首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have isolated the full-length cDNA of a novel human serine threonine protein kinase gene. The deduced protein sequence contains two cysteine-rich motifs at the N terminus, a pleckstrin homology domain, and a catalytic domain containing all the characteristic sequence motifs of serine protein kinases. It exhibits the strongest homology to the serine threonine protein kinases PKD/PKCmicro and PKCnu, particularly in the duplex zinc finger-like cysteine-rich motif, in the pleckstrin homology domain and in the protein kinase domain. In contrast, it shows only a low degree of sequence similarity to other members of the PKC family. Therefore, the new protein has been termed protein kinase D2 (PKD2). The mRNA of PKD2 is widely expressed in human and murine tissues. It encodes a protein with a molecular mass of 105 kDa in SDS-polyacrylamide gel electrophoresis, which is expressed in various human cell lines, including HL60 cells, which do not express PKCmicro. In vivo phorbol ester binding studies demonstrated a concentration-dependent binding of [(3)H]phorbol 12,13-dibutyrate to PKD2. The addition of phorbol 12,13-dibutyrate in the presence of dioleoylphosphatidylserine stimulated the autophosphorylation of PKD2 in a synergistic fashion. Phorbol esters also stimulated autophosphorylation of PKD2 in intact cells. PKD2 activated by phorbol esters efficiently phosphorylated the exogenous substrate histone H1. In addition, we could identify the C-terminal Ser(876) residue as an in vivo phosphorylation site within PKD2. Phosphorylation of Ser(876) of PKD2 correlated with the activation status of the kinase. Finally, gastrin was found to be a physiological activator of PKD2 in human AGS-B cells stably transfected with the CCK(B)/gastrin receptor. Thus, PKD2 is a novel phorbol ester- and growth factor-stimulated protein kinase.  相似文献   

2.
S Ohno  Y Akita  Y Konno  S Imajoh  K Suzuki 《Cell》1988,53(5):731-741
Protein kinase C (PKC)-related cDNA clones encode an 84 kd protein, nPKC. nPKC contains a cysteine-rich repeat sequence homologous to that seen in conventional PKCs (alpha, beta I, beta II, and gamma), which make up a family of 77-78 kd proteins with closely related sequences. nPKC, when expressed in COS cells, confers increased high-affinity phorbol ester receptor activity to intact cells. Antibodies raised against nPKC identified a 90 kd protein in rabbit brain extract as well as in extracts from COS cells transfected with the cDNA construct. nPKC shows protein kinase activity that is regulated by phospholipid, diacylglycerol, and phorbol ester but is independent of Ca2+. The structural and enzymological characteristics of nPKC clearly distinguish it from conventional PKCs, which until now have been the only substances believed to mediate the various effects of diacylglycerol and phorbol esters. These results suggest an additional signaling pathway involving nPKC.  相似文献   

3.
Protein kinase D2 (PKD2) belongs to the PKD family of serine/threonine kinases that is activated by phorbol esters and G protein-coupled receptors (GPCRs). Its C-terminal regulatory domain comprises two cysteine-rich domains (C1a/C1b) followed by a pleckstrin homology (PH) domain. Here, we examined the role of the regulatory domain in PKD2 phorbol ester binding, catalytic activity, and subcellular localization: The PH domain is a negative regulator of kinase activity. C1a/C1b, in particular C1b, is required for phorbol ester binding and gastrin-stimulated PKD2 activation, but it has no inhibitory effect on the catalytic activity. Gastrin triggers nuclear accumulation of PKD2 in living AGS-B cancer cells. C1a/C1b, not the PH domain, plays a complex role in the regulation of nucleocytoplasmic shuttling: We identified a nuclear localization sequence in the linker region between C1a and C1b and a nuclear export signal in the C1a domain. In conclusion, our results define the critical components of the PKD2 regulatory domain controlling phorbol ester binding, catalytic activity, and nucleocytoplasmic shuttling and reveal marked differences to the regulatory properties of this domain in PKD1. These findings could explain functional differences between PKD isoforms and point to a functional role of PKD2 in the nucleus upon activation by GPCRs.  相似文献   

4.
Protein kinase D (PKD) is a serine/threonine kinase regulated by diacylglycerol signaling pathways with unique domain composition and enzymatic properties, still awaiting identification of its specific substrate(s). Here we have isolated, cloned, and characterized a novel protein from PC12 cells, termed Kidins220 (kinase D-interacting substrate of 220 kDa), as the first identified PKD physiological substrate. Kidins220 contains 11 ankyrin repeats and four transmembrane domains within the N-terminal region. We have shown that Kidins220 is an integral membrane protein selectively expressed in brain and neuroendocrine cells, where it concentrates at the tip of neurites. In PC12 cells, PKD co-immunoprecipitates and phosphorylates endogenous Kidins220. This phosphorylation is increased after stimulating PKD activity in vivo by phorbol-12, 13-dibutyrate treatment. A constitutively active PKD mutant (PKD-S744E/S748E) phosphorylates recombinant Kindins220-VSVG in vitro in the absence of phorbol-12,13-dibutyrate. Conversely, Kidins220-VSVG phosphorylation is abolished when a dominant negative mutant of PKD (PKD-D733A) is used. Moreover, a peptide within the Kidins220 sequence, containing serine 919 in a consensus motif for PKD-specific phosphorylation, behaved as the best peptide substrate to date. Substitution of serine 919 to alanine abrogated peptide phosphorylation. Furthermore, by generating an antibody recognizing Kidins220 phosphorylated on serine 919, we show that phorbol ester treatment causes the specific phosphorylation of this residue in PC12 cells in vivo. Our results provide the first physiological substrate for PKD and indicate that Kidins220 is phosphorylated by PKD at serine 919 in vivo.  相似文献   

5.
The serine/threonine kinase protein kinase D1 (PKD1) is a protein kinase C (PKC) substrate that mediates antigen receptor signal transduction in lymphocytes. PKC phosphorylates serines 744/748 within the PKD1 catalytic domain, and this is proposed to be necessary and sufficient for enzyme activation. Hence, a PKD1 mutant with alanine substituted at positions 744 and 748 (PKD-S744A/S748A) is catalytically inactive. Conversely, a PKD1 mutant with glutamic residues substituted at positions 744 and 748 as phospho-mimics (PKD-S744E/S748E) is constitutively active when expressed in Cos7 or HeLa cells. The present study reveals that Ser-744/Ser-748 phosphorylation is required for PKD1 activation in lymphocytes. However, PKD-S744E/S748E is not constitutively active but, like the wild type enzyme, requires antigen receptor triggering or phorbol ester stimulation. Antigen receptor activation of wild type PKD is dependent on phospholipase C (PLC)/diacylglycerol (DAG) and PKC, whereas PKD-S744E/S748E is only dependent on PLC/DAG but no longer requires PKC. Hence, substitution of serines 744 and 748 with glutamic residues as phospho-mimics bypasses the PKC requirement for PKD1 activation but does not bypass the need for antigen receptors, PLC, or DAG. In lymphocytes, PKD1 is, thus, not regulated by PLC and PKC in a linear pathway; rather, PKD1 activation has more stringent requirements for integration of dual PLC signals, one mediated by PKCs and one that is PKC-independent.  相似文献   

6.
Protein kinase C (PKC)-related cDNA clones isolated from mouse epidermis cDNA library encoded a 78-kDa protein, nPKC eta. nPKC eta contains a characteristic cysteine-rich repeat sequence (C1 region) and a protein kinase domain sequence (C3 region), both of which are conserved among PKC family members. However, nPKC eta lacks a putative Ca2+ binding region (C2 region) that is seen in conventional PKCs (alpha, beta I, beta II, gamma), but not in novel PKCs (nPKC delta, -epsilon, -zeta). nPKC eta shows the highest sequence similarity to nPKC epsilon (59.4% identity). The similarity extends to the NH2-terminal sequence (E region) which corresponds to one of the divergent regions (D1 region). Northern blot analysis showed that the mRNA for nPKC eta is highly expressed in the lung and skin but, in contrast to other members of the PKC family, only slightly expressed in the brain. nPKC eta expressed in COS cells shows phorbol ester binding activity with a similar affinity to nPKC epsilon. Antiserum raised against a COOH-terminal peptide of nPKC eta identified an 82-kDa protein in mouse lung extract as well as in an extract from COS cells transfected with the nPKC eta-cDNA expression plasmid. Autophosphorylation of nPKC eta immunoprecipitated with the specific antiserum was observed, indicating that nPKC eta is a protein kinase. These results clearly demonstrate the existence and the possible importance of nPKC eta as a member of the phorbol ester receptor/protein kinase, PKC, family.  相似文献   

7.
Protein kinase D (PKD) is a serine/threonine protein kinase that is directly stimulated in vitro by phorbol esters and diacylglycerol in the presence of phospholipids. Here, we examine the regulation of PKD in living cells. Our results demonstrate that tumour-promoting phorbol esters, membrane-permeant diacylglycerol and serum growth factors rapidly induced PKD activation in immortalized cell lines (e.g. Swiss 3T3 and Rat-1 cells), in secondary cultures of mouse embryo fibroblasts and in COS-7 cells transiently transfected with a PKD expression construct. PKD activation was maintained during cell disruption and immunopurification and was associated with an electrophoretic mobility shift and enhanced 32P incorporation into the enzyme, but was reversed by treatment with alkaline phosphatase. PKD was activated, deactivated and reactivated in response to consecutive cycles of addition and removal of PDB. PKD activation was completely abrogated by exposure of the cells to the protein kinase C inhibitors GF I and Ro 31-8220. In contrast, these compounds did not inhibit PKD activity when added directly in vitro. Co-transfection of PKD with constitutively activated mutants of PKCs showed that PKCepsilon and eta but not PKCzeta strongly induced PKD activation in COS-7 cells. Thus, our results indicate that PKD is activated in living cells through a PKC-dependent signal transduction pathway.  相似文献   

8.
Recently, we cloned a novel serine/threonine kinase termed protein kinase D2 (PKD2). PKD2 can be activated by phorbol esters both in vivo and in vitro but also by gastrin via the cholecystokinin/CCK(B) receptor in human gastric cancer cells stably transfected with the CCK(B)/gastrin receptor (AGS-B cells). Here we identify the mechanisms of gastrin-induced PKD2 activation in AGS-B cells. PKD2 phosphorylation in response to gastrin was rapid, reaching a maximum after 10 min of incubation. Our data demonstrate that gastrin-stimulated PKD2 activation involves a heterotrimeric G alpha(q) protein as well as the activation of phospholipase C. Furthermore, we show that PKD2 can be activated by classical and novel members of the protein kinase C (PKC) family such as PKC alpha, PKC epsilon, and PKC eta. These PKCs are activated by gastrin in AGS-B cells. Thus, PKD2 is likely to be a novel downstream target of specific PKCs upon the stimulation of AGS-B cells with gastrin. Our data suggest a two-step mechanism of activation of PKD2 via endogenously produced diacylglycerol and the activation of PKCs.  相似文献   

9.
D Ron  M G Kazanietz 《FASEB journal》1999,13(13):1658-1676
Protein kinase C (PKC), a family of related serine-threonine kinases, is a key player in the cellular responses mediated by the second messenger diacylglycerol (DAG) and the phorbol ester tumor promoters. The traditional view of PKCs as DAG/phospholipid-regulated proteins has expanded in the last few years by three seminal discoveries. First, PKC activity and maturation is controlled by autophosphorylation and transphosphorylation mechanisms, which includes phosphorylation of PKC isozymes by phosphoinositide-dependent protein kinases (PDKs) and tyrosine kinases. Second, PKC activity and localization are regulated by direct interaction with different types of interacting proteins. Protein-protein interactions are now recognized as important mechanisms that target individual PKCs to different intracellular compartments and confer selectivity by associating individual isozymes with specific substrates. Last, the discovery of novel phorbol ester receptors lacking kinase activity allows us to speculate that some of the biological responses elicited by phorbol esters or by activation of receptors coupled to elevation in DAG levels could be mediated by PKC-independent pathways.  相似文献   

10.
Protein kinase D (PKD) is a protein serine kinase that is directly stimulated in vitro by phorbol esters and diacylglycerol in the presence of phospholipids, and activated by phorbol esters, neuropeptides, and platelet-derived growth factor via protein kinase C (PKC) in intact cells. Recently, oxidative stress was shown to activate transfected PKC isoforms via tyrosine phosphorylation, but PKD activation was not demonstrated. Here, we report that oxidative stress initiated by addition of H(2)O(2) (0.15-10 mm) to quiescent Swiss 3T3 fibroblasts activates PKD in a dose- and time- dependent manner, as measured by autophosphorylation and phosphorylation of an exogenous substrate, syntide-2. Oxidative stress also activated transfected PKD in COS-7 cells but not a kinase-deficient mutant PKD form or a PKD mutant with critical activating serine residues 744 and 748 mutated to alanines. Genistein, or the specific Src inhibitors PP-1 and PP-2 (1-10 micrometer) inhibited H(2)O(2)-mediated PKD activation by 45%, indicating that Src contributes to this signaling pathway. PKD activation by H(2)O(2) was also selectively potentiated by cotransfection of PKD together with an active form of Src (v-Src) in COS-7 cells, as compared with PDB-mediated activation. The specific phospholipase C inhibitor, partly blocked H(2)O(2)-mediated but not PDB-mediated PKD activation. In contrast, PKC inhibitors blocked H(2)O(2) or PDB-mediated PKD activation essentially completely, suggesting that whereas Src mediates part of its effects via phospholipase C activation, PKC acts more proximally as an upstream activator of PKD. Together, these studies reveal that oxidative stress activates PKD by initiating distinct Src-dependent and -independent pathways involving PKC.  相似文献   

11.
Enzymatic properties of a novel phorbol ester receptor/protein kinase, nPKC   总被引:7,自引:0,他引:7  
A protein kinase C-related cDNA encodes a novel phorbol ester receptor/protein kinase, nPKC epsilon, clearly distinct from the four "conventional" PKCs [Ohno, S., Akita, Y., Konno, Y., Imajoh, S., & Suzuki, K. (1988) Cell 53, 731-741]. We purified nPKC epsilon from COS cells transfected with nPKC cDNA and compared its enzymatic properties with a conventional PKC, PKC alpha. nPKC epsilon was eluted from a hydroxyapatite column at a position coincident with type II PKC and thus was separated from type III PKC (PKC alpha), the only PKC expressed in COS cells. The protein kinase activity of nPKC epsilon is activated by phospholipids and diacylglycerols (or phorbol esters) in a manner similar to conventional PKCs. However, the cofactor dependencies and substrate specificities were clearly different from PKC alpha. A phospholipid, cardiolipin, enhances the kinase activity three- to fourfold compared with phosphatidylserine. The optimum Mg2+ concentration (3 mM) is clearly different from those of conventional PKCs (10-20 mM). The activation of nPKC epsilon by these cofactors is totally independent of Ca2+. Similar to conventional PKCs, nPKC epsilon autophosphorylates serine and threonine residues, indicating the specificity of the kinase to these amino acid residues. However, it shows a clearly different substrate specificity against exogenous substrates in that myelin basic proteins rather than histone are good substrates. These properties of nPKC epsilon permit clear discrimination of nPKC epsilon from conventional PKCs.  相似文献   

12.
Munc13-1 is a presynaptic protein with an essential role in synaptic vesicle priming. It contains a diacylglycerol (DAG)/beta phorbol ester binding C(1) domain and is a potential target of the DAG second messenger pathway that may act in parallel with PKCs. Using genetically modified mice that express a DAG/beta phorbol ester binding-deficient Munc13-1(H567K) variant instead of the wild-type protein, we determined the relative contribution of PKCs and Munc13-1 to DAG/beta phorbol ester-dependent regulation of neurotransmitter release. We show that Munc13s are the main presynaptic DAG/beta phorbol ester receptors in hippocampal neurons. Modulation of Munc13-1 activity by second messengers via the DAG/beta phorbol ester binding C(1) domain is essential for use-dependent alterations of synaptic efficacy and survival.  相似文献   

13.
Protein kinase D (PKD)/protein kinase Cmicro (PKCmicro, a serine/threonine protein kinase with distinct structural and enzymological properties, is rapidly activated in intact cells via PKC. The amino-terminal region of PKD contains a cysteine-rich domain (CRD) that directly binds phorbol esters with a high affinity. Here, we show that treatment of transfected RBL 2H3 cells with phorbol 12,13-dibutyrate (PDB) induces a striking CRD-dependent translocation of PKD from the cytosol to the plasma membrane, as shown by real time visualization of a functional green fluorescent protein (GFP)-PKD fusion protein. A single amino acid substitution in the second cysteine-rich motif of PKD (P287G) prevented PDB-induced membrane translocation but did not affect PKD activation. Our results indicate that PKD translocation and activation are distinct processes that operate in parallel to regulate the activity and localization of this enzyme in intact cells.  相似文献   

14.
Diacylglycerol kinase (DGK) plays an important role in signal transduction through modulating the balance between two signaling lipids, diacylglycerol and phosphatidic acid. In yeast two-hybrid screening, we unexpectedly found a self-association of the C-terminal part of DGKdelta containing a sterile alpha-motif (SAM) domain. We then bacterially expressed the SAM domain fused with maltose-binding protein and confirmed the formation of dimeric and tetrameric structures. Moreover, gel filtration and co-immunoprecipitation analyses demonstrated that DGKdelta formed homo-oligomeric structures in intact cells and that the SAM domain was critically involved in the oligomerization. Interestingly, phorbol ester stimulation induced dissociation of the oligomeric structures with concomitant phosphorylation of DGKdelta. Furthermore, we found that DGKdelta was translocated from cytoplasmic vesicles to the plasma membrane upon phorbol ester stimulation. In this case, DGKdelta mutants lacking the ability of self-association were localized at the plasma membranes even in the absence of phorbol ester. A protein kinase C inhibitor, staurosporine, blocked all of the effects of phorbol ester, i.e. oligomer dissociation, phosphorylation, and translocation. We confirmed that tumor-promoting phorbol esters did not directly bind to DGKdelta. The present studies demonstrated that the formation and dissociation of oligomers serve as the regulatory mechanisms of DGKdelta and that DGKdelta is a novel downstream effector of phorbol ester/protein kinase C signaling pathway.  相似文献   

15.
The novel phorbol ester receptor beta2-chimaerin is a Rac-GAP protein possessing a single copy of the C1 domain, a 50-amino acid motif initially identified in protein kinase C (PKC) isozymes that is involved in phorbol ester and diacylglycerol binding. We have previously shown that, like PKCs, beta2-chimaerin binds phorbol esters with high affinity in a phospholipid-dependent manner (Caloca, M. J., Fernandez, M. N., Lewin, N. E., Ching, D., Modali, R., Blumberg, P. M., and Kazanietz, M. G. (1997) J. Biol. Chem. 272, 26488-26496). In this paper we report that like PKC isozymes, beta2-chimaerin is translocated by phorbol esters from the cytosolic to particulate fraction. Phorbol esters also induce translocation of alpha1 (n)- and beta1-chimaerins, suggesting common regulatory mechanisms for all chimaerin isoforms. The subcellular redistribution of beta2-chimaerin by phorbol esters is entirely dependent on the C1 domain, as revealed by deletional analysis and site-directed mutagenesis. Interestingly, beta2-chimaerin translocates to the Golgi apparatus after phorbol ester treatment, as revealed by co-staining with the Golgi marker BODIPY-TR-ceramide. Structure relationship analysis of translocation using a series of PKC ligands revealed substantial differences between translocation of beta2-chimaerin and PKCalpha. Strikingly, the mezerein analog thymeleatoxin is not able to translocate beta2-chimaerin, although it very efficiently translocates PKCalpha. Phorbol esters also promote the association of beta2-chimaerin with Rac in cells. These data suggest that chimaerins can be positionally regulated by phorbol esters and that each phorbol ester receptor class has distinct pharmacological properties and targeting mechanisms. The identification of selective ligands for each phorbol ester receptor class represents an important step in dissecting their specific cellular functions.  相似文献   

16.
C1 domains mediate the recognition and subsequent signaling response to diacylglycerol and phorbol esters by protein kinase C (PKC) and by several other families of signal-transducing proteins such as the chimerins or RasGRP. MRCK (myotonic dystrophy kinase-related Cdc42 binding kinase), a member of the dystrophia myotonica protein kinase family that functions downstream of Cdc42, contains a C1 domain with substantial homology to that of the diacylglycerol/phorbol ester-responsive C1 domains and has been reported to bind phorbol ester. We have characterized here the interaction of the C1 domains of the two MRCK isoforms alpha and beta with phorbol ester. The MRCK C1 domains bind [20-(3)H]phorbol 12,13-dibutyrate with K(d) values of 10 and 17 nm, respectively, reflecting 60-90-fold weaker affinity compared with the protein kinase C delta C1b domain. In contrast to binding by the C1b domain of PKCdelta, the binding by the C1 domains of MRCK alpha and beta was fully dependent on the presence of phosphatidylserine. Comparison of ligand binding selectivity showed resemblance to that by the C1b domain of PKCalpha and marked contrast to that of the C1b domain of PKCdelta. In intact cells, as in the binding assays, the MRCK C1 domains required 50-100-fold higher concentrations of phorbol ester for induction of membrane translocation. We conclude that additional structural elements within the MRCK structure are necessary if the C1 domains of MRCK are to respond to phorbol ester at concentrations comparable with those that modulate PKC.  相似文献   

17.
Phorbol esters, natural compounds that mimic the action of the lipid second messenger diacylglycerol (DAG), are known to exert their biological actions through the activation of classical and novel protein kinase C (PKC) isozymes. Phorbol esters, via binding to the PKC C1 domains, cause major effects on mitogenesis by controlling the activity of cyclin-cdk complexes and the expression of cdk inhibitors. In the last years it became clear that phorbol esters activate other molecules having a C1 domain in addition to PKCs. One of the most interesting families of "non-kinase" phorbol ester receptors is represented by the chimaerins, lipid-regulated Rac-GAPs that modulate actin cytoskeleton reorganization, migration, and proliferation. The discovery of the chimaerins and other "non-kinase" phorbol ester receptors has major implications in the design of agents for cancer therapy.  相似文献   

18.
C1 domains, cysteine-rich modules originally identified in protein kinase C (PKC) isozymes, are present in multiple signaling families, including PKDs, chimaerins, RasGRPs, diacylglycerol kinases (DGKs) and others. Typical C1 domains bind the lipid second messenger diacylglycerol (DAG) and DAG-mimetics such as phorbol esters, and are critical for governing association to membranes. On the contrary, atypical C1 domains possess structural determinants that impede phorbol ester/DAG binding. C1 domains are generally expressed as twin modules (C1A and C1B) or single domains. Biochemical and cellular studies in PKC and PKD isozymes revealed that C1A and C1B domains are non-equivalent as lipid-binding motifs or translocation modules. It has been recently determined that individual C1 domains have unique patterns of ligand recognition, driven in some cases by subtle structural differences. Insights from recent 3-D studies on beta2-chimaerin and Munc13-1 revealed that their single C1 domains are sterically blocked by intramolecular interactions, suggesting that major conformational changes would be required for exposing the site of DAG interaction. Thus, it is clear that the protein context plays a major role in determining whether binding of DAG to the C1 domain would lead to enzyme activation or merely serves as an anchoring mechanism.  相似文献   

19.
20.
We have taken a knockout approach to interrogate the function of protein kinase D (PKD) serine/threonine kinases in lymphocytes. DT40 B cells express two PKD family members, PKD1 and PKD3, which are both rapidly activated by the B-cell antigen receptor (BCR). DT40 cells with single or dual deletions of PKD1 and/or PKD3 were viable, allowing the role of individual PKD isoforms in BCR signal transduction to be assessed. One proposed downstream target for PKD1 in lymphocytes is the class II histone deacetylases (HDACs). Regulation of chromatin accessibility via class II histone deacetylases is an important mechanism controlling gene expression patterns, but the molecules that control this key process in B cells are not known. Herein, we show that phosphorylation and nuclear export of the class II histone deacetylases HDAC5 and HDAC7 are rapidly induced following ligation of the BCR or after treatment with phorbol esters (a diacylglycerol mimetic). Loss of either PKD1 or PKD3 had no impact on HDAC phosphorylation, but loss of both PKD1 and PKD3 abrogated antigen receptor-induced class II HDAC5/7 phosphorylation and nuclear export. These studies reveal an essential and redundant role for PKD enzymes in controlling class II HDACs in B lymphocytes and suggest that PKD serine kinases are a critical link between the BCR and epigenetic control of chromatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号