首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
Minute virus of mice (MVM) replicates via a linearized form of rolling-circle replication in which the viral nickase, NS1, initiates DNA synthesis by introducing a site-specific nick into either of two distinct origin sequences. In vitro nicking and replication assays with substrates that had deletions or mutations were used to explore the sequences and structural elements essential for activity of one of these origins, located in the right-end (5') viral telomere. This structure contains 248 nucleotides, most-favorably arranged as a simple hairpin with six unpaired bases. However, a pair of opposing NS1 binding sites, located near its outboard end, create a 33-bp palindrome that could potentially assume an alternate cruciform configuration and hence directly bind HMG1, the essential cofactor for this origin. The palindromic nature of this sequence, and thus its ability to fold into a cruciform, was dispensable for origin function, as was the NS1 binding site occupying the inboard arm of the palindrome. In contrast, the NS1 site in the outboard arm was essential for initiation, even though positioned 120 bp from the nick site. The specific sequence of the nick site and an additional NS1 binding site which directly orients NS1 over the initiation site were also essential and delimited the inboard border of the minimal right-end origin. DNase I and hydroxyl radical footprints defined sequences protected by NS1 and suggest that HMG1 allows the NS1 molecules positioned at each end of the origin to interact, creating a distortion characteristic of a double helical loop.  相似文献   

3.
Parvoviral terminal hairpins are essential for viral DNA amplification but are also implicated in multiple additional steps in the viral life cycle. The palindromes at the two ends of the minute virus of mice (MVM) genome are dissimilar and are processed by different resolution mechanisms that selectively direct encapsidation of predominantly negative-sense progeny genomes and conserve a single Flip sequence orientation at the 3′ (left) end of such progeny. The sequence and predicted structure of these 3′ hairpins are highly conserved within the genus Parvovirus, exemplified by the 121-nucleotide left-end sequence of MVM, which folds into a Y-shaped hairpin containing small internal palindromes that form the “ears” of the Y. To explore the potential role(s) of this hairpin in the viral life cycle, we constructed infectious clones with the ear sequences either inverted, to give the antiparallel Flop orientation, or with multiple transversions, conserving their base composition but changing their sequence. These were compared with a “bubble” mutant, designed to activate the normally silent origin in the inboard arm of the hairpin, thus potentially rendering symmetric the otherwise asymmetric junction resolution mechanism that drives maintenance of Flip. This mutant exhibited a major defect in viral duplex and single-strand DNA replication, characterized by the accumulation of covalently closed turnaround forms of the left end, and was rapidly supplanted by revertants that restored asymmetry. In contrast, both sequence and orientation changes in the hairpin ears were tolerated, suggesting that maintaining the Flip orientation of these structures is a consequence of, but not the reason for, asymmetric left-end processing.  相似文献   

4.
A novel human site-specific DNA-binding factor has been partially purified from extracts of HeLa S3 cells. This factor, designated PIF, for parvovirus initiation factor, binds to the minimal origin of DNA replication at the 3' end of the minute virus of mice (MVM) genome and functions as an essential cofactor in the replication initiation process. Here we show that PIF is required for the viral replicator protein NS1 to nick and become covalently attached to a specific site in the origin sequence in a reaction which requires ATP hydrolysis. DNase I and copper ortho-phenanthroline degradation of the PIF-DNA complexes showed that PIF protects a stretch of some 20 nucleotides, covering the entire region in the minimal left-end origin not already known to be occupied by NS1. Methylation and carboxy-ethylation interference analysis identified two ACGT motifs, spaced by five nucleotides, as the sequences responsible for this binding. A series of mutant oligonucleotides was then used as competitive inhibitors in gel mobility shift assays to confirm that PIF recognizes both of these ACGT sequences and to demonstrate that the two motifs comprise a single binding site rather than two separate sites. Competitive inhibition of the origin nicking assay, using the same group of oligonucleotides, confirmed that the same cellular factor is responsible for both mobility shift and nicking activities. UV cross-linking and relative mobility assays suggest that PIF binds DNA as a heterodimer or higher-order multimer with subunits in the 80- to 100-kDa range.  相似文献   

5.
6.
The minute virus of mice initiator protein, NS1, excises new copies of the left viral telomere in a single sequence orientation, dubbed flip, during resolution of the junction between monomer genomes in palindromic dimer intermediate duplexes. We examined this reaction in vitro using both (32)P-end-labeled linear substrates and similar unlabeled templates labeled by incorporation of [alpha-(32)P]TTP during the synthesis. The observed products suggest a resolution model that explains conservation of the hairpin sequence and in which a novel heterocruciform intermediate plays a crucial role. In vitro, NS1 initiates two replication pathways from OriL(TC), the single active origin embedded in one arm of the dimer junction. NS1-mediated nicking liberates a base-paired 3' nucleotide to prime DNA synthesis and, in a reaction we call "read-through synthesis," forks established while the substrate is a linear duplex synthesize DNA in the flop orientation, leading to DNA amplification but not to junction resolution. Nicking leaves NS1 covalently attached to the 5' end of the DNA, where it can serve as a 3'-to-5' helicase, unwinding the NS1-associated strand. In the second pathway, resolution substrates are created when such unwinding induces the palindrome to reconfigure into a cruciform prior to fork assembly. New forks can then synthesize DNA in the flip orientation, copying one cruciform arm and creating a heterocruciform intermediate. Resolution proceeds via hairpin transfer in the extended arm of the heterocruciform, which releases one covalently closed duplex telomere and a partially single-stranded junction intermediate. We suggest that the latter intermediate is finally resolved via an NS1-induced single-strand nick at the otherwise inactive origin, OriL(GAA).  相似文献   

7.
Rolling-circle replication is initiated by a replicon-encoded endonuclease which introduces a single-strand nick into specific origin sequences, becoming covalently attached to the 5′ end of the DNA at the nick and providing a 3′ hydroxyl to prime unidirectional, leading-strand synthesis. Parvoviruses, such as minute virus of mice (MVM), have adapted this mechanism to amplify their linear single-stranded genomes by using hairpin telomeres which sequentially unfold and refold to shuttle the replication fork back and forth along the genome, creating a continuous, multimeric DNA strand. The viral initiator protein, NS1, then excises individual genomes from this continuum by nicking and reinitiating synthesis at specific origins present within the hairpin sequences. Using in vitro assays to study ATP-dependent initiation within the right-hand (5′) MVM hairpin, we have characterized a HeLa cell factor which is absolutely required to allow NS1 to nick this origin. Unlike parvovirus initiation factor (PIF), the cellular complex which activates NS1 endonuclease activity at the left-hand (3′) viral origin, the host factor which activates the right-hand hairpin elutes from phosphocellulose in high salt, has a molecular mass of around 25 kDa, and appears to bind preferentially to structured DNA, suggesting that it might be a member of the high-mobility group 1/2 (HMG1/2) protein family. This prediction was confirmed by showing that purified calf thymus HMG1 and recombinant human HMG1 or murine HMG2 could each substitute for the HeLa factor, activating the NS1 endonuclease in an origin-specific nicking reaction.  相似文献   

8.
We show here that the DNA helicase activity of the parvoviral initiator protein NS1 is highly directional, binding to the single strand at a recessed 5' end and displacing the other strand while progressing in a 3'-to-5' direction on the bound strand. NS1 and a cellular site-specific DNA binding factor, PIF, also known as glucocorticoid modulating element binding protein, bind to the left-end minimal replication origin of minute virus of mice, forming a ternary complex. In this complex, NS1 is activated to nick one DNA strand, becoming covalently attached to the 5' end of the nick in the process and providing a 3' OH for priming DNA synthesis. In this situation, the helicase activity of NS1 did not displace the nicked strand, but the origin duplex was distorted by the NS1-PIF complex, as assayed by its sensitivity to KMnO(4) oxidation, and a stretch of about 14 nucleotides on both strands of the nicked origin underwent limited unwinding. Addition of Escherichia coli single-stranded DNA binding protein (SSB) did not lead to further unwinding. However, addition of recombinant human single-stranded DNA binding protein (RPA) to the initiation reaction catalyzed extensive unwinding of the nicked origin, suggesting that RPA may be required to form a functional replication fork. Accordingly, the unwinding mediated by NS1 and RPA promoted processive leading-strand synthesis catalyzed by recombinant human DNA polymerase delta, PCNA, and RFC, using the minimal left-end origin cloned in a plasmid as a template. The requirement for RPA, rather than SSB, in the unwinding reaction indicated that specific NS1-RPA protein interactions were formed. NS1 was tested by enzyme-linked immunosorbent assay for binding to two- or three-subunit RPA complexes expressed from recombinant baculoviruses. NS1 efficiently bound each of the baculovirus-expressed complexes, indicating that the small subunit of RPA is not involved in specific NS1 binding. No NS1 interactions were observed with E. coli SSB or other proteins included as controls.  相似文献   

9.
The left-hand or 3'-terminal hairpin of minute virus of mice (MVM) contains sequence elements essential for both viral DNA replication at the left-hand origin (oriL) and for the modulation of the P4 promoter, from which the viral nonstructural gene cassette is transcribed. This hairpin sequence has proven difficult to manipulate in the context of the viral genome. Here we describe a system for generating mutant viruses using synthetic hairpin oligonucleotides and a truncated form of the infectious clone. This allows manipulation of the sequence of the left-hand hairpin and examination of the effects in the context of the viral life cycle. We have confirmed the requirement for a functional parvovirus initiation factor (PIF) binding site and determined that an optimized PIF binding site, with 6 bases between the half-sites, was actually detrimental to viral growth. The distal PIF half-site overlaps a cyclic AMP-responsive element (CRE), which was shown to play an important role in initiating infection, particularly in 324K simian virus 40-transformed human fibroblasts. Interestingly, reducing the spacing of the PIF half-sites, and thus the affinity of the binding site for PIF, increased viral fitness relative to wild type in 324K cells, but not in murine A9 cells. These results indicate that the relative importance of factor binding to the CRE and PIF sites during the establishment of an infection differs markedly between these two host cells and suggest that the suboptimal spacing of PIF half-sites found in wild-type virus represents a necessary reduction in the affinity of the PIF interaction in favor of CRE function.  相似文献   

10.
The telomeres of poxviral chromosomes comprise covalently closed hairpin structures bearing mismatched bases. These hairpins are formed as concatemeric replication intermediates and are processed into mature, unit-length genomes. The structural transitions and enzymes involved in telomere resolution are poorly understood. Here we show that the type I topoisomerase of Shope fibroma virus (SFV) can promote a recombination reaction which converts cloned SFV replication intermediates into hairpin-ended molecules resembling mature poxviral telomeres. Recombinant SFV topoisomerase linearised a palindromic plasmid bearing 1.5 kb of DNA encoding the SFV concatemer junction, at a site near the centre of inverted-repeat symmetry. Most of these linear reaction products bore hairpin tips as judged by denaturing gel electrophoresis. The resolution reaction required palindromic SFV DNA sequences and was inhibited by compounds which block branch migration (MgCl2) or poxviral topoisomerases. The resolution reaction was also slow, needed substantial quantities of topoisomerase, and required that the palindrome be extruded in a cruciform configuration. DNA cleavage experiments identified a pair of suitably oriented topoisomerase recognition sites, 90 bases from the centre of the cloned SFV terminal inverted repeat, which may mark the resolution site. These data suggest a resolution scheme in which branch migration of a Holliday junction through a site occupied by covalently bound topoisomerase molecules, could lead to telomere resolution.  相似文献   

11.
The four-way (Holliday) DNA junction is the central intermediate in homologous recombination. It is ultimately resolved into two nicked-duplex species by the action of a junction-resolving enzyme. These enzymes are highly selective for the structure of branched DNA, yet as a class these proteins impose significant distortion on their target junctions. Bacteriophage T7 endonuclease I selectively binds and cleaves DNA four-way junctions. The protein is an extremely stable dimer, comprising two globular domains joined by a β-strand bridge with each active site including amino acids from both polypeptides. The crystal structure of endonuclease I has been solved both as free protein and in complex with a DNA junction, showing that the protein, as well as the junction, becomes distorted on binding. We have therefore used site-specific spin-labeling in conjunction with EPR distance measurements to analyze induced fit in the binding of endonuclease I to a DNA four-way junction. The results support the change in protein structure as it binds to the junction. In addition, we have examined the structure of wild type and catalytically inactive mutants alone and in complex with DNA. We demonstrate the presence of hitherto undefined metastable conformational states within endonuclease I, showing how these states can be influenced by DNA-junction binding or mutations within the active sites. In addition, we demonstrate a previously unobserved instability in the N-terminal α1-helix upon active site mutation. These studies reveal that structural changes in both DNA and protein occur in the action of this junction-resolving enzyme.  相似文献   

12.
In replicative forms of vaccinia virus DNA, the unit genomes are connected by palindromic junction fragments that are resolved into mature viral genomes with hairpin termini. Bacterial plasmids containing the junction fragment for vaccinia virus or Shope fibroma virus were converted into linear minichromosomes of vector sequence flanked by poxvirus hairpin loops after transfection into infected cells. Analysis of a series of symmetrical deletion mutations demonstrated that in vaccinia virus the presence of the DNA sequence ATTTAGTGTCTAGAAAAAAA on both sides of the apical segment of the concatemer junction is crucial for resolution. To determine the precise architecture of the resolution site, a series of site-directed mutations within this tract of nucleotides were made and the relative contribution of each nucleotide to the efficaciousness of resolution was determined. The nucleotide sequence necessary for the resolution of the vaccinia virus concatemer junction, (A/T)TTT(A/G)N7-9AAAAAAA, is highly conserved among poxviruses and found proximal to the hairpin loop in the genomes of members of the Leporipoxvirus, Avipoxvirus, and Capripoxvirus genera.  相似文献   

13.
We have developed an in vitro system that supports the replication of natural DNA templates of the autonomous parvovirus minute virus of mice (MVM). MVM virion DNA, a single-stranded molecule bracketed by short, terminal, self-complementary sequences, is converted into double-stranded replicative-form (RF) DNA when incubated in mouse A9 fibroblast extract. The 3' end of the newly synthesized complementary strand is ligated to the right-end hairpin of the virion strand, resulting in the formation of a covalently closed RF (cRF) molecule as the major conversion product. cRF DNA is not further replicated in A9 cell extract alone. On addition of purified MVM nonstructural protein NS1 expressed from recombinant baculoviruses or vaccinia viruses, cRF DNA is processed into a right-end (5' end of the virion strand) extended form (5'eRF). This is indicative of NS1-dependent nicking of the right-end hairpin at a distinct position, followed by unfolding of the hairpin and copying of the terminal sequence. In contrast, no resolution of the left-end hairpin can be detected in the presence of NS1. In the course of the right-end nicking reaction, NS1 gets covalently attached to the right-end telomere of the DNA product, as shown by immunoprecipitation with NS1-specific antibodies. The 5'eRF product is the target for additional rounds of NS1-induced nicking and displacement synthesis at the right end, arguing against the requirement of the hairpin structure for recognition of the DNA substrate by NS1. Further processing of the 5'eRF template in vitro leads to the formation of dimeric RF (dRF) DNA in a left-to-left-end configuration, presumably as a result of copying of the whole molecule by displacement synthesis initiated at the right-end telomere. Formation of dRF DNA is highly stimulated by NS1. The experimental results presented in this report support various assumptions of current models of parvovirus DNA replication and provide new insights into the replication functions of the NS1 protein.  相似文献   

14.
The ResT telomere resolvase is responsible for maintaining the hairpin telomeres that cap the linear chromosome and minichromosomes of Borrelia burgdorferi. This enzyme acts at the tandem telomere junctions present within circular dimers resulting from DNA replication. ResT mediates the transesterification steps of resolution using a constellation of active site residues similar to that found in tyrosine recombinases and type IB topoisomerases. By combining this reaction mechanism with a hairpin binding module in its N-terminal domain, ResT reduces a fused telomere dimer into two hairpin monomers. ResT displays a split DNA binding specificity, with the N- and C-terminal domains targeting distinct regions of the telomere. This bi-specificity in binding is likely to be important in protein delivery, substrate selection and regulation of enzyme activity.  相似文献   

15.
Integration into a particular location in human chromosomes is a unique property of the adeno-associated virus (AAV). This reaction requires the viral Rep protein and AAV origin sequences. To understand how Rep recognizes DNA, we have determined the structures of the Rep endonuclease domain separately complexed with two DNA substrates: the Rep binding site within the viral inverted terminal repeat and one of the terminal hairpin arms. At the Rep binding site, five Rep monomers bind five tetranucleotide direct repeats; each repeat is recognized by two Rep monomers from opposing faces of the DNA. Stem-loop binding involves a protein interface on the opposite side of the molecule from the active site where ssDNA is cleaved. Rep therefore has three distinct binding sites within its endonuclease domain for its different DNA substrates. Use of these different interfaces generates the structural asymmetry necessary to regulate later events in viral replication and integration.  相似文献   

16.
17.
RAG-1 and RAG-2 initiate V(D)J recombination by binding to specific recognition sequences (RSS) and then cleave the DNA in two steps: nicking and hairpin formation. Recent work has established that a dimer of RAG-1 and either one or two monomers of RAG-2 bind to a single RSS, but the enzymatic contributions of the RAG molecules within this nucleoprotein complex and its functional organization have not been elucidated. Using heterodimeric protein preparations containing both wild-type and catalytically deficient RAG-1 molecules, we found that one active monomer is sufficient for both nicking and hairpin formation at a single RSS, demonstrating that a single active site can carry out both cleavage steps. Furthermore, the mutant heterodimers efficiently cleaved both RSS in a synaptic complex. These results strongly suggest that two RAG-1 dimers are responsible for RSS cleavage in a synaptic complex, with one monomer of each dimer catalyzing both nicking and hairpin formation at each RSS.  相似文献   

18.
The avian retrovirus pp32 protein possesses DNA endonuclease activity and unique DNA binding properties. An improved purification procedure was developed for pp32, resulting in a severalfold increase in the yield of this virion protein. By use of the nitrocellulose filter binding assay, the protein retains approximately 2-fold more supercoiled (form I) DNA molecules than equivalent linear duplex DNA molecules. Single-stranded DNA is only slightly preferred over double-stranded DNA for pp32 binding. The pp32 DNA binding sites on form I pBR322 DNA which contained an insert of avian retrovirus long terminal repeat (LTR) DNA were determined. A preformed protein-DNA complex was digested with one of several different multicut restriction enzymes and filtered through nitrocellulose filters. Fragments containing viral LTR DNA sequences and plasmid DNA containing promoter sequences for the ampicillin and tetracycline genes, sequences for the "left-end" inverted repeat of transposon 3, and sequences encompassing the carboxyl terminus of the beta-lactamase gene were preferentially retained on the filter by pp32. Partial mapping of pp32 DNA binding sites on LTR DNA was accomplished by generation of deletions in LTR DNA sequences. The pp32 protein preferentially bound viral DNA fragments which contain the viral promoter (TATTTAA) and the adjacent "R" repeat sequences. Computer analysis revealed that three of the four plasmid DNA fragments retained by pp32 contained LTR DNA promoter-like sequences (one mismatch only) which were part of statistically significant and thermodynamically stable hairpin structures.  相似文献   

19.
The termini of linear chromosomes are protected by specialized DNA structures known as telomeres that also facilitate the complete replication of DNA ends. The simplest type of telomere is a covalently closed DNA hairpin structure found in linear chromosomes of prokaryotes and viruses. Bidirectional replication of a chromosome with hairpin telomeres produces a catenated circular dimer that is subsequently resolved into unit-length chromosomes by a dedicated DNA cleavage-rejoining enzyme known as a hairpin telomere resolvase (protelomerase). Here we report a crystal structure of the protelomerase TelK from Klebsiella oxytoca phage varphiKO2, in complex with the palindromic target DNA. The structure shows the TelK dimer destabilizes base pairing interactions to promote the refolding of cleaved DNA ends into two hairpin ends. We propose that the hairpinning reaction is made effectively irreversible by a unique protein-induced distortion of the DNA substrate that prevents religation of the cleaved DNA substrate.  相似文献   

20.
The ends of eukaryotic chromosomes are protected by specialized telomere chromatin structures. Rap1 and Cdc13 are essential for the formation of functional telomere chromatin in budding yeast by binding to the double-stranded part and the single-stranded 3' overhang, respectively. We analyzed the binding properties of Saccharomyces castellii Rap1 and Cdc13 to partially single-stranded oligonucleotides, mimicking the junction of the double- and single-stranded DNA (ds-ss junction) at telomeres. We determined the optimal and the minimal DNA setup for a simultaneous binding of Rap1 and Cdc13 at the ds-ss junction. Remarkably, Rap1 is able to bind to a partially single-stranded binding site spanning the ds-ss junction. The binding over the ds-ss junction is anchored in a single double-stranded hemi-site and is stabilized by a sequence-independent interaction of Rap1 with the single-stranded 3' overhang. Thus, Rap1 is able to switch between a sequence-specific and a nonspecific binding mode of one hemi-site. At a ds-ss junction configuration where the two binding sites partially overlap, Rap1 and Cdc13 are competing for the binding. These results shed light on the end protection mechanisms and suggest that Rap1 and Cdc13 act together to ensure the protection of both the 3' and the 5' DNA ends at telomeres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号