首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A short history of MADS-box genes in plants   总被引:47,自引:0,他引:47  
Evolutionary developmental genetics (evodevotics) is a novel scientific endeavor which assumes that changes in developmental control genes are a major aspect of evolutionary changes in morphology. Understanding the phylogeny of developmental control genes may thus help us to understand the evolution of plant and animal form. The principles of evodevotics are exemplified by outlining the role of MADS-box genes in the evolution of plant reproductive structures. In extant eudicotyledonous flowering plants, MADS-box genes act as homeotic selector genes determining floral organ identity and as floral meristem identity genes. By reviewing current knowledge about MADS-box genes in ferns, gymnosperms and different types of angiosperms, we demonstrate that the phylogeny of MADS-box genes was strongly correlated with the origin and evolution of plant reproductive structures such as ovules and flowers. It seems likely, therefore, that changes in MADS-box gene structure, expression and function have been a major cause for innovations in reproductive development during land plant evolution, such as seed, flower and fruit formation.  相似文献   

2.
马先蒿属植物花冠分化与繁殖适应的研究进展   总被引:2,自引:0,他引:2  
结合已有的研究报道和作者近年来的工作,对马先蒿属(Pedicularis)植物的花冠多样化成因与繁殖适应特性进行了总结和探讨。通过对该属4种进化花冠型的花器官发生和分化的研究发现,花部各器官在发生和发育初期基本一致,后期上唇形态的分化是导致成熟花形态结构产生较大差异的重要阶段。孢粉学研究认为,花冠类型与花粉萌发孔类型之间具有显著相关性;萌发沟的演化可能与繁殖适应有一定的关系。分子系统学研究表明,多样化的花冠类型在不同的谱系内经过若干次的独立进化而表现出了高度的平行演化(parallelism)。传粉生物学研究证实,该属植物花冠多样化与其主要传粉者熊蜂属(Bombus)昆虫的传粉行为存在较为密切的关系。具有相同(似)花冠类型的马先蒿可能被同种或不同种的熊蜂以相同的方式访问,但在花粉落置位置上存在显著差异,这可能有助于同域分布重叠的物种间在生殖上的机械隔离,而花冠的分化在一定程度上促进了新的物种形成。  相似文献   

3.
郁文彬  蔡杰  王红    陈建群 《植物学报》2008,25(4):392-400
结合已有的研究报道和作者近年来的工作, 对马先蒿属(Pedicularis)植物的花冠多样化成因与繁殖适应特性进行了总结和探讨。通过对该属4种进化花冠型的花器官发生和分化的研究发现, 花部各器官在发生和发育初期基本一致, 后期上唇形态的分化是导致成熟花形态结构产生较大差异的重要阶段。孢粉学研究认为, 花冠类型与花粉萌发孔类型之间具有显著相关性; 萌发沟的演化可能与繁殖适应有一定的关系。分子系统学研究表明, 多样化的花冠类型在不同的谱系内经过若干次的独立进化而表现出了高度的平行演化(p ara l lel ism )。传粉生物学研究证实, 该属植物花冠多样化与其主要传粉者熊蜂属(Bombus)昆虫的传粉行为存在较为密切的关系。具有相同(似)花冠类型的马先蒿可能被同种或不同种的熊蜂以相同的方式访问, 但在花粉落置位置上存在显著差异, 这可能有助于同域分布重叠的物种间在生殖上的机械隔离, 而花冠的分化在一定程度上促进了新的物种形成。  相似文献   

4.
Phenotypic integration is essential to the understanding of organismal evolution as a whole. In this study, a phylogenetic framework is used to assess phenotypic integration among the floral parts of a group of Neotropical lianas. Flowers consist of plant reproductive organs (carpels and stamens), usually surrounded by attractive whorls (petals and sepals). Thus, flower parts might be involved in different functions and developmental constraints, leading to conflicting selective forces. We found that Bignonieae flowers have very similar patterns of variance/covariance among traits and that such patterns are uncorrelated with the phylogenetic relationships between species. However, in spite of pattern stasis, our results also indicate that diversification of floral morphology in this group has occurred throughout the evolution of magnitudes of correlation among traits. Thus, we suggest that stabilizing selection has played an important role in phenotypic integration, resulting in the long‐term stasis of covariance patterns underlying flower diversification during the ca. 50 Myr of evolution of Bignonieae. This is the first report of long‐term stasis in the phenotypic integration of angiosperms, suggesting that patterns of floral morphology can be recognizable as specific attributes of distinct botanical families.  相似文献   

5.
While there is abundant evidence to suggest that pollinators influence the evolution of plant floral traits, there is little direct evidence that interactions between plant species shape the evolution of such characteristics. The purpose of this study was to determine whether the presence of the morning glory Ipomoea purpurea alters patterns of selection on floral traits of its congener, Ipomoea hederacea. We show that while selection on I. hederacea floral traits is effectively neutral when I. purpurea flowers are absent, selection acts to increase clustering of anthers about the stigma when I. purpurea flowers are present. Our results provide direct experimental evidence that the presence of flowers of a co-occurring congener can influence patterns of natural selection on floral traits that influence the mating system and contribute to prezygotic isolation. To the extent that this result is general, it also lends support to the claim that distributional patterns interpreted as ecological and reproductive character displacement in other plant species have been caused by natural selection generated by interactions among plant species.  相似文献   

6.
Aldridge G  Campbell DR 《Heredity》2009,102(3):257-265
Variation in rates of hybridization among zones of sympatry between a pair of species provides a useful window into the effect of local conditions on the evolution of reproductive isolation. We employed floral morphological traits and neutral genetic markers to quantify the frequency of individuals intermediate to the two parental species in two zones of sympatry between Ipomopsis aggregata and I. tenuituba, using clustering methods that make no a priori assumptions about population structure. The sites differed not only in the frequency of intermediate individuals, but also in climate, pollinator abundance and behavior and spatial structure of plant populations. Both floral traits, which are likely to be under natural selection and molecular markers, which are quasi-neutral, indicated more population structure at one site than the other, the pattern being more pronounced for floral morphology. One likely explanation for this difference between sites is that local ecological conditions, particularly pollinator choice of flowers, have promoted different rates of hybridization between these species. Hence, the evolution of reproductive isolation might depend in part on local conditions, and thus differ among populations of the same pair of species.  相似文献   

7.
Floral isolation is an important component of pollinator-driven speciation. However, up to now, only a few studies have quantified its strength and relative contribution to total reproductive isolation. In this study, we quantified floral isolation among three closely related, sympatric orchid species of the genus Ophrys by directly tracking pollen flow. Ophrys orchids mimic their pollinators' mating signals, and are pollinated by male insects during mating attempts. This pollination system, called sexual deception, is usually highly specific. However, whether pollinator specialization also conveys floral isolation is currently under debate. In this study, we found strong floral isolation: among 46 tracked pollen transfers in two flowering seasons, all occurred within species. Accounting for observation error rate, we estimated a floral isolation index ≥0.98 among each pair of species. Hand pollination experiments suggested that postpollination barriers were effectively absent among our study species. Genetic analysis based on AFLP markers showed a clear species clustering and very few F(1) hybrids in natural populations, providing independent evidence that strong floral isolation prevents significant interspecies gene flow. Our results provide the first direct evidence that floral isolation acts as the main reproductive barrier among closely related plant species with specialized pollination.  相似文献   

8.
Comparative studies of related plant species indicate that evolutionary shifts in mating systems are accompanied by changes in reproductive attributes such as flower size, floral morphology, and pollen/ovule ratio. Recent theoretical work suggests that patterns of investment in reproduction should also change with the mating system. In a glasshouse study, we investigated the extent to which mating system differences among populations of Eichhornia paniculata (Pontederiaceae) were correlated with changes in allocation to male and female function, floral display, and the regulation of investment in reproduction through fruit and ovule abortion. Significant differences in the amount of biomass allocated to reproductive structures were evident among six populations of E. paniculata. As predicted by sex allocation theory, the proportion of dry weight allocated to male function decreased with the outcrossing rate of populations. Six of the eight attributes used to characterize floral display also differed significantly among populations. However, with the exception of two attributes describing the number of flowers produced by inflorescences, these were not correlated with outcrossing rate. Levels of fruit and ovule abortion were determined in two populations with contrasting mating systems under different nutrient and pollination treatments. Virtually all fruits initiated by plants from a self-fertilizing population were matured, while the amount of fruit abortion in an outcrossing population increased with flower production. Ovule abortion was low in both populations. Our results demonstrate that the evolution of self-fertilization in E. paniculata is associated with changes in investment to reproduction that normally distinguish selfing and outcrossing species.  相似文献   

9.
Because of their function as reproductive signals in plants, floral traits experience distinct selective pressures related to their role in speciation, reinforcement, and prolonged coexistence with close relatives. However, few studies have investigated whether population‐level processes translate into detectable signatures at the macroevolutionary scale. Here, we ask whether patterns of floral trait evolution and range overlap across a clade of California Jewelflowers reflect processes hypothesized to shape floral signal differentiation at the population level. We found a pattern of divergence in floral scent composition across the clade such that close relatives had highly disparate floral scents given their age. Accounting for range overlap with close relatives explained additional variation in floral scent over time, with sympatric species pairs having diverged more than allopatric species pairs given their age. However, three other floral traits (flower size, scent complexity and flower color) did not fit these patterns, failing to deviate from a null Brownian motion model of evolution. Together, our results suggest that selection for divergence among close relatives in the composition of floral scents may play a key, sustained role in mediating speciation and coexistence dynamics across this group, and that signatures of these dynamics may persist at the macroevolutionary scale.  相似文献   

10.
The diversity of floral forms has long been considered a prime example of radiation through natural selection. However, little is still known about the evolution of floral traits, a critical piece of evidence for the understanding of the processes that may have driven flower evolution. We studied the pattern of evolution of quantitative floral traits in a group of Neotropical lianas (Bignonieae, Bignoniaceae) and used a time‐calibrated phylogeny as basis to: (1) test for phylogenetic signal in 16 continuous floral traits; (2) evaluate the rate of evolution in those traits; and (3) reconstruct the ancestral state of the individual traits. Variation in floral traits among extant species of Bignonieae was highly explained by their phylogenetic history. However, opposite signals were found in floral traits associated with the attraction of pollinators (calyx and corolla) and pollen transfer (androecium and gynoecium), suggesting a differential role of selection in different floral whorls. Phylogenetic independent contrasts indicate that traits evolved at different rates, whereas ancestral character state reconstructions indicate that the ancestral size of most flower traits was larger than the mean observed sizes of the same traits in extant species. The implications of these patterns for the reproductive biology of Bignonieae are discussed. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 378–390.  相似文献   

11.
花寿命的进化生态学意义   总被引:3,自引:0,他引:3       下载免费PDF全文
花寿命 (Floral longevity) 是指一朵花保持开放并具有功能的持续时间, 它作为一种重要的繁殖策略影响着植物的繁殖, 在植物繁殖策略的进化生态学研究中具有非常重要的意义。近年来, 进化生态学家开始重视花寿命的研究, 在传粉与非传粉因素对花寿命的影响、花展示和繁殖成功与花寿命的关系等方面取得了长足的进展。生活史进化模型表明, 最优花寿命取决于开花成本和两性适合度实现速率之间的权衡。大量的实验研究支持此模型。实验研究表明:授粉可导致某些植物的花寿命显著缩短, 但是, 花粉移除对花寿命一般没有显著影响;部分植物的花具有最短花寿命, 这可能是一种保证植物雄性适合度的机制;温度和水分等非传粉因素的变化, 因改变开花成本而影响到花寿命;在花的群体水平上, 植物根据传粉状况和资源状况, 会调节花序上不同花的开放时间, 进而改变花展示的结构和功能;长的花寿命是保障植物繁殖成功的重要机制之一, 但可能要付出一定的适合度代价。该文概述了花寿命进化生态学的理论和实验研究进展, 最后指出:在理论研究上, 雌雄利益冲突为理解花寿命的进化提供了新的视角。在实验研究中, 需要重视植物通过优化花寿命而增强雄性适合度的研究思路。对花寿命的成本-收益分析, 需要考虑单花与花展示的功能关系。  相似文献   

12.
Sex-allocation models predict that the evolution of self-fertilization should result in a reduced allocation to male function and pollinator attraction in plants. The evolution of sex allocation may be constrained by both functional and genetic factors, however. We studied sex allocation and genetic variation for floral sex ratio and other reproductive traits in a Costa Rica population of the monoecious, highly selfing annual Begonia semiovata. Data on biomass of floral structures, flower sex ratios, and fruit set in the source population were used to calculate the average proportion of reproductive allocation invested in male function. Genetic variation and genetic correlations for floral sex ratio and for floral traits related to male and female function were estimated from the greenhouse-grown progeny of field-collected maternal families. The proportion of reproductive biomass invested in male function was low (0.34 at flowering, and 0.07 for total reproductive allocation). Significant among-family variation was detected in the size (mass) of individual male and female flowers, in the proportion of male flowers produced, and in the proportion of total flower mass invested in male flowers. Significant among-family variation was also found in flower number per inflorescence, petal length of male and female flowers, and petal number of female flowers. Except for female petal length, we found no difference in the mean value of these characters between selfed and outcrossed progeny, indicating that, with the possible exception of female petal length, the among-family variation detected was not the result of variation among families in the level of inbreeding. Significant positive phenotypic and broad-sense genetic correlations were detected between the mass of individual male and female flowers, between male and female petal length, and between number of male and number of female flowers per inflorescence. The ratio of stamen-to-pistil mass (0.33) was low compared to published data for autogamous species with hermaphroditic flowers, suggesting that highly efficient selfing mechanisms may evolve in monoecious species. Our results indicate that the study population harbors substantial genetic variation for reproductive characters. The positive genetic correlation between investment in male and female flowers may reflect selection for maximum pollination efficiency, because in this self-pollinating species, each female flower requires a neighboring male flower to provide pollen.  相似文献   

13.
青藏高原及周边高山地区孕育了极为丰富的植物多样性资源, 研究该地区植物如何顺利完成繁殖过程有助于我们理解植物对典型高山环境的进化和适应机制。该文综述了青藏高原地区高山植物在资源分配、繁殖方式、花部特征演化等方面的研究进展, 包括全球气候变化对植物繁殖特征的影响, 以及一些新技术和新方法在本研究领域的应用。在高山地区限制性环境中, 随海拔升高, 繁殖分配通常表现出增大的趋势, 其中投入到雄性资源的比例上升, 但具体的资源分配模式还要取决于植株的交配系统、个体大小、生活史特征、遗传特性以及环境中的资源有效性等。面对资源和传粉的双重限制, 植物在不同繁殖方式之间存在权衡, 当传粉者稀少时, 克隆繁殖和自交有利于繁殖保障; 而有性繁殖和异交能够提高种子的质量和后代的遗传多样性, 从而在复杂多变的气候条件下有利于种群的维持。因此, 不同繁殖方式的结合以及泛化的传粉互作网络可能是应对高山限制性环境的最优选择。花部特征的演化主要受到当地传粉者的选择压力, 但是外来传粉者、植食者、盗蜜者以及非生物环境(如温度、雨水和紫外辐射等)对花部性状的影响越来越受到重视。近年来, 青藏高原因其脆弱性和对气候变化的高度敏感性而在全球气候变化研究中备受关注, 以全球变暖和氮沉降增加为显著特征的全球气候变化正在直接或间接地影响着该地区高山植物的繁殖特征。气候变化影响植物和传粉者的物候并引起物种的迁移, 最终将导致植物与传粉者的时空不匹配。植物通过改变花部特征(花展示、花冠结构、花报酬的数量和质量)来响应气候变化, 这可能会改变其传粉者的类型、数量和访花行为, 从而最终影响植物的繁殖成功。3D打印和高通量测序等新技术和新方法的应用有助于促进植物繁殖生态学研究的进一步发展。3D打印的花能够精确控制其形态构造, 可以用于研究精细的花部特征变化对于传粉者行为的影响, 在此基础上与人工饲养的传粉者结合使用, 有助于进一步研究传粉者介导的花部特征演化。随着高通量测序技术的发展, 植物繁殖生态学领域, 尤其是花部特征演化的许多重要问题的潜在机制得以深入研究。该文最后提出了目前研究中需要注意的问题以及值得深入研究的发展方向。  相似文献   

14.
Charles Darwin studied floral biology for over 40 years and wrote three major books on plant reproduction. These works have provided the conceptual foundation for understanding floral adaptations that promote cross-fertilization and the mechanisms responsible for evolutionary transitions in reproductive systems. Many of Darwin''s insights, gained from careful observations and experiments on diverse angiosperm species, remain remarkably durable today and have stimulated much current research on floral function and the evolution of mating systems. Here I review Darwin''s seminal contributions to reproductive biology and provide an overview of the current status of research on several of the main topics to which he devoted considerable effort, including the consequences to fitness of cross- versus self-fertilization, the evolution and function of stylar polymorphisms, the adaptive significance of heteranthery, the origins of dioecy and related gender polymorphisms, and the transition from animal pollination to wind pollination. Post-Darwinian perspectives on floral function now recognize the importance of pollen dispersal and male outcrossed siring success in shaping floral adaptation. This has helped to link work on pollination biology and mating systems, two subfields of reproductive biology that remained largely isolated during much of the twentieth century despite Darwin''s efforts towards integration.  相似文献   

15.
The size and number of flowers displayed together on an inflorescence (floral display) influences pollinator attraction and pollen transfer and receipt, and is integral to plant reproductive success and fitness. Life history theory predicts that the evolution of floral display is constrained by trade-offs between the size and number of flowers and inflorescences. Indeed, a trade-off between flower size and flower number is a key assumption of models of inflorescence architecture and the evolution of floral display. Surprisingly, however, empirical evidence for the trade-off is limited. In particular, there is a lack of phylogenetic evidence for a trade-off between flower size and number. Analyses of phylogenetic independent contrasts (PICs) of 251 angiosperm species spanning 63 families yielded a significant negative correlation between flower size and flower number. At smaller phylogenetic scales, analyses of individual genera did not always find evidence of a trade-off, a result consistent with previous studies that have examined the trade-off for a single species or genus. Ours is the first study to support an angiosperm-wide trade-off between flower size and number and supports the theory that life history constraints have influenced the evolution of floral display.  相似文献   

16.
Class B floral homeotic genes specify the identity of petals and stamens during the development of angiosperm flowers. Recently, putative orthologs of these genes have been identified in different gymnosperms. Together, these genes constitute a clade, termed B genes. Here we report that diverse seed plants also contain members of a hitherto unknown sister clade of the B genes, termed B(sister) (B(s)) genes. We have isolated members of the B(s) clade from the gymnosperm Gnetum gnemon, the monocotyledonous angiosperm Zea mays and the eudicots Arabidopsis thaliana and Antirrhinum majus. In addition, MADS-box genes from the basal angiosperm Asarum europaeum and the eudicot Petunia hybrida were identified as B(s) genes. Comprehensive expression studies revealed that B(s) genes are mainly transcribed in female reproductive organs (ovules and carpel walls). This is in clear contrast to the B genes, which are predominantly expressed in male reproductive organs (and in angiosperm petals). Our data suggest that the B(s) genes played an important role during the evolution of the reproductive structures in seed plants. The establishment of distinct B and B(s) gene lineages after duplication of an ancestral gene may have accompanied the evolution of male microsporophylls and female megasporophylls 400-300 million years ago. During flower evolution, expression of B(s) genes diversified, but the focus of expression remained in female reproductive organs. Our findings imply that a clade of highly conserved close relatives of class B floral homeotic genes has been completely overlooked until recently and awaits further evaluation of its developmental and evolutionary importance. Electronic supplementary material to this paper can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s00438-001-0615-8.  相似文献   

17.
被子植物起源和早期演化研究的回顾与展望   总被引:7,自引:2,他引:7  
近年来,被子植物起源和早期演化研究,由于手段和技术的更新,资料大量积累,取得了许多重要进展,成为植物学领域的一大热点。本文对过去近五十年的研究作了回顾,并从分子系统学、分支系统学、花原基发生的形态学、花发育的分子遗传学及白垩纪花和其它生殖结构化石研究等五个方面对该领域在最近十几年的研究进展进行综述,最后,对今后如何开展这方面的工作作了简要评论。  相似文献   

18.
The evolution of gynodioecy from hermaphroditism involves modifications of floral structure such that male or female fitness is enhanced in hermaphrodites and females, respectively. We present an analysis of structural specialization of flowers of Ocotea tenera, in order to evaluate gender system evolution in this tropical tree species. Significant morphological and anatomical variation was found between high fruiting and low or nonfruiting trees. Female flowers were significantly smaller than hermaphroditic flowers, produced no viable pollen, and made relatively greater allocation to structures that increase female fitness. Hermaphroditic flowers were significantly larger than female flowers, produced copious quantities of pollen, and made relatively greater allocation to male structures. Analyses indicated that changes in allometries between whole-flower growth and growth of reproductive structures may have occurred, which enhance function of the flower and plant as a male or female. Efficiency of nutrient allocation for reproduction is argued to be a factor driving gender system evolution in Ocotea tenera.  相似文献   

19.
Meliaceae are a mostly pantropical family in the Sapindales, bearing flowers typically provided with a staminal tube, formed by filaments that are fused partially or totally. Nevertheless, several genera of subfamily Cedreloideae have free stamens, which may be adnate to an androgynophore in some taxa. The fact that the family exhibits a wide diversity of floral and fruit features, as well as of sexual systems and pollination syndromes, presents interesting questions on the evolutionary processes that might have taken place during its history. In this study, we analyzed the distribution of 20 reproductive morphological traits of Meliaceae, upon an available molecular phylogenetic framework, using 31 terminals from the family's two main clades (Cedreloideae and Melioideae), plus six Simaroubaceae taxa as outgroup. We aimed to identify and/or confirm synapomorphies for clades within the family and to develop hypotheses on floral evolution and sexual systems in the group. Our reconstruction suggests that the ancestor of Meliaceae was possibly provided with united stamens and unisexual flowers in dioecious individuals, with a subsequent change to free stamens and monoecy in the ancestor of Cedreloideae. Most characters studied show some degree of homoplasy, but some are unique synapomorphies of clades, such as the haplostemonous androecium. An androgynophore defines the Cedrela‐Toona clade. The comparative approach of our study and the evolutionary hypotheses generated herein reveal several aspects demanding further structural investigation, and possible evolutionary pathways of the reproductive structures along with the lineages' diversification, mostly related to the specialization of sexual systems, floral biology, and dispersal strategies.  相似文献   

20.
The Normapolles complex, characterised by its oblate and triaperturate pollen, constitutes an important and diverse element of many Late Cretaceous and Early Cainozoic floras of the Northern Hemisphere. Based on the dispersed pollen record alone it has been difficult to assess systematic affinities, but relationships with Fagales have been proposed. Over the past twenty years several exquisitely preserved Late Cretaceous reproductive structures with Normapolles type pollen in situ have been described. In this study we provide a summary and new information of these floral structures. Further, a new genus, Dahlgrenianthus, is described from the Late Cretaceous of southern Sweden. The genus includes the type species Dahlgrenianthus suecicus, a number of reproductive structures referred to Dahlgrenianthus sp., and Dahlgrenianthus trigonus (Knobloch et Mai) comb. nov. from the Maastrichtian flora of Walbeck, Germany. Dahlgrenianthus comprises small flowers with pentamerous perianth and androecium and a tricarpellate gynoecium. It is distinguished from all other Normapolles floral structures in its hypogynous floral organisation. All Normapolles floral structures described so far are thought to be related to various members of the core Fagales, but the group is obviously not monophyletic. The stratigraphic range of the Normapolles taxa and other fagalean fossils strongly suggests that all major fagalean lineages were present by the Cenomanian or earlier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号