首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 482 毫秒
1.
Demel Teketay   《Flora》2002,197(1)
The germination responses of Discopodium penninervium were tested at different constant and alternating temperature regimes as well as under various light conditions both in the laboratory and glasshouse. Seeds incubated at 10, 15, 20, 25 and 30 °C failed to germinate. When the seeds were incubated at alternating temperatures of 20/12 °C and 30/12 °C under continuous light, germination was 89 and 61%, indicating that the species requires alternating temperatures as a cue for germination. However, germination declined as the amplitude of alternating temperatures increased from 8 °C and was completely inhibited at an amplitude of 23 °C, suggesting that the optimum amplitude is around 8 °C. Germination was less than 10% in light and nil in darkness at 20 °C in the laboratory. In contrast, seeds incubated at 20/12 °C germinated to 96 and 86% in light and darkness, respectively. Seeds incubated under leaf shade in the glasshouse failed to germinate whereas those incubated under direct daylight and darkness germinated to 44 and 50%, respectively, 30 days after sowing. When seeds incubated under leaf shade and in darkness were exposed afterwards to light, final percent germination was 83% from seeds incubated initially under direct daylight, 79% from those incubated under leaf shade and 86% from those incubated in darkness. The requirement for alternating temperatures and light rich in red:far red ratio to break the dormancy of seeds of D. penninervium could restrict germination to gaps in the vegetation. The results conform with the ecology of the species.  相似文献   

2.
Dimorphic seeds of Atriplex prostrata were removed from cold dry storage monthly over a one year period to test for fluctuations in seed dormancy and germination rate. For each seed type, four replicates of 25 seeds were exposed to four alternating night/day temperature regimes mimicking seasonal fluctuations in Ohio: 5/15 °C; 5/25 °C; 15/25 °C and 20/35 °C with a corresponding 12-h photoperiod (20 μmol m−2 s−1; 400 – 700 nm). We found a significant three-way interaction of seed size, temperature and month for both percent germination and the rate of germination. Large seeds showed the greatest germination at the 20/35 °C and 5/25 °C temperature regimes and small seeds at the 5/25 °C regime. Large seeds had greater germination at all temperatures as compared to small seeds. Large seeds had the fastest germination rates at 20/35 °C followed by 5/25 °C whereas small seeds had the fastest rates at 5/25 °C followed by 20/35 °C. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Seeds of the empress tree ( Paulownia tomentosa Steud.) were imbibed for two weeks in darkness at constant temperatures (18, 23 or 28°C), and then irradiated with red light for 5 min. Germination was poor if it took place at the same temperature as imbibition, but a high percentage was achieved if the seeds were exposed to higher or lower temperatures before they were irradiated. Maximum germination was obtained when the difference between pretreatment and imbibition was about 10°C. The effect increased with the duration of the pretreatment and was optimal at 24 h. The effect decreased as the time lapse between temperature pretreatment and red light irradiation increased, and it was lost after two days. If pretreatment was shorter than 24 h (12 h). a high percent of germination was obtained by alternating pretreatment and imbibition temperatures. The germination of seeds imbibed in 40% heavy water was also stimulated by temperature pretreatments. Light and temperature also exhibited an interactive effect in the germination of seeds that were imbibed in darkness for only 3 days. For each of the germination phases there was a temperature at which the time needed for 50% germination was the shortest, namely 35°C during imbibition, 37.5°C in the period of Pfr activity. and 32.5°C during radicle protrusion. The data obtained are shortly discussed in relation to the domestication of empress tree in Southern Europe.  相似文献   

4.
Light and temperature control of germination in Agropyron smithii seeds   总被引:2,自引:0,他引:2  
In darkness, A. smithii seeds germinated poorly at constanttemperatures but well at alternating temperatures. Prolongedperiods on the high part of the temperature cycles reduced germination;the higher the temperature the shorter was the period requiredon the high part of the temperature cycles for optimum germination.Continuous, unfiltered, incandescent illumination and intermittentfar red at 15?–25?C alternation also inhibited germination;the inhibitory effects were similar to those caused by the highintensity reaction. Far red inhibited germination when appliedafter 1 and 2 complete 15?–25?C cycles in darkness butnot after 3 cycles. Less than 20% of the seeds were under phytochromecontrol at constant 20?C. When red light was applied directlyafter far red that was applied in intermittent cycles at 15?–25?C,however, 50% of the seeds caused to germinate by the alternatingtemperature were shown to be controlled by the reversible phytochromereaction. The induced high-temperature dormancy was overcome by gibberellicacid (GA3) plus kinetin. The hormonal treatment was much moreeffective than light for breaking dormancy. Inhibition fromprolonged illumination was alleviated or eliminated by GA3+kinetin.The failure of red light to promote good germination at 20?Cwas also overcome with GA3+kinetin; effects of light plus thehormone treatments were more than additive. These data suggestthat optimum alternating temperatures facilitate a proper balanceand interaction of hormones, enzymes, substrates and possiblypreexistent Pfr so that the germination of A. smithii seedscan proceed without benefit of a light treatment. (Received July 7, 1976; )  相似文献   

5.
Invasion of alien plant species (IAS) represents a serious environmental problem, particularly in Europe, where it mainly pertains to urban areas. Seed germination traits contribute to clarification of invasion dynamics. The objective of this research was to analyze how different light conditions (i.e., 12-hr light/12-hr darkness and continuous darkness) and temperature regimes (i.e., 15/6°C, 20/10°C and 30/20°C) trigger seed germination of Ailanthus altissima (AA), Phytolacca americana (PA) and Robinia pseudoacacia (RP). The relationship between seed germination and seed morphometric traits was also analyzed. Our findings highlight that temperature rather than light was the main environmental factor affecting germination. RP germinated at all tested temperatures, whereas at 15/6°C seeds of AA and PA showed physiological dormancy. RP had a higher germination capacity at a lower temperature, unlike AA and PA, which performed better at the highest temperatures. Light had a minor role in seed germination of the three species. Light promoted germination only for seeds of PA, and final germination percentage was 1.5-fold higher in light than in continuous darkness. Seed morphometric traits (thickness [T], area [A] and volume [V]) had a significant role in explaining germination trait variations. The results highlight the importance of increasing our knowledge on seed germination requirements to predict future invasiveness trends. The increase in global temperature could further advantage AA and PA in terms of germinated seeds, as well as RP by enhancing the germination velocity, therefore compensating for a lower germination percentage of this species at the highest temperatures.  相似文献   

6.
To conserve a threatened plant species (Penthorum chinense Pursh) in Japan, seed germination responses to pretreatment (imbibition and/or chilled), temperature and light, and seed dispersal by water were examined. The seeds collected from abandoned paddy fields in a warm temperate region, central Japan, germinated in light (14 h photoperiod; light 22°C, dark 21°C) after a moist-chilled treatment. After this pretreatment, the seeds germinated well at 10–25°C (optimum temperature 15°C), but did not germinate in darkness even at the optimum temperature. Most of the seeds floated on distilled water, but 20–60% of the seeds that were collected from several populations sank in distilled water, indicating dimorphism in seed dispersal by water. The floating and sunken seeds did not show significant differences in weight and germination rate within a population. The addition of a surface-active agent in distilled water submerged the seeds, indicating that the buoyancy of the seeds is attributable to an oil coating on the seed surface that enhances the interfacial tension on the seeds. Three times the number of seeds sank in river water collected from a rural area than in distilled water. A greater number of seeds also sank in water that had increasing concentrations of linear alkylbenzenesulfonate, which is a major component of synthetic detergents. This suggests that the water dispersal of this species is suppressed by surface-active agents, including detergents, in river water.  相似文献   

7.
《Acta Oecologica》2001,22(1):1-8
Seeds of Drosera anglica collected in Sweden were dormant at maturity in late summer, and dormancy break occurred during cold stratification. Stratified seeds required light for germination, but light had to be given after temperatures were high enough to be favorable for germination. Seeds stratified in darkness at 5/1 °C and incubated in light at 12/12 h daily temperature regimes of 15/6, 20/10 and 25/15 °C germinated slower and to a significantly lower percentage at each temperature regime than those stratified in light and incubated in light. Length of the stratification period required before seeds would germinate to high percentages depended on (1) whether seeds were in light or in darkness during stratification and during the subsequent incubation period, and (2) the temperature regime during incubation. Seeds collected in 1999 germinated to 4, 24 and 92 % in light at 15/6, 20/10 and 25/15 °C, respectively, after 2 weeks of stratification in light. Seeds stratified in light for 18 weeks and incubated in light at 15/6, 20/10 and 25/15 °C germinated to 87, 95 and 100 %, respectively, while those stratified in darkness for 18 weeks and incubated in light germinated to 6, 82 and 91 %, respectively. Seeds collected from the same site in 1998 and 1999, stratified in light at 5/1 °C and incubated in light at 15/6 °C germinated to 22 and 87 %, respectively, indicating year-to-year variation in degree of dormancy. As dormancy break occurred, the minimum temperature for germination decreased. Thus, seed dormancy is broken in nature by cold stratification during winter, and by spring, seeds are capable of germinating at low habitat temperatures, if they are exposed to light.  相似文献   

8.
We aimed to determine the ecological role of three seed morphs observed for the first time in a desert population of Lotononis platycarpa (Fabaceae), with respect to their germination requirements. Seeds sorted by seed coat colour (olive green, orange and brown) were germinated under laboratory conditions under two photoperiods (12/12‐h light and continuous dark) and three alternating temperature regimes (15/25, 20/30, 25/35°C). We found that the three distinct seed types differ in their seed mass, germination percentage and speed of germination. Overall, the light‐incubated seeds germinated with higher percentages than seeds in the total darkness. Furthermore, seeds with orange coat germinated with higher percentages at 15/25 and 25/35°C (up to 60%, for both) and significantly faster than the other two colour morphs. Our results suggest an adaptive significance of seed colour heterogeneity in the harsh desert habitat inhabited by the study species.  相似文献   

9.
Halogeton glomeratus (M. Bieb.) C.A. Mey., Lepidium latifolium Linn. and Peganum harmala Linn. are distributed in temperate salt playa habitats of Upper Hunza, Pakistan. Seeds were germinated under various salinity (0–500 mM NaCl), light (12 h-light:12 h-dark and 24 h-dark) and temperature (5/15, 10/20, 15/25, 20/30, and 25/35 °C, dark/light) regimes for 20 days to determine the optimal conditions for germination and recovery of seeds from these factors when exposed to less than optimal conditions. Seeds that failed to germinate in dark were transferred successively to 12 h-photoperiod, salinity to distilled water and from various temperature regimes to 20/30 °C, to determine the effect of these stresses and the ability of these seeds to recover respectively. Highest seed germination (H. glomeratus and L. latifolium: 100%; P. harmala: 80%) was obtained in non-saline control at 20/30 °C in 12 h-photoperiod, however, increase in salinity progressively inhibited seed germination. Seed germination of H. glomeratus and P. harmala was substantially inhibited and that of L. latifolium was prevented in dark. Salinity and dark treatments have a synergistic effect in inhibiting seed germination of all species. No seed of any species germinated at 5/15 °C; germination was substantially inhibited at 25/35 °C both for H. glomeratus and P. harmala while L. latifolium failed to germinate at 25/35 °C. Rate of germination also decreased with an increase in salinity at all temperature regimes but this effect was minimal at optimal temperature regime of 20/30 °C. After successive elimination of light, salinity and temperature stresses, final seed germination was identical to respective controls. The results indicate that seeds of these temperate halophytes could endure environmental stresses without losing viability and germinate readily when these stresses are removed. Under the extremely variable conditions of the playa habitat these species are highly opportunistic exploiting the windows of opportunity available during spring or early summer.  相似文献   

10.
Conyza bonariensis is one of the most problematic weed species throughout the world. It is considered highly noxious due to its interference with human activities, and especially the competition it poses with economically important crops. This research investigated the temperature requirements for seed germination of four populations of C. bonariensis with distinct origin and the influence of daily alternating temperatures. For this, a set of germination tests were performed in growth chambers to explore the effect of constant and alternating temperatures. Seeds of the four populations (from Lleida, Badajoz and Seville, Spain and Bahía Blanca, Argentina) were maintained at constant temperatures ranging from 5 to 35°C. The final germination and cardinal temperatures (base, optimum and maximum) of each population were obtained. We also tested the influence of daily alternating temperatures on final germination. To do so, seeds were exposed to two temperature regimes: 5/15, 10/20, 15/25, 20/30 and 25/35°C night/day temperature (intervals increasing 5°C, with constant oscillation of 10°C) and to 18/22, 16/24, 14/26, 12/28 and 10/30°C night/day temperature (intervals with average of 20°C, but increasing the oscillation in 4°C between intervals). In general, all populations behaved similarly, with the highest germination percentages occurring in the optimum temperature range (between 21.7°C and 22.3°C) for both constant and alternating temperatures. In general, climatic origin affected germination response, where seeds obtained from the coldest origin exhibited the highest germination percentage at the lowest temperature assayed. In addition, we observed that the alternating temperatures can positively affect total germination, especially in oscillations that were further from the average optimum temperature (20°C), with high germination percentage for the oscillations of 15/25, 20/30, 18/22, 16/24, 14/26, 12/28 and 10/30°C in all populations. The cardinal temperatures obtained were significantly different across the populations. These results provide information that will facilitate a better understanding of the behaviour of Conyza and improve current field emergence models.  相似文献   

11.
The germination characteristics of a population of the winter annual Phacelia dubia (L.) Trel. var. dubia from the middle Tennessee cedar glades were investigated in an attempt to define the factor(s) regulating germination in nature. Factors considered were changes in physiological response of the seeds (after-ripening), temperature, age, light and darkness, and soil moisture. At seed dispersal (late May to early June), approximately 50 % of the seeds were non-dormant but, would germinate only at low temperatures (10–15 C). As the seeds aged from June to September, there was an increase in rate and total percent of germination at 10, 15, and 20 C, and the maximum temperature for germination increased to 25 C. Little or no germination occurred at the June, July, and August temperatures in 0- to 2-month-old seeds, even in seeds on soil that was kept continuously moist during this 3-month period. At the September, October, and November temperatures 3- to 5-month-old seeds germinated to high percentages. In all experiments seeds germinated better at a 14-hr photoperiod than in constant darkness. Inability of 0- to 2-month-old seeds to germinate at high summer temperatures allows P. dubia dubia to pass the dry summer in the seed stage, while increase in optimum and maximum temperatures for germination during the summer permits seeds to germinate in late summer and early fall when conditions are favorable for seedling survival and eventual maturation.  相似文献   

12.
Alcorn , Stanley M. (U. S. Dept. of Agric., Tucson, Ariz.), and Edwin B. Kurtz , Jr . Some factors affecting the germination of seed of the saguaro cactus (Carnegiea gigantea). Amer. Jour. Bot. 46(7): 526–529. 1959.—Germination of saguaro cactus seeds is stimulated by red light (approx. 6550 A) or daylight and far-red light (approx. 7350 A) counteracts this effect. About 0.1% germinate in continuous darkness. A single exposure to red light was most effective when the seeds were imbibed 24 hr., but maximum germination resulted from multiple exposures to red light during a 72-hr. imbibition period. The optimum temperature for germination was 25°C.; no germination occurred at 15°C. and only slight germination at 35°C. Imbibition of light-treated seeds in 0.05 to 0.2% KNO3 increased germination. Germination of seeds in either light or dark was increased by imbibing the seeds in 500 to 1000 p.p.m. gibberellic acid.  相似文献   

13.
The seeds of Crithmmm maritimum L. were germinated floating on various concentrations of sea water up to 50% at constant temperatures of 5, 10, 15, 20, and 25°C and at alternating temperatures of 5 and 15°C. 5 and 25°C. and 15 and 25°C. Significantly higher germination was obtained at alternating than at constant temperature. When two constant temperatures at which no germination occurred were alternated, good germination was obtained. There was reduced germination and increase in time of first germination as sea water concentration increased, in the absence of sea water, high temperature caused not only severe inhibition of germination but also permanent injury to the seeds. The results help to explain the germination behaviour of the species in nature.  相似文献   

14.
15.
Marathrum schiedeanum and Marathrum rubrum are annual Podostemaceae, thus their seeds are important to their dispersal and persistence in their habitat. We assessed the effect on germination of (1) light (white, red and far red) and darkness, (2) temperature (15, 20, 25, 30 °C and alternating 20/30 °C), (3) osmotic potential (0 to −0.8 MPa), (4) proximity to moisture sources and (5) seed storage. Seeds of M. schiedeanum and M. rubrum were non-dormant and had a high germination capacity (96%). Seeds were positive photoblastic; at 15 °C germination drop to zero, and germination rate was slower at 20 °C and at 20/30 °C than at 25 °C. A small proportion of seeds of both species germinated even at osmotic potentials as low as −0.6 MPa (11%) for M. rubrum and −0.8 MPa (70%) for M. schiedeanum. Seeds germinated only when near to the source of moisture (91.3–87.1% and 53.3–35.6% for M. schiedeanum and M. rubrum, respectively) and 2 years in dry storage did not modify their capacity to germinate. At the beginning of the rainy season, light and temperature in the rivers may be high enough for germination. The ability to germinate at low osmotic potential may be related to early germination during the rainy season. This may be because the seed mucilage assists in diffusion of water from the substrate to the seed. Both species germinated faster at −0.06 MPa, than in distilled water, which may indicate appropriate conditions for germination of these short-lived species.  相似文献   

16.
Influence of salinity and temperature on the germination of Kochia scoparia   总被引:1,自引:0,他引:1  
Kochia scoparia is one of the most common annual halophytes foundin the Great Basin. Seeds were collected from a population growing in asalt playa at Faust, Utah and were germinated at 5 temperature regimes(12 h night/12 h day, 5–15 °C, 10–20 °C, 15–25 °C,20–30 °C and 25–35 °C) and 6 salinities (0, 200, 400,600, 800 and 1000 mM NaCl) to determine optimal conditions forgermination and recovery of germination from saline conditions after beingtransferred to distilled water. Maximum germination occurred in distilledwater, and an increase in NaCl concentration progressively inhibited seedgermination. Few seeds germinated at 1000 mM NaCl. A temperatureregime of 25 °C night and 35 °C day yielded maximumgermination. Cooler temperature 5–15 °C significantly inhibited seedgermination. Rate of germination decreased with increase in salinity.Germination rate was highest at 25–35 °C and lowest at5–15 °C. Seeds were transferred from salt solutions to distilled waterafter 20 days and those from high salinities recovered quickly at warmertemperature regimes. Final recovery germination percentages in high salttreatments were high, indicating that exposure to high concentration ofNaCl did not inhibit germination permanently.  相似文献   

17.
The effects of water temperature and bottom sediment type were studied on seed dormancy and germination of Zostera japonica Ascherson & Graebner in mesocosm. To test whether the germination rate is affected by cold stratification, seeds were divided into two groups: those exposed to cold (7 °C) and those left untreated (23–15 °C). Additionally, to mimic tidal variation, we used five tidal depth treatments for germination experiments in mesocosm. In mesocosm tanks, there was a wide range of daily fluctuating temperature at datum line +40 cm (17–25 °C), D.L. +20 cm (15 °C), and D.L. +0 cm (4–7 °C). In contrast, the maximum temperature range at D.L. −20 cm and −40 cm was narrow (5–6 °C). In the no cold stratification group, the maximum germination rates on sandy, muddy sand, and muddy bottom sediment were 3%, 11%, and 3%, respectively. In the cold stratification group (7 °C), the maximum germination rates were 40%, 53%, and 54%, respectively. First germination was observed 36 ± 0 days and 43 ± 6 days after the start of the germination experiment in the cold stratification group and the no cold stratification group, respectively. Bottom sediment type and tidal level did not affect seed germination in the both stratification group. Cold stratification strongly increases germination in all sediment types tested and under varying temperature regimes and at different tidal levels. We also tested whether seed germination is affected by daily fluctuations in temperature (10 °C constant, 15 °C/10 °C, and 20 °C/10 °C were compared) in an indoor incubator. Forty-two days after being sown, the maximum seedling emergence rates in the three groups were 3 ± 5%, 21 ± 7%, and 42 ± 26%, respectively. At 20 °C/10 °C, first germination was observed 11 days after the start of incubation, the germination rate rose sharply after 18 day of incubation, and then it leveled off after 32–42 days of incubation. In the no cold stratification group, seed germination was not observed in any of the three treatments. This finding suggests that the breaking of seed dormancy and germination of Z. japonica seeds are determined strongly by cold temperature and daily fluctuations of temperature, respectively.  相似文献   

18.
Summary Seeds of erect and prostrate plants ofTrianthema govindia Buch. ham. ex DC., growing in shade and open respectively, differed significantly in seed weight and percentage germination. Effect of high temperature exposure to these seeds has been studied in view of water depletion, imbibition and seed germination. The seeds of both the types were subjected to temperatures of 40, 50, 60, and 70° C for 24, 48, 96, and 144 hours. The three factors viz., loss of water, water imbibition and germination of seeds were positively correlated to the duration of treatment at different temperatures. A highly significant positive correlation was also observed between moisture depletion and imbibition, and between imbibition and germination. The percentage germination was favoured at 40° C in both the types of seeds and was increased with the increase of treatment duration. However, at higher temperatures (50 and 60° C) the percentage declined while at 70° C the seeds lost their vitality.  相似文献   

19.
The tropical conifer Widdringtonia whytei Rendle is an endangered species endemic to Mulanje Mountain in Malawi. A study was conducted for the first time under controlled conditions in order to assess the effects of temperature and light on germination and viability of W. whytei seeds. Seeds incubated at a constant temperature of 20 °C attained the highest cumulative germination percentage (100%) followed by 87% germination under fluctuating temperatures of 15 °C night/25 °C day. No seed germination occurred at temperatures below 15 °C. Seeds that failed to germinate at temperatures below 15 °C showed the highest (> 90%) viability compared to the seeds incubated at 25 °C (60%). Across temperature regimes, germination was significantly higher under light (44.7%) than dark (35.6%) conditions. It is concluded that temperature is one of the critical factors for germination of W. whytei seed. The ability of W. whytei seeds to germinate both in light and darkness implies that the species would unlikely form a persistent soil seed bank, an attribute which is common in species that survive in habitats frequently disturbed by fires.  相似文献   

20.
Sarcobatus vermiculatus (Hook) Torrey is a leaf succulent, sodium-accumulating shrub usually found in saline substrates of the Great Basin desert, Utah, USA. Laboratory experiments were conducted to determine the effect of salinity (0, 200, 400, 600, 800 and 1000 mM NaCl) and temperature (day/night: 5/15, 10/20, 15/25, 20/30, and 25/35°C) on seed germination. S. vermiculatus showed 100% germination in non-saline controls, at all thermoperiods. Percentage and rate of germination decreased with increases in salinity and few seeds germinated at even 1000 mM NaCl. High salinity exposure caused the loss of viability at higher temperature regimes, while some recovery was recorded in low salinity treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号