共查询到20条相似文献,搜索用时 15 毫秒
1.
Vpr, one of the accessory molecules of HIV-1, has been demonstrated to arrest the cell cycle at the G2 phase. This Vpr-mediated cell cycle arrest is implicated to have an important role in the viral life cycle. In the present study, we quantitate the extent of Vpr-mediated cell cycle arrest with the use of a bicistronic vector consisting of a vpr gene and a green fluorescence protein sequence. Using this system, we examined the effect of several Vprs on cell cycle progression and growth of cells from different species quantitatively. We found that Vpr from the T-cell line-adapted HIV-1SF2 strain (Vpr2) could not significantly induce G2 arrest in HeLa cells but was able to induce it in 293T cells. However, strong inhibition of cell proliferation in HeLa cells as well as in 293T cells was observed by Vpr2. This ability of Vpr2 to inhibit cell proliferation without G2 arrest was also observed when expressed in monkey cell line. Analyses of chimeric Vprs revealed that this species-non-specific growth inhibitory activity of Vpr was not mediated solely by the C-terminal region of Vpr. These results indicated that the growth inhibitory activity of Vpr is independent of its G2 arresting activity. In addition, the species-non-specific nature of this activity suggests that Vpr has a novel mechanism to retard cell proliferation by influencing basic cellular functions. 相似文献
2.
3.
人免疫缺陷病毒(HIV-1)急性感染过程中,病毒的遗传多样性显著减少,往往只有一株或几株病毒可以建立有效感染,这种病毒被称为初始传播病毒(Transmitted/Founder virus)。病毒蛋白R(Vpr)是HIV-1的辅助蛋白之一,在病毒复制过程中起重要作用。研究初始传播病毒Vpr基因遗传变异与生物学特征对于阐明病毒建立感染的关键环节具有重要意义。文章利用流式细胞术分析了C亚型HIV-1初始传播病毒株与慢性感染株MJ4的 Vpr蛋白诱导细胞G2期阻滞和细胞凋亡的能力。结果显示,初始传播病毒ZM246和ZM247的Vpr诱导细胞G2期阻滞和细胞凋亡的能力显著高于慢性感染株MJ4 Vpr。氨基酸序列分析表明,初始传播病毒Vpr在第77、85和94位上存在高频突变。研究结果提示初始传播病毒可能在病毒感染早期,通过Vpr基因的遗传突变,提升病毒诱导细胞停滞G2期和细胞凋亡的能力,进而促进病毒在宿主体内的复制和传播。 相似文献
4.
Upregulation of survivin by HIV-1 Vpr 总被引:5,自引:0,他引:5
Zhu Y Roshal M Li F Blackett J Planelles V 《Apoptosis : an international journal on programmed cell death》2003,8(1):71-79
The human survivin gene belongs to the family of inhibitor of apoptosis proteins (IAP) and is involved in apoptosis inhibition and regulation of cell division. The survivin gene is the only member of the IAP family whose expression is known to be regulated through the cell cycle. Survivin expression reaches the highest levels during the G2/M transition and then is rapidly degraded during the G1 phase. Here we report that the human immunodeficiency virus type 1 (HIV-1) upregulates Survivin expression via survivin promoter transactivation. Vpr, an HIV-1 accessory protein that induces cell cycle arrest in G2/M, is necessary and sufficient for this effect. Blocking Vpr-induced G2/M arrest leads to elimination of the survivin promoter transactivation by Vpr. Our results suggest that Survivin may be actively involved in regulating cell viability during HIV-1 infection. 相似文献
5.
Fumagillin suppresses HIV-1 infection of macrophages through the inhibition of Vpr activity 总被引:1,自引:0,他引:1
Watanabe N Nishihara Y Yamaguchi T Koito A Miyoshi H Kakeya H Osada H 《FEBS letters》2006,580(11):2598-2602
HIV-1 viral protein R (Vpr) is one of the human immunodeficiency virus type 1 encoded proteins that have important roles in viral pathogenesis. However, no clinical drug for AIDS therapy that targets Vpr has been developed. Here, we have established a screening system to isolate Vpr inhibitors using budding yeast cells. We purified a Vpr inhibitory compound from fungal metabolites and identified it as fumagillin, a chemical already known to be a potent inhibitor of angiogenesis. Fumagillin not only reversed the growth inhibitory activity of Vpr in yeast and human cells, but also inhibited Vpr-dependent viral gene expression upon the infection of human macrophages. 相似文献
6.
Nitracrine (Ledakrin) is an antitumor drug which is activated by cellular enzymes and binds covalently to DNA. Previous studies have shown that covalent binding and crosslinking of DNA is associated with the cytotoxic and antitumor activities of this compound. In this study, cell cycle perturbations, effects on DNA synthesis and the cell death process initiated by Nitracrine were studied in murine leukemia L1210 cells. We show that exposure of L1210 cells to Nitracrine at the IC99 concentration delayed progression through the S phase and transiently arrested cells in G2/M as found by flow cytometry. Higher drug concentration (2 × IC99) inhibited cell cycle progression in the S phase and induced rapid cell death. Both studied concentrations of the drug produced different effects on DNA synthesis as determined by bromodeoxyuridine incorporation, with a delay in the S phase progression at EC99 concentration and irreversible arrest in early S phase at the higher dose (2 × IC99). At both concentrations of Nitracrine cell death occurred preferentially in the S phase as revealed by the TUNEL assay. When cells treated with the drug for 4 hours were post-incubated in the presence of 1 mM caffeine this led to rapid cell death and suppression of the G2 arrest. This was associated with a about 10-fold increase in the cytotoxicity of Nitracrine. Similar effects were observed for another DNA crosslinking agent, cis-platinum, and to a lesser extent, for DNA topoisomerase I inhibitor, camptothecin. Together, our studies show that suppression of G2 arrest induced by Nitracrine greatly enhances its cytotoxicity toward L1210 cells. 相似文献
7.
Sylvain Huard ;Mingzhong Chen ;Kristen E Burdette ;Csaba Fenyvuesvolgyi ;Min Yu ;Robert T Elder ;Richard Y Zhao 《Cell research》2008,(9):961-973
Human immunodeficiency virus type 1 (HIV-1) Vpr induces cell death in mammalian and fssion yeast cells, suggesting that Vpr may affect a conserved cellular process. It is unclear, however, whether Vpr-induced yeast cell death mimics Vpr-mediated apoptosis in mammalian cells. We have recently identified a number of Vpr suppressors that not only suppress Vpr-induced cell death in fission yeast, but also block Vpr-induced apoptosis in mammalian cells. These findings suggest that Vpr-induced cell death in yeast may resemble some of the apoptotic processes of mammalian cells. The goal of this study was to develop and validate a fission yeast model system for future studies of apoptosis. Similar to Vpr-induced apoptosis in mammalian cells, we show here that Vpr in fission yeast promotes phosphatidylserine externalization and induces hyperpolarization of mitochondria, leading to changes of mitochondrial membrane potential. Moreover, Vpr triggers production of reactive oxygen species (ROS), indicating that the apoptotic-like cell death might be mediated by ROS. Interestingly, Vpr induces unique morphologic changes in mitochondria that may provide a simple marker for measuring the apoptotic-like process in fission yeast. To verify this possibility, we tested two Vpr suppressors (EF2 and Hspl6) that suppress Vpr-induced apoptosis in mammalian cells in addition to a newly identified Vpr suppressor (Skpl). All three proteins abolished cell death mediated by Vpr and restored normal mitochondrial morphology in the yeast cells. In conclusion, Vpr-induced cell death in fission yeast resembles the mammalian apoptotic process. Fission yeast may thus potentially be used as a simple model organism for the future study of the apoptotic-like process induced by Vpr and other proapoptotic agents. 相似文献
8.
Xin Wang Shailbala Singh Hae-Yun Jung Guojun Yang Sohee Jun K. Jagannadha Sastry Jae-Il Park 《The Journal of biological chemistry》2013,288(22):15474-15480
Viral pathogens utilize host cell machinery for their benefits. Herein, we identify that HIV-1 Vpr (viral protein R) negatively modulates telomerase activity. Telomerase enables stem and cancer cells to evade cell senescence by adding telomeric sequences to the ends of chromosomes. We found that Vpr inhibited telomerase activity by down-regulating TERT protein, a catalytic subunit of telomerase. As a molecular adaptor, Vpr enhanced the interaction between TERT and the VPRBP substrate receptor of the DYRK2-associated EDD-DDB1-VPRBP E3 ligase complex, resulting in increased ubiquitination of TERT. In contrast, the Vpr mutant identified in HIV-1-infected long-term nonprogressors failed to promote TERT destabilization. Our results suggest that Vpr inhibits telomerase activity by hijacking the host E3 ligase complex, and we propose the novel molecular mechanism of telomerase deregulation in possibly HIV-1 pathogenesis. 相似文献
9.
Arunagiri C Macreadie I Hewish D Azad A 《Apoptosis : an international journal on programmed cell death》1997,2(1):69-76
We have previously shown that expression of HIV-1 vpr in yeast results in cell growth arrest and structural defects, and identified a C-terminal domain of Vpr as being responsible for these effects in yeast.1 In this report we show that recombinant Vpr and C-terminal peptides of Vpr containing the conserved sequence HFRIGCRHSRIG caused permeabilization of CD4+ T lymphocytes, a dramatic reduction of mitochondrial membrane potential and finally cell death. Vpr and Vpr peptides containing the conserved sequence rapidly penetrated cells, co-localized with the DNA, and caused increased granularity and formation of dense apoptotic bodies. The above results suggest that Vpr treated cells undergo apoptosis and this was confirmed by demonstration of DNA fragmentation by the highly sensitive TUNEL assay. Our results, together with the demonstration of extracellular Vpr in HIV infected individuals,2,3 suggest the possibility that extracellular Vpr could contribute to the apoptotic death and depletion of bystander cells in lymphoid tissues4,5 during HIV infection. 相似文献
10.
Yuh-Fung Chen Jai-Sing Yang Wen-Shin Chang Shih-Chang Tsai Shu-Fen Peng Yuan-Ru Zhou 《Journal of biomedical science》2013,20(1):18
Background
Houttuynia cordata Thunb (HCT) is commonly used in Taiwan and other Asian countries as an anti-inflammatory, antibacterial and antiviral herbal medicine. In this study, we investigated the anti-human lung cancer activity and growth inhibition mechanisms of HCT in human lung cancer A549 cells.Results
In order to investigate effects of HCT on A549 cells, MTT assay was used to evaluate cell viability. Flow cytometry was employed for cell cycle analysis, DAPI staining, and the Comet assay was used for DNA fragmentation and DNA condensation. Western blot analysis was used to analyze cell cycle and apoptotic related protein levels. HCT induced morphological changes including cell shrinkage and rounding. HCT increased the G0/G1 and Sub-G1 cell (apoptosis) populations and HCT increased DNA fragmentation and DNA condensation as revealed by DAPI staining and the Comet assay. HCT induced activation of caspase-8 and caspase-3. Fas/CD95 protein levels were increased in HCT-treated A549 cells. The G0/G1 phase and apoptotic related protein levels of cyclin D1, cyclin A, CDK 4 and CDK 2 were decreased, and p27, caspase-8 and caspase-3 were increased in A549 cells after HCT treatment.Conclusions
The results demonstrated that HCT-induced G0/G1 phase arrest and Fas/CD95-dependent apoptotic cell death in A549 cells 相似文献11.
Role of HIV-1 Vpr-induced apoptosis on the release of mitochondrial lysyl-tRNA synthetase 总被引:1,自引:0,他引:1
Mitochondrial lysyl-tRNA synthetase (LysRS) is thought to be involved in the specific packaging of tRNA(3)(Lys) into HIV-1 viral particles. The HIV-1 auxiliary viral protein Vpr is an apoptogenic protein that affects the integrity of the mitochondrial membrane and has also been reported to interact with LysRS. In the present study, we show that HIV-1 Vpr expressed in E. coli and purified to homogeneity does not interact specifically with LysRS and does not impact its aminoacylation activity. However, we also show that the mitochondrial localization of LysRS in HeLa cells is altered after addition of Vpr in the culture medium. These results suggest that HIV-1 Vpr fulfills an essential role in the process of packaging of mitochondrial LysRS. 相似文献
12.
Induction of M-phase arrest and apoptosis after HIV-1 Vpr expression through uncoupling of nuclear and centrosomal cycle in HeLa cells 总被引:1,自引:0,他引:1
Watanabe N Yamaguchi T Akimoto Y Rattner JB Hirano H Nakauchi H 《Experimental cell research》2000,258(2):261-269
The human immunodeficiency virus type 1 (HIV-1) accessory protein Vpr induces cell cycle arrest in the G2 phase of the cell cycle followed by apoptosis. The mechanism of the arrest is unknown but the arrest is believed to facilitate viral replication. In the present study, we have established cell lines that allow conditional expression of Vpr, and have examined the mechanism of cell death following Vpr expression. We found that cells expressing Vpr enter M phase after long G2 arrest but formed aberrant multipolar spindles that were incapable of completing karyokinesis or cytokinesis. This abnormality provided the basis for apoptosis, which always followed in these cells. The multipolar spindles formed in response to abnormal centrosomal duplication that occurred during the G2 arrest but did not occur in cells arrested in G2 by irradiation. Thus, the expression of Vpr appears to be responsible for abnormal centrosome duplication, which in turn contributes in part to the rapid cell death following HIV-1 infection. 相似文献
13.
Activation of protein phosphatase-2A1 by HIV-1 Vpr cell death causing peptide in intact CD(4+) T cells and in vitro 总被引:1,自引:0,他引:1
HIV-1, the etiologic agent of human AIDS, causes cell death in host and non-host cells via HIV-1 Vpr, one of its auxiliary gene product. HIV-1 Vpr can also cause cell cycle arrest in several cell types. The cellular processes that link HIV-1 Vpr to the cell death machinery are not well characterized. Here, we show that the C terminal portion of HIV-1 Vpr which encompasses amino acid residues 71-96 (HIV-1 Vpr(71-96)), also termed HIV-1 Vpr cell death causing peptide, is an activator of protein phosphatase-2A(1) when applied extracellularly to CD(4+) T cells. HIV-1 Vpr(71-96) is a direct activator of protein phosphatase-2A(1) that has been purified from CD(4+) T cells. Full length HIV-1 Vpr by itself does not cause the activation of protein phosphatase-2A(1) in vitro. HIV-1 Vpr(71-96) also causes the activation of protein phosphatase-2A(0) and protein phosphatase-2A(1) from brain, liver, and adipose tissues. These results indicate that HIV-1 can cause cell death of infected cells and non-infected host and non-host cells via HIV-1 Vpr derived C terminal peptide(s) which act(s) by cell penetration and targeting of a key controller of the cell death machinery, namely, protein phosphatase-2A(1). The activation of other members of the protein phosphatase-2A subfamily of enzymes which are involved in the control of several metabolic pathways in brain, liver, and adipose tissues by HIV-1 Vpr derived C terminal peptide(s) may underlie various metabolic disturbances that are associated with HIV-1 infection. 相似文献
14.
Taguchi T Shimura M Osawa Y Suzuki Y Mizoguchi I Niino K Takaku F Ishizaka Y 《Biochemical and biophysical research communications》2004,320(1):18-26
Vpr, an accessory gene product of HIV-1, is incorporated into cells when added to the culture medium. Via such function Vpr has been shown to transduce a protein into cells that is expressed as a chimeric protein with Vpr. The domain required for protein transduction, however, remained to be clarified. Here we identified a sequence encompassing 52-78 amino acids of Vpr (C45D18) that enables nuclear trafficking of proteins. When chemically synthesized C45D18 was added to the culture medium of human cord blood mononuclear (CBMN) cells, most cells became positive for the incorporated C45D18. Furthermore, recombinant proteins conjugated with the C45D18 were efficiently transduced and transported to regions corresponding to the nucleus. Incorporation of C45D18-conjugated protein was observed within a few hours after addition of the protein, independent of cellular growth. Although it is well known that Tat-derived peptide has a transducing activity, C45D18 was more active than Tat peptide for trafficking proteins into cells. Taking together with results from FACS analysis revealing that more than 90% of CBMN cells were positive for X-gal staining after treatment of C45D18-conjugated beta-galactosidase, we propose that C45D18 translocates bioactive macromolecules directly into the nucleus. 相似文献
15.
Sudo H Tsuji AB Sugyo A Imai T Saga T Harada YN 《Biochemical and biophysical research communications》2007,364(3):695-701
Genomic instability is considered a hallmark of carcinogenesis, and dysfunction of DNA repair and cell cycle regulation in response to DNA damage caused by ionizing radiation are thought to be important factors in the early stages of genomic instability. We performed cell-based functional screening using an RNA interference library targeting 200 genes in human cells. We identified three known and nine new radiation susceptibility genes, eight of which are linked directly or potentially with cell cycle progression. Cell cycle analysis on four of the genes not previously linked to cell cycle progression demonstrated that one, ZDHHC8, was associated with the G2/M checkpoint in response to DNA damage. Further study of the 12 radiation susceptibility genes identified in this screen may help to elucidate the molecular mechanisms of cell cycle progression, DNA repair, cell death, cell growth and genomic instability, and to develop new radiation sensitizing agents for radiotherapy. 相似文献
16.
Bcl-2 upregulation by HIV-1 tat during infection of primary human macrophages in culture 总被引:3,自引:0,他引:3
Zhang M Li X Pang X Ding L Wood O Clouse KA Hewlett I Dayton AI 《Journal of biomedical science》2002,9(2):133-139
The ability of cells of the human monocyte/macrophage lineage to host HIV-1 replication while resisting cell death is believed to significantly contribute to their ability to serve as a reservoir for viral replication in the host. Although macrophages are generally resistant to apoptosis, interruption of anti-apoptotic pathways can render them susceptible to apoptosis. Here we report that HIV-1(BAL )infection of primary human monocyte-derived macrophages (MDM) upregulates the mRNA and protein levels of the anti-apoptic gene, Bcl-2. Furthermore, this upregulation can be quantitatively mimicked by treating MDM with soluble HIV-1 Tat-86 protein. These results suggest that in infecting cells of the monocyte/macrophage lineage, HIV-1 may be benefiting from additional protection against apoptosis caused by specific upregulation of cellular anti-apoptotic genes. 相似文献
17.
Shingo Dan Mutsumi Okamura Takao Yamori 《Biochemical and biophysical research communications》2009,379(1):104-1599
Phosphoinositide 3-kinase (PI3K) is a potential target in cancer therapy. Inhibition of PI3K is believed to induce apoptosis. We recently developed a novel PI3K inhibitor ZSTK474 with antitumor efficacy. In this study, we have examined the underlying mode of action by which ZSTK474 exerts its antitumor efficacy. In vivo, ZSTK474 effectively inhibited the growth of human cancer xenografts. In parallel, ZSTK474 treatment suppressed the expression of phospho-Akt, suggesting effective PI3K inhibition, and also suppressed the expression of nuclear cyclin D1 and Ki67, both of which are hallmarks of proliferation. However, ZSTK474 treatment did not increase TUNEL-positive apoptotic cells. In vitro, ZSTK474 induced marked G0/G1 arrest, but did not increase the subdiploid cells or activate caspase, both of which are hallmarks of apoptosis. These results clearly indicated that inhibition of PI3K by ZSTK474 did not induce apoptosis but rather induced strong G0/G1 arrest, which might cause its efficacy in tumor cells. 相似文献
18.
Mechanism of HIV-1 viral protein R-induced apoptosis 总被引:5,自引:0,他引:5
Muthumani K Choo AY Hwang DS Chattergoon MA Dayes NN Zhang D Lee MD Duvvuri U Weiner DB 《Biochemical and biophysical research communications》2003,304(3):583-592
The paradigm of HIV-1 infection includes the diminution of CD4(+) T cells, loss of immune function, and eventual progression to AIDS. However, the mechanisms that drive host T cell depletion remain elusive. One HIV protein thought to participate in this destructive cascade is the Vpr gene product. Accordingly, we review the biology of the HIV-1 viral protein R (Vpr) an apoptogenic HIV-1 accessory protein that is packaged into the virus particle. In this review we focus specifically on Vpr's ability to induce host cell apoptosis. Recent evidence suggests that Vpr implements a unique mechanism to drive host cell apoptosis, by directly depolarizing the mitochondria membrane potential. Vpr's attack on the mitochondria results in release of cytochrome c resulting in activation of the caspase 9 pathway culminating in the activation of caspase 3 and the downstream events of apoptosis. Vpr may interact with the adenine nucleotide translocator (ANT) to prompt this cascade. The role of Vpr-induced apoptosis in HIV pathogenesis is considered. 相似文献
19.
Kyoung Ah Kang Rui Zhang Mei Jing Piao Min Jeong Park Ae Ran Kwon Bum Joon Kim Ho Jin You Myung Hee Chung Jin Won Hyun 《Biotechnology and Bioprocess Engineering》2007,12(2):114-120
8-Hydroxydeoxyguanosine (oh8dG) treatment induced senescence-like changes in KG-1 cells, a human acute myelocytic leukemia cell line. The oh8dG-treated cells stained positive for senescence associated β-galactosidase (SA-β-galactosidase) and had enlarged cell shape,
both of which are senescence indexes. The oh8dG-treated cells were also cell growth inhibited and arrested at G1 in the cell cycle. The accumulation of cdk (cyclin dependent kinase) inhibitors, such as p16, p21, and p27, also implies
that cellular senescence was induced in oh8dG-treated cells. However, these changes were not accompanied by cell differentiation or telomerase activity. Taken together,
we conclude that oh8dG treatment of KG-1 cells induces cellular senescence. 相似文献
20.
Yoko Yashiroda Reika Okamoto Kaori Hatsugai Yasushi Takemoto Tamio Saito Yoshikazu Sugimoto Hiroyuki Seimiya 《Biochemical and biophysical research communications》2010,394(3):569-1877
The telomere-associated protein tankyrase 1 is a poly(ADP-ribose) polymerase and is considered to be a promising target for cancer therapy, especially for BRCA-associated cancers. However, an efficient assay system for inhibitor screening has not been established, mainly due to the difficulty of efficient preparation of the enzyme and its substrate. Here, we report a cell-based assay system for detecting inhibitory activity against tankyrase 1. We found that overexpression of the human tankyrase 1 gene causes a growth defect in the fission yeast Schizosaccharomyces pombe. Chemicals that restore the growth defect phenotype can be identified as potential tankyrase 1 inhibitors. We performed a high-throughput screen using this system, and identified flavone as a compound that restores the growth of yeast cells overexpressing tankyrase 1. Indeed, flavone inhibited poly(ADP-ribosyl)ation of proteins caused by overexpression of tankyrase 1 in yeast cells. This system allows rapid identification of inhibitory activity against tankyrase 1 and is amenable to high-throughput screening using robotics. 相似文献