首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The splenic macrophages of rats and mice were studied by light and fluorescence microscopy to determine their phagocytotic uptake of carbon and neutral polysaccharide (Fic-F), and their lysosomal enzyme activities. In rats, the large macrophages of the marginal zone (MZ) showed a moderate to strong acid phosphatase activity, and took up most of the Fic-F, even though they showed a weak phagocytotic activity to carbon particles. Red-pulp macrophages, however, ingested a large quantity of carbon particles, and are considered to be the major scavengers in the rat spleen. In contrast, the MZ macrophages in the mouse spleen were the major scavengers and showed a vigorous uptake of both carbon and Fic-F. In rats, the marginal metallophils (MM), located at the outer border of the periarterial lymphatic sheath and boundary between the MZ bridging channel and surrounding tissue, ingested Fic-F, whereas those located around the follicular area did not. In mice, on the other hand, the MM never ingested Fic-F. Lightly carbon-ladened small cells were constantly seen in the MZ of both rats and mice. They showed little acid phosphatase activity and did not ingest Fic-F. They were also present in the blood circulation.  相似文献   

2.
Recent studies have identified an indirect genotoxicity pathway involving inflammation as one of the mechanisms underlying the carcinogenic effects of air pollution/diesel exhaust particles (DEP). We investigated the short-term effects of DEP on markers of inflammation and genotoxicity in vitro and in vivo. DEP induced an increase in the mRNA level of pro-inflammatory cytokines and a higher level of DNA strand breaks in the human lung epithelial cell line A549 in vitro. For the in vivo study, mice were exposed by inhalation to 20 or 80 mg/m3 DEP either as a single 90-min exposure or as four repeated 90-min exposures (5 or 20 mg/m3) and the effects in broncho-alveolar lavage (BAL) cells and/or lung tissue were characterized. Inhalation of DEP induced a dose-dependent inflammatory response with infiltration of macrophages and neutrophils and elevated gene expression of IL-6 in the lungs of mice. The inflammatory response was accompanied by DNA strand breaks in BAL cells and oxidative DNA damage and increased levels of bulky DNA adducts in lung tissue, the latter indicative of direct genotoxicity. The effect of a large single dose of DEP was more pronounced and sustained on IL-6 expression and oxidative DNA damage in the lung tissue than the effect of the same dose administered over four days, whereas the reverse pattern was seen in BAL cells. Our results suggest that the effects of DEP depend on the rate of delivery of the particle dose. The mutation frequency (MF), after DEP exposure, was determined using the transgenic Muta Mouse and a similar exposure regimen. No increase was observed in MF in lung tissue 28-days after exposure. In conclusion, short-term exposure to DEP resulted in DNA strand breaks in BAL cells, oxidative DNA damage and DNA adducts in lungs; and suggested that DNA damage in part is a consequence of inflammatory processes. The response was not associated with increased MF, indicating that the host defence mechanisms were sufficient to counteract the adverse effects of inflammation. Thus, there may be thresholds for the inflammation-associated genotoxic effects of DEP inhalation.  相似文献   

3.
DNA damage in rats after a single oral exposure to diesel exhaust particles   总被引:3,自引:0,他引:3  
The gastrointestinal route of exposure to particulate matter is important because particles are ingested via contaminated foods and inhaled particles are swallowed when removed from the airways by the mucociliary clearance system. We investigated the effect of an intragastric administration by oral gavage of diesel exhaust particles (DEP) in terms of DNA damage, oxidative stress and DNA repair in colon epithelial cells, liver, and lung of rats. Eight rats per group were exposed to Standard Reference Material 2975 at 0.064 or 0.64 mg/kg bodyweight for 6 and 24 h. Increased levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine lesions were observed at the highest dose after 6 and 24 h in all three organs. 8-Oxo-7,8-dihydro-2'-deoxyguanosine is repaired by oxoguanine DNA glycosylase 1 (OGG1); upregulation of this repair system was observed as elevated pulmonary OGG1 mRNA levels after 24 h at both doses of DEP, but not in the colon and liver. A general response of the antioxidant defence system is further indicated by elevated levels of heme oxygenase 1 mRNA in the liver and lung 24 h after administration. The level of bulky DNA adducts was increased in liver and lung at both doses after 6 and 24h (DNA adducts in colon epithelium were not investigated). In summary, DEP administered via the gastrointestinal tract at low doses relative to ambient exposure generates DNA damage and increase the expression of defence mechanisms in organs such as the lung and liver. The oral exposure route should be taken into account in risk assessment of particulate matter.  相似文献   

4.
Inhaled diesel exhaust particles (DEP) exert proinflammatory effects in the respiratory tract. This effect is related to the particle content of redox cycling chemicals and is involved in the adjuvant effects of DEP in atopic sensitization. We demonstrate that organic chemicals extracted from DEP induce oxidative stress in normal and transformed bronchial epithelial cells, leading to the expression of heme oxygenase 1, activation of the c-Jun N-terminal kinase cascade, IL-8 production, as well as induction of cytotoxicity. Among these effects, heme oxygenase 1 expression is the most sensitive marker for oxidative stress, while c-Jun N-terminal kinase activation and induction of apoptosis-necrosis require incremental amounts of the organic chemicals and increased levels of oxidative stress. While a macrophage cell line (THP-1) responded in similar fashion, epithelial cells produced more superoxide radicals and were more susceptible to cytotoxic effects than macrophages. Cytotoxicity is the result of mitochondrial damage, which manifests as ultramicroscopic changes in organelle morphology, a decrease in the mitochondrial membrane potential, superoxide production, and ATP depletion. Epithelial cells also differ from macrophages in not being protected by a thiol antioxidant, N-acetylcysteine, which effectively protects macrophages against cytotoxic DEP chemicals. These findings show that epithelial cells exhibit a hierarchical oxidative stress response that differs from that of macrophages by more rapid transition from cytoprotective to cytotoxic responses. Moreover, epithelial cells are not able to convert N-acetylcysteine to cytoprotective glutathione.  相似文献   

5.
Exposure of rats to diesel exhaust particles (DEP) or carbon black (CB) has been shown to induce time-dependent changes in CYP1A1and CYP2B1 in the lung. The present study evaluated the role of these metabolic enzymes on the pulmonary bioactivation of mutagens. Male Sprague-Dawley rats were intratracheally instilled with saline (control), DEP or CB (35 mg/kg body weight) and sacrificed at 1, 3, or 7 days post-exposure. Both control and exposed lung S9 increased the mutagenic activity of 2-aminoanthracene (2-AA), 2-aminofluorene (2-AF), 1-nitropyrene (1-NP), and the organic extract of DEP (DEPE) in Ames tests with Salmonella typhimurium YG1024 in a dose-dependent manner. Lung microsomes prepared form control or particle-exposed S9, but not cytosolic protein, activated 2-AA mutagenicity. Compared to saline controls, CB-exposed S9 was a less potent inducer of 2-AA mutagenicity at all time points, whereas DEP-exposed S9 was less potent than control saline at 3 and 7 days but not 1 day post-exposure. At 3 days post-exposure, DEP- or CB-exposed lung S9 did not significantly affect the mutagenicity of DEPE or 1-NP, when compared to the controls. The mutgenicity of 2-AA, 2-AF, 1-NP, and DEPE were significantly decreased in the presence of inhibitors for CYP1A1 (alpha-naphthoflavone) or CYP2B (metyrapone), but markedly enhanced by CYP1A1 or CYP2B1 supersomes with all the cofactors, suggesting that both CYP1A1 and CYP2B1 were responsible for mutagen activation. These results demonstrated that exposure of rats to DEP or CB altered metabolic activity of lung S9 and S9 metabolic activity dependent mutagen activation. The bioactivation of mutagens are metabolic enzyme- and substrate-specific, and both CYP1A1 and CYP2B1 play important roles in pulmonary mutagen activation.  相似文献   

6.
Kumari M  Sachar S  Saxena RK 《PloS one》2012,7(2):e31890
Interactions between poly-dispersed acid functionalized single walled carbon nanotubes (AF-SWCNTs) and primary lung epithelial (PLE) cells were studied. Peritoneal macrophages (PMs, known phagocytic cells) were used as positive controls in this study. Recovery of live cells from cultures of PLE cells and PMs was significantly reduced in the presence of AF-SWCNTs, in a time and dose dependent manner. Both PLE cells as well as PMs could take up fluorescence tagged AF-SWCNTs in a time dependent manner and this uptake was significantly blocked by cytochalasin D, an agent that blocks the activity of acto-myosin fibers and therefore the phagocytic activity of cells. Confocal microscopic studies confirmed that AF-SWCNTs were internalized by both PLE cells and PMs. Intra-trachially instilled AF-SWCNTs could also be taken up by lung epithelial cells as well as alveolar macrophages. Freshly isolated PLE cells had significant cell division activity and cell cycling studies indicated that treatment with AF-SWCNTs resulted in a marked reduction in S-phase of the cell cycle. In a previously standardized system to study BCG antigen presentation by PLE cells and PMs to sensitized T helper cells, AF-SWCNTs could significantly lower the antigen presentation ability of both cell types. These results show that mouse primary lung epithelial cells can efficiently internalize AF-SWCNTs and the uptake of nanotubes interfered with biological functions of PLE cells including their ability to present BCG antigens to sensitized T helper cells.  相似文献   

7.
In ambient aerosols, ultrafine particles (UFP) and their agglomerates are considered to be major factors contributing to adverse health effects. Reactivity of agglomerated UFP of elemental carbon (EC), Printex 90, Printex G, and diesel exhaust particles (DEP) was evaluated by the capacity of particles to oxidize methionine in a cell-free in vitro system for determination of their innate oxidative potential and by alveolar macrophages (AMs) to determine production of arachidonic acid (AA), including formation of prostaglandin E2 (PGE2), leukotriene B4 (LTB4), reactive oxygen species (ROS), and oxidative stress marker 8-isoprostane. EC exhibiting high oxidative potential induced generation of AA, PGE2, LTB4, and 8-isoprostane in canine and human AMs. Printex 90, Printex G, and DEP, showing low oxidative capacity, still induced formation of AA and PGE2, but not that of LTB4 or 8-isoprostane. Aging of EC lowered oxidative potential while still inducing production of AA and PGE2 but not that of LTB4 and 8-isoprostane. Cellular ROS production was stimulated by all particles independent of oxidative potential. Particle-induced formation of AA metabolites and ROS was dependent on mitogen-activated protein kinase kinase 1 activation of cytosolic phospholipase A2 (cPLA2) as shown by inhibitor studies. In conclusion, cPLA2, PGE2, and ROS formation was activated by all particle types, whereas LTB4 production and 8-isoprostane were strongly dependent on particles' oxidative potential. Physical and chemical parameters of particle surface correlated with oxidative potential and stimulation of AM PGE2 and 8-isoprostane production.  相似文献   

8.
Peritoneal macrophages from mice, isolated rat liver Kupffer cells and rat testis Leydig cells ingested large numbers of Percoll particles, a gradient medium widely used for separation of cells and subcellular organelles by density-gradient centrifugation. A decrease in the percentage of macrophages adhering to plastic also occurred after exposure of the cells to Percoll, even at 4 degrees C, a temperature at which Percoll was not ingested. The effect of Percoll on macrophage adherence may involve a loose association between the density medium and the cell surface. Other cell-surface-related phenomena may also be affected by prior exposure of cells to Percoll.  相似文献   

9.
There is increasing evidence that particulate air pollutants, such as diesel exhaust particles (DEP), potentiate chronic inflammatory processes as well as acute symptomatic responses in the respiratory tract. The mechanisms of action as well as the cellular targets for DEP remain to be elucidated. We show in this paper that the phagocytosis of DEP by primary alveolar macrophages or macrophage cell lines, RAW 264.7 and THP-1, leads to the induction of apoptosis through generation of reactive oxygen radicals (ROR). This oxidative stress initiates two caspase cascades and a series of cellular events, including loss of surface membrane asymmetry and DNA damage. The apoptotic effect on macrophages is cell specific, because DEP did not induce similar effects in nonphagocytic cells. DEP that had their organic constituents extracted were no longer able to induce apoptosis or generate ROR. The organic extracts were, however, able to induce apoptosis. DEP chemicals also induced the activation of stress-activated protein kinases, which play a role in cellular apoptotic pathways. The injurious effects of native particles or DEP extracts on macrophages could be reversed by the antioxidant, N-acetyl-cysteine. Taken together, these data suggest that organic compounds contained in DEP may exert acute toxic effects via the generation of ROR in macrophages.  相似文献   

10.
The particulate phase of diesel engine exhaust is likely carcinogenic. However, the mechanisms of diesel exhaust particles (DEPs) induced mutagenicity/carcinogenicity are still largely unknown. We determined the mutant frequency following eight repeated 72 h incubations with 37.5 or 75 μg/ml DEP (NIST SRM 1650) in the FE1-Muta™Mouse lung epithelial cell line. We measured DEP-induced acellular and intracellular production of reactive oxygen species (ROS) and compared with ROS production induced by carbon black, which we have previously shown is mutagenic in this cell line [N.R. Jacobsen, A.T. Saber, P. White, P. Moller, G. Pojana, U. Vogel, S. Loft, J. Gingerich, L. Soper, G.R. Douglas, H. Wallin. Increased mutant frequency by carbon black, but not quartz, in the lacZ and cII transgenes of muta(TM)mouse lung epithelial cells, Environ. Mol. Mutagen. 48(6) (2007) 451–461]. The mutant frequency was marginally elevated in cells treated with 37.5 μg/ml DEP (1.29-fold [95% CI: 0.96–1.60], p = 0.08) and significantly increased in cells treated with 75 μg/ml DEP (1.55-fold [95% CI: 1.23–1.87], p < 0.001). ROS production from DEP was low both within cells and in acellular systems when compared to carbon black. These results show that DEP are mutagenic in a mammalian cell line in vitro and that additional pathways besides ROS production, such as those involving the presence of polycyclic aromatic hydrocarbons, likely are involved in the mutagenesis.  相似文献   

11.
Since the ability of alveolar epithelial cells to ingest inhaled fine particles has not been characterized in detail, the present study seeks to evaluate this physiological activity. We used a 0.2% suspension of intact or lecithin-coated polystyrene latex beads (240 nm in diameter). A 5-ml suspension of intact or lecithin-coated latex beads was intratracheally administered to rats using a compressor nebulizer. Thereafter, the lungs were perfused intratracheally with glutaraldehyde solution and cut into small pieces. The samples were postfixed with osmium tetroxide, embedded in epoxy resin and examined under an electron microscope. Both lecithin-coated and uncoated beads were incorporated into alveolar macrophages. Some of the ingested beads in the alveolar macrophages were sequestered within lysosomes. Types I and II alveolar epithelial cells selectively incorporated only lecithin-coated beads, which were also observed within the cytoplasm of monocytes in the capillary lumen. These findings suggest that alveolar epithelial cells can incorporate exogenous particles, which are then transferred from the alveoli to intravascular spaces by transcytosis.  相似文献   

12.
Several purine compounds, such as adenine, guanine, adenosine, guanosine, and their related compounds, exhibited enucleation activity on adherent mouse peritoneal exudate cells (macrophages) during centrifugation at 25,000 and 35,000 g for 60 min at 34 degrees-36 degrees C in medium containing one of these compounds. Enucleation activity, however, did not occur in cells treated with adenine nucleotides, inosine, xanthine, or any of the tested pyrimidines. The purine compounds also had enucleation activity on mouse macrophage-like cell lines (P388D1 and RAW 264) and mouse polymorphonuclear leukocytes, but not on other typical cell lines such as a human epithelial cell line (HeLa S-3) or a mouse fibroblast cell line (L929). Cytochalasin B (CB) treatment, however, resulted in the enucleation of all cell types tested, even at a centrifugal force as low as 5,000 g. The process of macrophage enucleation was observed by both light microscopy and scanning electron microscopy. In enucleated macrophages that had been treated with purine compounds, but not with CB, a newly formed cytoplasmic crater-like structure (about 3-9 microns in diameter) was observed at the original site of the nucleus. Surface structures, such as microvilli and membrane ruffles, remained relatively intact in macrophages that had been enucleated by treatment with purine compounds. By contrast, these surface structures were markedly changed in CB-treated macrophages. Purine compounds may affect cytoskeletal elements in ways similar to the well characterized effects of CB, and thus result in the enucleation of phagocytes. However, the characteristic differences in the enucleation activity exhibited by purine compounds and CB may indicate that purines have a mechanism of action different from that of CB.  相似文献   

13.
Recent studies done with fetal and adult sheep and with monolayers of cultured rat alveolar type II cells suggest that active transport of Na+ across the lung epithelium may contribute to liquid absorption from air spaces, an essential component of the normal switch from placental to pulmonary gas exchange at birth. The goals of this work were 1) to study the ontogeny of cation transport in lung epithelial cells derived from fetal, newborn, and adult rabbits and 2) to determine the influence of premature birth, air breathing, labor, and postnatal lung maturation on K+ uptake in these cells. We harvested granular pneumonocytes by tracheal instillation of proteolytic enzymes followed by centrifugation of the dispersed cells over a discontinuous density gradient of metrizamide. This procedure yielded 65-90% granular pneumonocytes, of which more than 80% excluded vital dye. Using freshly isolated cells, we measured uptake of 86Rb+, which mimics transmembrane movement of K+, in the presence or absence of 10(-4) M ouabain and in the presence or absence of 5 X 10(-4) M furosemide or bumetanide. In adult rabbit studies, 86Rb+ uptake was twice as fast in lung epithelial cells (98 +/- 7 nmol X 10(6) cells-1 X h-1) as it was in alveolar macrophages (51 +/- 6 nmol X 10(6) cells-1 X h-1). Ouabain inhibited 55-60% of the uptake by pneumonocytes, and "loop" diuretics inhibited an additional 15-20%. The rate of 86Rb+ uptake in fetal cells was less than 10% (6 +/- 1 nmol X 10(6) cells-1 X h-1) of the rate in adult cells; ouabain inhibited 80-85% of 86Rb+ uptake in fetal cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Lipopolysaccharide (LPS)-binding protein regulates the effects of LPS on immunocompetent cells. By catalyzing the binding of LPS to membrane CD14, LPS-binding protein (LBP) potentiates both the inflammatory response and internalization of LPS. LBP-mediated transport of LPS into high density lipoprotein particles participates in LPS clearance. Elevated serum levels of LBP have been shown to elicit protective effects in vivo. Because the expression of LBP is upregulated in lung epithelial cells upon proinflammatory stimulation, we here investigated whether LBP modulates inflammatory responses by lung specific cells. The moderate elevation of LBP concentrations enhanced both LPS-induced signaling and LPS uptake by rat alveolar macrophages, whereas strongly elevated LBP levels inhibited both. In contrast, the lung epithelial cell line A549 responded to high concentrations of LBP by an enhanced LPS uptake which did not result in cellular activation, suggesting an anti-inflammatory function of these cells by clearing LPS.  相似文献   

15.
We have studied the effects of colchicine, an inhibitor of microtubular function, and cytochalasin B (CB), an inhibitor of microfilaments, on the uptake and degradation of asialo-glycoproteins in isolated rat hepatocytes. CB inhibited degradation only, while colchicine inhibited uptake as well as degradation. When the two were combined, no additive effect on degradation was found. The inhibition of uptake by colchicine could be accounted for by a reduction in the binding capacity of the plasma membrane for asialo-glycoprotein. The intracellular distribution of endocytosed asialo-glycoprotein was examined by isopycnic centrifugation in sucrose gradients. The results suggest that in cells treated with colchicine or CB, access of the endocytosed protein to the lysosomes is impeded.  相似文献   

16.
We are interested in the cytotoxic and proinflammatory effects of particulate pollutants in the respiratory tract. We demonstrate that methanol extracts made from diesel exhaust particles (DEP) induce apoptosis and reactive oxygen species (ROS) in pulmonary alveolar macrophages and RAW 264.7 cells. The toxicity of these organic extracts mimics the cytotoxicity of the intact particles and could be suppressed by the synthetic sulfhydryl compounds, N-acetylcysteine and bucillamine. Because DEP-induced apoptosis follows cytochrome c release, we studied the effect of DEP chemicals on mitochondrially regulated death mechanisms. Crude DEP extracts induced ROS production and perturbed mitochondrial function before and at the onset of apoptosis. This mitochondrial perturbation follows an orderly sequence of events, which commence with a change in mitochondrial membrane potential, followed by cytochrome c release, development of membrane asymmetry (annexin V staining), and propidium iodide uptake. Structural damage to the mitochondrial inner membrane, evidenced by a decrease in cardiolipin mass, leads to O-*2 generation and uncoupling of oxidative phosphorylation (decreased intracellular ATP levels). N-acetylcysteine reversed these mitochondrial effects and ROS production. Overexpression of the mitochondrial apoptosis regulator, Bcl-2, delayed but did not suppress apoptosis. Taken together, these results suggest that DEP chemicals induce apoptosis in macrophages via a toxic effect on mitochondria.  相似文献   

17.
Pathways mediating pulmonary metal uptake remain unknown. Because absorption of iron and manganese could involve similar mechanisms, transferrin (Tf) and transferrin receptor (TfR) expression in rat lungs was examined. Tf mRNA was detected in bronchial epithelium, type II alveolar cells, macrophages, and bronchus-associated lymphoid tissue (BALT). Tf protein levels in lung and bronchoalveolar lavage fluid did not change in iron deficiency despite increased plasma levels, suggesting that lung Tf concentrations are regulated by local synthesis in a manner independent of body iron status. Iron oxide exposure upregulated Tf mRNA in bronchial and alveolar epithelium, macrophages, and BALT, but protein was not significantly increased. In contrast, TfR mRNA and protein were both upregulated by iron deficiency. To examine potential interactions with lung Tf, rats were intratracheally instilled with (54)Mn or (59)Fe. Unlike (59)Fe, interactions between (54)Mn and Tf in lung fluid were not detected. Absorption of intratracheally instilled (54)Mn from the lungs to the blood was unimpaired in Belgrade rats homozygous for the functionally defective G185R allele of divalent metal transporter-1, indicating that this transporter is also not involved in pulmonary manganese absorption. Pharmacological studies of (54)Mn uptake by A549 cells suggest that metal uptake by type II alveolar epithelial cells is associated with activities of both L-type Ca(2+) channels and TRPM7, a member of the transient receptor potential melastatin subfamily. These results demonstrate that iron and manganese are absorbed by the pulmonary epithelium through different pathways and reveal the potential role for nonselective calcium channels in lung metal clearance.  相似文献   

18.
This paper reviews sensitive and simple quantitative evaluation of macrophage phagocytosing capacity by applying fluoresecin-labeled Sacharomyces cerevisiae cells. Yeast cells were conjugated with fluoresceinisothiocyanate (FITC) and used as fluorescent particles. A time course analysis within this method showed that phagocytosis of yeast cells was temperature dependent and that the number of that ones ingested by macrophages increased rapidly during the initial 60 min of incubation at 37 degrees C. Free fluorescent cells can be effectively removed by aspiration from the well. Furthermore, yeast cells required preopsonization with serum to achieve optimal uptake of the cells. The uptake of nonopsonized yeast cells by macrophages was significantly lower than that of opsonized cells (P < 0.05). We propose that about 50% of mouse macrophages can carry functionally active FcR responsible for phagocytosis.  相似文献   

19.
20.
We have compared the oxidative response of alveolar macrophages (AM) during opsonin-dependent and independent phagocytosis by using multiparameter flow cytometry. The respiratory burst of AM during phagocytosis was quantitated by the intracellular oxidation of the nonfluorescent precursors dichlorofluorescin diacetate (DCFH) or hydroethidine (HE, a reduced precursor of ethidium) to their fluorescent (oxidized) counterparts. After loading freshly isolated normal hamster AM with DCFH or HE, red or green fluorescent beads, respectively, were added to the shaking cell suspensions. Ingestion of opsonized particles by AM caused a marked increase in oxidation of both DCFH and HE proportional to the number of beads ingested. In contrast, uptake of one to three unopsonized particles per cell led to inhibition of oxidative activity compared to control cells incubated without particles. AM ingesting four or more unopsonized particles showed some increase in oxidative metabolism, but far less than that with identical numbers of particles in opsonin-dependent ingestion. Similar results were obtained using fluorescent labeled staphylococcal bacteria. Using three-color flow cytometry to study cells ingesting both types of particles, cells first ingesting unopsonized beads were also found to have an inhibited oxidative response to subsequently ingested opsonized particles. The mitochondrial poison antimycin inhibited most of the intracellular oxidative response to either type of phagocytosis. The remaining antimycin-insensitive, membrane derived respiratory burst of AM was also substantially diminished after phagocytosis of unopsonized particles vs similar numbers of opsonized particles. The greatly increased mitochondrial respiration in AM during phagocytosis of opsonized particles may be related to bactericidal mechanisms. Killing of ingested Staphylococcus by AM was markedly impaired in the presence of antimycin. The results suggest that AM may ingest the numerous, unopsonized inert particles that are inhaled without generation of potentially toxic oxygen metabolites, while retaining the capacity to undergo a respiratory burst after ingesting opsonized particles and bacteria. The mechanism(s) for this distinct response may include generation of an inhibitor of intracellular oxidative metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号