconstructions, and a character mapping simulation were conducted to reveal key patterns in the direction and lability of floral characters associated with pollination. We found significant floral morphological differences among species that were generally associated with different groups of floral visitors. Floral evolution has been highly labile and also directional. Some specialized systems such as hawkmoth or bat pollination are likely evolutionary dead-ends. In contrast, specialized pollination by hummingbirds is clearly not a dead-end. We found evidence for multiple reverse transitions from presumed ancestral hummingbird pollination to more derived bee or insect pollination. These repeated origins of insect pollination from hummingbird-pollinated ancestors have not evolved without historical baggage. Flowers of insect-pollinated species derived from hummingbird-pollinated ancestors are morphologically more similar to hummingbird flowers than they are to other more distantly related insect-pollinated flowers. Finally, some pollinator switches were concomitant with changes in floral morphology that are associated with those pollinators. These observations are consistent with the hypothesis that some transitions have been adaptive in the evolution of Ruellia.  相似文献   

4.
Nearly forty years ago R. L. Berg proposed that plants with specialized pollination ecology evolve genetic and developmental systems that decouple floral morphology from phenotypic variation in vegetative traits. These species evolve separate floral and vegetative trait clusters, or as she termed them, "correlation pleiades." The predictions of this hypothesis have been generally supported, but only a small sample of temperate-zone herb and grass species has been tested. To further evaluate this hypothesis, especially its applicability to plants of other growth forms, we examined the patterns of phenotypic variation and covariation of floral and vegetative traits in nine species of Neotropical plants. We recognized seven specific predictions of Berg's hypothesis. Our results supported some predictions but not others. Species with specialized pollination systems usually had floral traits decoupled (weak correlation; Canna and Eichornia) or buffered (relationship with shallow proportional slope; Calathea and Canna) from variation in vegetative traits. However, the same trend was also observed in three species with unspecialized pollination systems (Echinodorus, Muntingia, and Wedelia). One species with unspecialized pollination (Croton) and one wind-pollinated species (Cyperus) showed no decoupling or buffering, as predicted. While species with specialized pollination usually showed lower coefficients of variation for floral traits than vegetative traits (as predicted), the same was also true of species with unspecialized or wind pollination (unlike our prediction). Species with specialized pollination showed less variation in floral traits than did species with unspecialized or wind pollination, as predicted. However, the same was true of the corresponding vegetative traits, which was unexpected. Also in contrast to our prediction, plants with specialized pollination systems did not exhibit tighter phenotypic integration of floral characters than did species with generalized pollination systems. We conclude that the patterns of morphological integration among floral traits and between floral and vegetative traits tend to be species specific, not easily predicted from pollination ecology, and generally more complicated than R. L. Berg envisaged.  相似文献   

5.
Melastomataceae is a megadiverse family with records of transitions from specialized to generalized pollination systems for several species. These transitions are associated with the colonization of new, unpredictable and/or impoverished pollinator habitats or habitats where specialized pollinators are scarce (e.g., in highland environments). The bee species diversity is low in highlands. Therefore, autonomous breeding systems such as apomixis and self-pollination emerge in these environments. In this paper, we studied the floral traits associated with the generalization of pollination systems and registered the floral visitors of two species in the Colombian Andes: Miconia cataractae and M. elaeoides. We investigated the breeding system of M. elaeoides. Both species presented small flowers, short anthers of medium pore size, and nectar-producing stomata on the base of the anthers. Miconia cataractae produced an average of 1.62 μl nectar/flower, a sugar concentration of 6.78%, whereas M. elaeoides produced 0.09 μl nectar/flower, a sugar concentration of 6.13%. We recorded a wide diversity of pollinators for both species, mainly insects from the orders Hymenoptera and Diptera. Miconia elaeoides presented a mixed breeding system and was also capable of setting fruits by apomixis. We conclude that flower and anther morphology, combined with nectar production, thus represent convergent traits resulting in a generalist pollination system shared by M. cataractae and M. elaeoides. Here, we presented the first generalist pollination system recorded for Miconia (and the Melastomataceae) in the Andes, the first report for a species from the small-pored section Amblyarrhena, and the first report for a species from the large-pored section Cremanium in Colombia.  相似文献   

6.
The bird pollination systems of the New and Old Worlds evolved independently, and differ in many aspects. New World plants are often presented as those adapted to hovering birds while Old World plants to perching birds. Most Neotropical studies also demonstrate that in hummingbird species rich assemblages, only a small number of highly specialized birds exploits the most specialized plants with long corollas. Nevertheless, recent research on bird–plant pollination interactions suggest that sunbird pollination systems in the Old World have converged more with the highly specialized hummingbird pollination systems than previously thought. In this study we focus on the pollination systems of the bird pollination syndrome Impatiens species on Mt. Cameroon, West Africa. We show that despite the high diversity of sunbirds on Mt. Cameroon, only Cyanomitra oritis appear to be important pollinator of all Impatiens species. This asymmetry indicates the absence of pair wise co‐evolution and points to a diffuse co‐evolutionary process resulting in guilds of highly specialized plants and birds; a situation well known from hummingbirds and specialized plant communities of the New World. Additionally, the herbaceous habits of Impatiens species, the frequent adaptations to pollination by hovering birds, and the habitat preference for understory in tropical forests or epiphytic growth, resemble the highly specialized Neotropical plants. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 115 , 127–133.  相似文献   

7.
The KwaZulu-Natal region of South Africa hosts a large diversity of asclepiads (Apocynaceae: Asclepiadoideae), many of which are endemic to the area. The asclepiads are of particular interest because of their characteristically highly evolved floral morphology. During 3 months of fieldwork (November 2000 to January 2001) the flower visitors and pollinators to an assemblage of nine asclepiads at an upland grassland site were studied. These observations were augmented by laboratory studies of flower morphology (including scanning electron microscopy) and flower colour (using a spectrometer). Two of the specialized pollination systems that were documented are new to the asclepiads: fruit chafer pollination and pompilid wasp pollination. The latter is almost unique in the angiosperms. Taxa possessing these specific pollination systems cluster together in multidimensional phenotype space, suggesting that there has been convergent evolution in response to similar selection to attract identical pollinators. Pollination niche breadth varied from the very specialized species, with only one pollinator, to the more generalized, with up to ten pollinators. Pollinator sharing by the specialized taxa does not appear to have resulted in niche differentiation in terms of the temporal or spatial dimensions, or with regards to placement of pollinaria. Nestedness analysis of the data set showed that there was predictability and structure to the pattern of plant-pollinator interactions, with generalist insects visiting specialized plants and vice versa. The research has shown that there is still much to be learned about plant-pollinator interactions in areas of high plant diversity such as South Africa.  相似文献   

8.

Background and Aims

The pollinator-mediated stabilizing selection hypothesis suggests that the specialized pollination system of zygomorphic flowers might cause stabilizing selection, reducing their flower size variation compared with actinomorphic flowers. However, the degree of ecological generalization and of dependence on pollinators varies greatly among species of both flower symmetry types and this may also affect flower size variation.

Methods

Data on 43 species from two contrasting communities (one alpine and one lowland community) were used to test the relationships and interactions between flower size phenotypic variation, floral symmetry, ecological pollination generalization and species'' dependence on pollinators.

Key Results

Contrary to what was expected, higher flower size variation was found in zygomorphic than in actinomorphic species in the lowland community, and no difference in flower size variation was found between symmetry types in the alpine community. The relationship between floral symmetry and flower size variation depended on ecological generalization and species'' dependence on pollinators, although the influence of ecological generalization was only detected in the alpine community. Zygomorphic species that were highly dependent on pollinators and that were ecologically specialized were less variable in flower size than ecologically generalist and selfing zygomorphic species, supporting the pollinator-mediated stabilizing selection hypothesis. However, these relationships were not found in actinomorphic species, probably because they are not dependent on any particular pollinator for efficient pollination and therefore their flower size always shows moderate levels of variation.

Conclusions

The study suggests that the relationship between flower size variation and floral symmetry may be influenced by population-dependent factors, such as ecological generalization and species'' dependence on pollinators.  相似文献   

9.
Background and AimsPlant individuals within a population differ in their phenology and interactions with pollinators. However, it is still unknown how individual differences affect the reproductive success of plants that have functionally specialized pollination systems. Here, we evaluated whether plant individual specialization in phenology (temporal specialization) and in pollination (pollinator specialization) affect the reproductive success of the crepuscular-bee-pollinated plant Trembleya laniflora (Melastomataceae).MethodsWe quantified flowering activity (amplitude, duration and overlap), plant–pollinator interactions (number of flowers visited by pollinators) and reproductive success (fruit set) of T. laniflora individuals from three distinct locations in rupestrian grasslands of southeastern Brazil. We estimated the degree of individual temporal specialization in flowering phenology and of individual specialization in plant–pollinator interactions, and tested their relationship with plant reproductive success.Key Results Trembleya laniflora presented overlapping flowering, a temporal generalization and specialized pollinator interactions. Flowering overlap among individuals and populations was higher than expected by chance but did not affect the individual interactions with pollinators and nor their reproductive success. In contrast, higher individual generalization in the interactions with pollinators was related to higher individual reproductive success.ConclusionsOur findings suggest that individual generalization in plant–pollinator interaction reduces the potential costs of specialization at the species level, ensuring reproductive success. Altogether, our results highlight the complexity of specialization/generalization of plant–pollinator interactions at distinct levels of organization, from individuals to populations, to species.  相似文献   

10.
Klinkhamer  Peter 《Annals of botany》2006,98(4):899-900
Highly specializedpollination systems, such as figs and their wasp or orchidsthat deceive bees in trying to make them mate with their floralorgans, are intuitively appealing to most people and have, therefore,gained far more attention both in popular and scientific literaturethan the more generalized pollination systems. For a long timethe dominant view was that many, or perhaps even most, plant–pollinatorinteractions were specialized. In 1996 Waser and his colleaguestried to stir things up by writing an article in which theyargued that, in contrast to common belief, generalization waswidespread in plant–pollinator systems. Ten  相似文献   

11.
The radiation of the angiosperms is often attributed to repeated evolutionary shifts between different pollinators, as this process drives diversification of floral forms and can lead to reproductive isolation. Floral scent is an important functional trait in many pollination systems but has seldom been implicated as a key mechanism in pollinator transitions. In this study, we suggest a role for sulphur compounds in mediating a shift between specialized carrion-fly and pompilid-wasp pollination systems in Eucomis (Hyacinthaceae). Flowers of closely related Eucomis species pollinated by carrion flies or pompilid wasps have very similar greenish-white flowers, but differ markedly in floral scent chemistry (determined by GC–MS analysis of headspace extracts). Comparison of the floral colours of the four Eucomis species in the visual systems of flies and wasps suggests that colour plays little role in pollinator discrimination. Nectar properties and morphology also do not differ strongly between fly- and wasp-pollinated flowers. By comparing floral scent bouquets and experimentally manipulating the scent of plants in the field, we demonstrate that shifts between wasp and fly pollination in these four congeners can depend on the production or suppression of sulphur compounds (dimethyl disulphide and dimethyl trisulphide) in the fragrance bouquet. This suggests that mutations affecting the production of particular scent compounds could precipitate shifts between pollinators, independently of floral morphology, colour or nectar properties.  相似文献   

12.
Generalization of pollination systems is widely accepted by ecologists in the studies of plant–pollinator interaction networks at the community level, but the degree of generalization of pollination networks remains largely unknown at the individual pollinator level. Using potential legitimate pollinators that were constantly visiting flowers in two alpine meadow communities, we analyzed the differences in the pollination network structure between the pollinator individual level and species level. The results showed that compared to the pollinator species‐based networks, the linkage density, interaction diversity, interaction evenness, the average plant linkage level, and interaction diversity increased, but connectance, degree of nestedness, the average of pollinator linkage level, and interaction diversity decreased in the pollinator individual‐based networks, indicating that pollinator individuals had a narrower food niche than their counterpart species. Pollination networks at the pollinator individual level were more specialized at the network level (H2) and the plant species node level (d′) than at the pollinator species‐level networks, reducing the chance of underestimating levels of specialization in pollination systems. The results emphasize that research into pollinator individual‐based pollination networks will improve our understanding of the pollination networks at the pollinator species level and the coevolution of flowering plants and pollinators.  相似文献   

13.
  • Biotic interactions are said to be more specialized in the tropics, and this was also proposed for the pollination systems of columnar cacti from North America. However, this has not yet been tested for a wider set of cactus species. Here, we use the available information about pollination in the Cactaceae to explore the geographic patterns of this mutualistic interaction, and test if there is a latitudinal gradient in its degree of specialization.
  • We performed a bibliographic search of all publications on the pollination of cacti species and summarized the information to build a database. We used generalized linear models to evaluate if the degree of specialization in cacti pollination systems is affected by latitude, using two different measures: the number of pollinator guilds (functional specialization) and the number of pollinator species (ecological specialization).
  • Our database contained information about the pollination of 148 species. The most frequent pollinator guilds were bees, birds, moths and bats. There was no apparent effect of latitude on the number of guilds that pollinate a cactus species. However, latitude had a small but significant effect on the number of pollinator species that service a given cactus species.
  • Bees are found as pollinators of most cactus species, along a wide latitudinal gradient. Bat and bird pollination is more common in the tropics than in the extra-tropics. The available information suggests that cacti pollination systems are slightly more ecologically specialized in the tropics, but it does not support any trend with regard to functional specialization.
  相似文献   

14.
Most studies on pollinator‐mediated selection have been performed in generalized rather than specialized pollination systems. This situation has impeded evaluation of the extent to which selection acts on attraction or specialized key floral traits involved in the plant‐pollinator phenotypic interphase. We studied pollinator‐mediated selection in four populations of Nierembergia linariifolia, a self‐incompatible and oil‐secreting plant pollinated exclusively by oil‐collecting bees. We evaluated whether floral traits experience variable selection among populations and whether attraction and fit traits are heterogeneously selected across populations. Populations differed in every flower trait and selection was consistently observed for corolla size and flower shape, two traits involved in the first steps of the pollination process. However, we found no selection acting on mechanical‐fit traits. The observation that selection occurred upon attraction rather than mechanical‐fit traits, suggests that plants are not currently evolving fine‐tuned morphological adaptations to local pollinators and that phenotypic matching is not necessarily an expected outcome in this specialized pollination system.  相似文献   

15.
Failures in the process of pollen transfer among conspecific plants can severely impact female reproductive success. Thus, pollen limitation can cause selection on plant mating systems and floral traits. The relationships between pollen limitation and floral traits might be partly mediated by the quantity and identity of pollinator visits. However, very little is known about the relationship between pollinator visits and pollen limitation. We examined the relationships between pollen limitation and floral traits at the community level to connect them to community ecology processes. We used 48 plant species from two contrasting communities: one species‐rich lowland community and one species‐poor alpine community. In addition, we calculated visitation rates and ecological pollination generalization for 38 of the species to examine the relationship between pollinator visitation and pollen limitation at the community level. We found low overall levels of pollen limitation that did not differ significantly between the alpine and the lowland community. In both communities, species with evolutionary specialized flowers were more pollen limited than species with unspecialized flowers. Species’ visitation rates and selfing capability were negatively related to pollen limitation in the alpine community, where pollinators are scarcer. However, flower size/number, ecological generalization of plants and flowering onset had greater effects on pollen limitation levels at the lowland community, indicating that the identity of the visitors and plant‐plant competitive interactions are more decisive for plant reproduction in this species‐rich community. There, pollen limitation increased with flower size and flowering onset, and decreased with ecological generalization, but only in species with evolutionary specialized flowers. Our study suggests that selection on plant mating system and floral traits may be idiosyncratic to each particular community and highlights the benefits of conducting community‐level studies for a better understanding of the processes underlying evolutionary responses to pollen limitation.  相似文献   

16.
The Southwest Australian Biodiversity Hotspot contains an exceptionally diverse flora on an ancient, low-relief but edaphically diverse landscape. Since European colonization, the primary threat to the flora has been habitat clearance, though climate change is an impending threat. Here, we review (i) the ecology of nectarivores and biotic pollination systems in the region, (ii) the evidence that trends in pollination strategies are a consequence of characteristics of the landscape, and (iii) based on these discussions, provide predictions to be tested on the impacts of environmental change on pollination systems. The flora of southwestern Australia has an exceptionally high level of vertebrate pollination, providing the advantage of highly mobile, generalist pollinators. Nectarivorous invertebrates are primarily generalist foragers, though an increasing number of colletid bees are being recognized as being specialized at the level of plant family or more rarely genus. While generalist pollination strategies dominate among insect-pollinated plants, there are some cases of extreme specialization, most notably the multiple evolutions of sexual deception in the Orchidaceae. Preliminary data suggest that bird pollination confers an advantage of greater pollen movement and may represent a mechanism for minimizing inbreeding in naturally fragmented populations. The effects of future environmental change are predicted to result from a combination of the resilience of pollination guilds and changes in their foraging and dispersal behaviour.  相似文献   

17.
The generalization–specialization continuum exhibited in pollination interactions currently receives much attention. It is well-known that the pollinator assemblage of particular species varies temporally and spatially, and therefore the ecological generalization on pollinators may be a contextual attribute. However, the factors causing such variation and its ecological and evolutionary consequences are still poorly understood. This variation can be caused by spatial or temporal variation in the pollinator community, but also by variation in the plant community. Here, we examined how the floral neighbourhood influenced the generalization on pollinators and the composition of pollinators of six plant species differing in generalization levels and main pollinators. The diversity, identity and density of floral species affected both the level of generalization on pollinators and the composition of visitors of particular plant species. Although the relationships to floral neighbourhood varied considerably among species, generalization level and visitation by uncommon pollinators generally increased with floral diversity and richness. The generalization level of the neighbourhood was negatively related to the generalization level of the focal species in two species. The number of flowers of the pollinator-sharing species and the number of flowers of the focal species had different effects on the composition of visits in different species; attributable to differences in facilitation/competition for pollinator attraction. We propose that an important ecological implication of our results is that variation in species interactions caused by the pollination context may result in increased community stability. The main evolutionary implication of our results is that selection on flower and pollinator traits may depend, to an unknown extent, on the composition of the co-flowering plant community.  相似文献   

18.
The long‐standing paradigm that pollination systems adapted to hovering birds evolved only in the New World was recently challenged by the discovery of hovering pollination by Old World specialized passerine pollinators. This raises the possibility that hovering pollination may evolve more easily than previously believed, given sufficient selective pressure on plant traits, on nectarivory, or both. We observed foraging behavior by the sunbird Cyanomitra oritis at flowers of the native Old World plant Impatiens sakeriana. We measured the length of pedicels and peduncles (PedPed length), which can make the flowers difficult to reach while the bird perches on the stem, and determined if it influenced sunbird hovering or perching at a flower. Detailed analyses of video recordings showed that sunbirds only hovered at flowers with a long PedPed, whereas they employed both foraging modes when an adequate perch was available. A hovering sunbird could deplete nectar in a shorter time than a perching one. The frequency of visits was not greater at flowers with longer PedPed or with more open I. sakeriana flowers in the vicinity. Our study provides evidence that sunbird behavior does not follow simple energetic models, and that some sunbird pollination systems in the Old World resemble highly specialized hummingbird systems in the New World much more than expected, especially the overall adaptation of the system to bird hovering.  相似文献   

19.
Sahli HF  Conner JK 《Oecologia》2006,148(3):365-372
Despite the development of diversity indices in community ecology that incorporate both richness and evenness, pollination biologists commonly use only pollinator richness to estimate generalization. Similarly, while pollination biologists have stressed the utility of pollinator importance, incorporating both pollinator abundance and effectiveness, importance values have not been included in estimates of generalization in pollination systems. In this study, we estimated pollinator generalization for 17 plant species using Simpson’s diversity index, which includes richness and evenness. We compared these estimates with estimates based on only pollinator richness, and compared diversity estimates calculated using importance data with those using only visitation data. We found that pollinator richness explains only 57–65% of the variation in diversity, and that, for most plant species, pollinator importance was determined primarily by differences in visitation rather than by differences in effectiveness. While simple richness may suffice for broad comparisons of pollinator generalization, measures that incorporate evenness will provide a much more accurate understanding of generalization. Although incorporating labor-intensive measurements of pollinator effectiveness are less necessary for broad surveys, effectiveness estimates will be important for detailed studies of some plant species. Unfortunately, at this point it is impossible to predict a priori which species these are.  相似文献   

20.
The long-standing notion of pollination syndromes, which postulates that plants form recognizable groups according to pollinator type, has been challenged recently on the basis of apparent widespread generalization in pollination systems. As a test of the pollination syndrome concept, I examined the pollination biology of a group of 15 orchids that share a recognizable syndrome of floral features that includes yellow-green coloration, oil secretion, pungent scent, shallow flowers, and a September peak in flowering. The orchids occur in sympatry in the Cape Floral Region of South Africa. According to the pollination syndrome concept, the similar floral features of this group indicate a shared pollinator. To test this prediction, I observed pollinators on Pterygodium alatum, P. caffrum, P. catholicum, P. volucris, Corycium orobanchoides, and Disperis bolusiana subsp. bolusiana. They shared a single species of pollinator, the oil-collecting bee, Rediviva peringueyi. Female bees collected oil from the lip appendage using modified front tarsi. The orchids reduce interspecific reproductive interference through differences in pollinarium length or the use of mutually exclusive pollinarium attachment sites on the body of the bee. The results are contrary to the expectation of generalization in pollination systems and suggest that pollinators play an important role in mediating selection on floral traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号