首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Drosophila visual mutant rdgA is known to show age-dependent retinal degeneration with defective diacylglycerol (DG) kinase activity. In this study we examined DG kinase activity of several visual mutants and found that only rdgA mutant eyes showed the lack of DG kinase activity in a gene dosage-dependent manner. The enzyme activity is already absent at the time of eclosion from pupal case when the degeneration is not yet apparent. To examine whether rdgA gene dosage effect holds for other enzymes related to the phosphatidylinositol turnover, phospholipase C was analyzed which did not show any gene dosage effect. Therefore, it is strongly suggested that rdgA gene correlates closely with DG kinase activity, and the defect of DG kinase activity is a primary cause of retinal degeneration in rdgA mutant.  相似文献   

2.
Light responses in Drosophila are reportedly abolished in severe mutants of the phospholipase C (PLC) gene, norpA. However, on establishing the whole-cell recording configuration in photoreceptors of the supposedly null allele, norpAP24, we detected a small ( approximately 15 pA) inward current that represented spontaneous light channel activity. The current decayed during approximately 20 min, after which tiny residual responses (<2 pA) were elicited by intense flashes. Both spontaneous currents and light responses appeared to be mediated by residual PLC activity, because they were enhanced by impairing diacylglycerol (DAG) kinase function by mutation (rdgA) or by restricting ATP but were reduced or abolished by a mutation of the PLC-specific Gq alpha subunit. It was reported recently that metabolic inhibition activated the light-sensitive transient receptor potential and transient receptor potential-like channels, even in norpAP24, leading to the conclusion that this action was independent of PLC (Agam, K., von Campenhausen, M., Levy, S., Ben-Ami, H. C., Cook, B., Kirschfeld, K., and Minke, B. (2000) J. Neurosci. 20, 5748-5755). However, we found that channel activation by metabolic inhibitors in norpAP24 was strictly dependent on the residual PLC activity underlying the spontaneous current, because the inhibitors failed to activate any channels after the spontaneous current had decayed. By contrast, polyunsaturated fatty acids invariably activated the channels independently of PLC. The results strongly support the obligatory requirement for PLC and DAG in Drosophila phototransduction, suggest that activation by metabolic inhibition is primarily because of the failure of diacylglycerol kinase, and are consistent with the proposal that polyunsaturated fatty acids, which are potential DAG metabolites, act directly on the channels.  相似文献   

3.
Agam K  Frechter S  Minke B 《Cell calcium》2004,35(2):87-105
The Transient Receptor Potential (TRP) proteins constitute a large and diverse family of channel proteins, which is conserved through evolution. TRP channel proteins have critical functions in many tissues and cell types, but their gating mechanism is an enigma. In the present study patch-clamp whole-cell recordings was applied to measure the TRP- and TRP-like (TRPL)-dependent currents in isolated Drosophila ommatidia. Also, voltage responses to light and to metabolic stress were recorded from the eye in vivo. We report new insight into the gating of the Drosophila light-sensitive TRP and TRPL channels, by which both Ca2+ and protein dephosphorylation are required for channel activation. ATP depletion or inhibition of protein kinase C activated the TRP channels, while photo-release of caged ATP or application of phorbol ester antagonized channels openings in the dark. Furthermore, Mg(2+)-dependent stable phosphorylation event by ATPgammaS or protein phosphatase inhibition by calyculin A abolished activation of the TRP and TRPL channels. While a high reduction of cellular Ca2+ abolished channel activation, subsequent application of Ca2+ combined with ATP depletion induced a robust dark current that was reminiscent of light responses. The results suggest that the combined action of Ca2+ and protein dephosphorylation activate the TRP and TRPL channels, while protein phosphorylation by PKC antagonized channels openings.  相似文献   

4.
Multiple classes of cell surface receptors and ion channels participate in the detection of changes in environmental stimuli, and thereby influence animal behavior. Among the many classes of ion channels, Transient Receptor Potential (TRP) cation channels are notable in contributing to virtually every sensory modality, and in controlling a daunting array of behaviors. TRP channels appear to be conserved in all metazoan organisms including worms, insects and humans. Flies encode 13 TRPs, most of which are expressed and function in sensory neurons, and impact behaviors ranging from phototaxis to thermotaxis, gravitaxis, the avoidance of noxious tastants and smells and proprioception. Multiple diseases result from defects in TRPs, and flies provide an excellent animal model for dissecting the mechanisms underlying “TRPopathies.” Drosophila TRPs also function in the sensation of botanically derived insect repellents, and related TRPs in insect pests are potential targets for the development of improved repellents to combat insect-borne diseases.  相似文献   

5.
Regulation of Drosophila TRPL channels by immunophilin FKBP59   总被引:4,自引:0,他引:4  
Transient receptor potential and transient receptor potential-like (TRPL) are Ca(2+)-permeable cation channels found in Drosophila photoreceptor cells associated with large multimeric signaling complexes held together by the scaffolding protein, INAD. To identify novel proteins involved in channel regulation, Drosophila INAD was used as bait in a yeast two-hybrid screen of a Drosophila head cDNA library. Sequence analysis of one identified clone showed it to be identical to the Drosophila homolog of human FK506-binding protein, FKBP52 (previously known as FKBP59). To determine the function of dFKBP59, TRPL channels and dFKBP59 were co-expressed in Sf9 cells. Expression of dFKBP59 produced an inhibition of Ca(2+) influx via TRPL in fura-2 assays. Likewise, purified recombinant dFKBP59 produced a graded inhibition of TRPL single channel activity in excised inside-out patches when added to the cytoplasmic membrane surface. Immunoprecipitations from Sf9 cell lysates using recombinant tagged dFKBP59 and TRPL showed that these proteins directly interact with each other and with INAD. Addition of FK506 prior to immunoprecipitation resulted in a temperature-dependent dissociation of dFKBP59 and TRPL. Immunoprecipitations from Drosophila S2 cells and from fly head lysates demonstrated that dFKBP59, but not dFKBP12, interacts with TRPL in vivo. Likewise, INAD immunoprecipitates with dFKBP59 from S2 cell and head lysates. Immunocytochemical evaluation of thin sections of fly heads revealed specific FKBP immunoreactivity associated with the eye. Site-directed mutagenesis showed that mutations of P702Q or P709Q in the highly conserved TRPL sequence (701)LPPPFNVLP(709) eliminated interaction of the TRPL with dFKBP59. These results provide strong support for the hypothesis that immunophilin dFKBP59 is part of the TRPL-INAD signaling complex and plays an important role in modulation of channel activity via interaction with conserved leucyl-prolyl dipeptides located near the cytoplasmic mouth of the channel.  相似文献   

6.
Drosophila photoreceptors express two putative cation channels encoded by the transient receptor potential (trp) and trp-like (trpl) genes, which represent prototypical members of a novel family of phosphoinositide-regulated calcium influx channels. Mutations of both trp and trpl selectively abolish components of the light-sensitive current and, when heterologously expressed, both generate cation permeable conductances; however, a detailed comparison of recombinant and native channel properties is lacking. To more rigorously test the hypothesis that TRPL channels mediate one component of the light-sensitive current we have generated cell lines (Drosophila S2 cells) stably transfected with trpl cDNA and compared the recombinant channel properties with those of the light-sensitive conductance in situ in a Drosophila trp mutant under identical conditions. We found close correspondence in respect of a number of quantifiable biophysical parameters including: current voltage relationships, ionic selectivity, voltage independent block by external Mgt+ ions and effective single channel conductance and gating kinetics derived by noise analysis. Our estimate of 60–70 pS for channel conductance was confirmed directly in patch clamp recordings of single TRPL channels in S2 cells. These findings indicate that channels encoded by the trpl gene can completely account for the component of the light-sensitive conductance remaining in the trp mutant.  相似文献   

7.
Whole-cell voltage clamp recordings were made from photoreceptors of dissociated Drosophila ommatidia under conditions when the light- sensitive channels activate spontaneously, generating a "rundown current" (RDC). The Ca2+ and voltage dependence of the RDC was investigated by applying voltage steps (+80 to -100 mV) at a variety of extracellular Ca2+ concentrations (0-10 mM). In Ca(2+)-free Ringer large currents are maintained tonically throughout 50-ms-long voltage steps. In the presence of external Ca2+, hyperpolarizing steps elicit transient currents which inactivate increasingly rapidly as Ca2+ is raised. On depolarization inactivation is removed with a time constant of approximately 10 ms at +80 mV. The Ca(2+)-dependent inactivation is suppressed by 10 mM internal BAPTA, suggesting it requires Ca2+ influx. The inactivation is absent in the trp mutant, which lacks one class of Ca(2+)-selective, light-sensitive channel, but appears unaffected by the inaC mutant which lacks an eye-specific protein kinase C. Hyperpolarizing voltage steps applied during light responses in wild- type (WT) flies before rundown induce a rapid transient facilitation followed by slower inhibition. Both processes accelerate as Ca2+ is raised, but the time constant of inhibition (12 ms with 1.5 mM external Ca2+ at -60 mV) is approximately 10 times slower than that of the RDC inactivation. The Ca(2+)-mediated inhibition of the light response recovers in approximately 50-100 ms on depolarization, recovery being accelerated with higher external Ca2+. The Ca2+ and voltage dependence of the light-induced current is virtually eliminated in the trp mutant. In inaC, hyperpolarizing voltage steps induced transient currents which appeared similar to those in WT during early phases of the light response. However, 200 ms after the onset of light, the currents induced by voltage steps inactivated more rapidly with time constants similar to those of the RDC. It is suggested that the Ca(2+)-dependent inactivation of the light-sensitive channels first occurs at some concentration of Ca2+ not normally reached during the moderate illumination regimes used, but that the defect in inaC allows this level to be reached.  相似文献   

8.
In Drosophila photoreceptors light induces phosphoinositide hydrolysis and activation of Ca(2+)-permeable plasma membrane channels, one class of which is believed to be encoded by the trp gene. We have investigated the properties of the light-sensitive channels under conditions where they are activated independently of the transduction cascade. Whole-cell voltage clamp recordings were made from photoreceptors in a preparation of dissociated Drosophila ommatidia. Within a few minutes of establishing the whole-cell configuration, there is a massive spontaneous activation of cation-permeable channels. When clamped near resting potential, this "rundown current" (RDC) accelerates over several seconds, peaks, and then relaxes to a steady- state which lasts indefinitely (many minutes). The RDC is invariably associated with a reduction in sensitivity to light by at least 100- fold. The RDC has a similar absolute magnitude, reversal potential, and voltage dependence to the light-induced current, suggesting that it is mediated by the same channels. The RDC is almost completely (> or = 98%) blocked by La3+ (10-20 microM) and is absent, or reduced and altered in the trp mutant (which lacks a La(3+)-sensitive light- dependent Ca2+ channel), suggesting that it is largely mediated by the trp-dependent channels. Power spectra of the steady-state noise in the RDC can be fitted by simple Lorentzian functions consistent with random channel openings. The variance/mean ratio of the RDC noise suggests the underlying events (channels) have conductances of approximately 1.5-4.5 pS in wild-type (WT), but 12-30 pS in trp photoreceptors. Nevertheless, the power spectra of RDC noise in WT and trp are indistinguishable, in both cases being fitted by the sum of two Lorentzians with a major time constant (effective "mean channel open time") of 1-2 ms and a minor component at higher frequencies (approximately 0.2 ms). This implies that the noise in the WT RDC may actually be dominated by non-trp- dependent channels and that the trp-dependent channels may be of even lower unit conductance.  相似文献   

9.
Intracellular Ca2+ signalling evoked by Ca2+ mobilizing agonists, like angiotensin II in the adrenal gland, involves the activation of inositol(1,4,5)trisphosphate(InsP3)-mediated Ca2+ release from internal stores followed by activation of a Ca2+ influx termed capacitative calcium entry. Here we report the amino acid sequence of a functional capacitative Ca2+ entry (CCE) channel that supports inward Ca2+ currents in the range of the cell resting potential. The expressed CCE channel opens upon depletion of Ca2+ stores by InsP3 or thapsigargin, suggesting that the newly identified channel supports the CCE coupled to InsP3 signalling.  相似文献   

10.
TRP channels in Drosophila photoreceptors: the lipid connection   总被引:2,自引:0,他引:2  
Hardie RC 《Cell calcium》2003,33(5-6):385-393
The light-sensitive current in Drosophila photoreceptors is mediated by transient receptor potential (TRP) channels, at least two members of which (TRP and TRPL) are activated downstream of phospholipase C (PLC) in response to light. Recent evidence is reviewed suggesting that Drosophila TRP channels are activated by one or more lipid products of PLC activity: namely diacylglycerol (DAG), its metabolites (polyunsaturated fatty acids) or the reduction in phosphatidylinositol 4,5-bisphosphate (PIP(2)). The most compelling evidence for this view comes from analysis of rdgA mutants which are unable to effectively metabolise DAG due to a defect in DAG kinase. The rdgA mutation leads to constitutive activation of both TRP and TRPL channels and dramatically increases sensitivity to light in hypomorphic mutations of PLC and G protein.  相似文献   

11.
In Drosophila photoreceptors Ca(2+)-permeable channels TRP and TRPL are the targets of phototransduction, occurring in photosensitive microvilli and mediated by a phospholipase C (PLC) pathway. Using a novel Drosophila brain slice preparation, we studied the distribution and physiological properties of TRP and TRPL in the lamina of the visual system. Immunohistochemical images revealed considerable expression in photoreceptors axons at the lamina. Other phototransduction proteins are also present, mainly PLC and protein kinase C, while rhodopsin is absent. The voltage-dependent Ca(2+) channel cacophony is also present there. Measurements in the lamina with the Ca(2+) fluorescent protein G-CaMP ectopically expressed in photoreceptors, revealed depolarization-induced Ca(2+) increments mediated by cacophony. Additional Ca(2+) influx depends on TRP and TRPL, apparently functioning as store-operated channels. Single synaptic boutons resolved in the lamina by FM4-64 fluorescence revealed that vesicle exocytosis depends on cacophony, TRP and TRPL. In the PLC mutant norpA bouton labeling was also impaired, implicating an additional modulation by this enzyme. Internal Ca(2+) also contributes to exocytosis, since this process was reduced after Ca(2+)-store depletion. Therefore, several Ca(2+) pathways participate in photoreceptor neurotransmitter release: one is activated by depolarization and involves cacophony; this is complemented by internal Ca(2+) release and the activation of TRP and TRPL coupled to Ca(2+) depletion of internal reservoirs. PLC may regulate the last two processes. TRP and TRPL would participate in two different functions in distant cellular regions, where they are opened by different mechanisms. This work sheds new light on the mechanism of neurotransmitter release in tonic synapses of non-spiking neurons.  相似文献   

12.
Recent studies in Drosophila melanogaster retina indicate that absorption of light causes the translocation of signaling molecules and actin from the photoreceptor's signaling membrane to the cytosol, but the underlying mechanisms are not fully understood. As ezrin-radixin-moesin (ERM) proteins are known to regulate actin-membrane interactions in a signal-dependent manner, we analyzed the role of Dmoesin, the unique D. melanogaster ERM, in response to light. We report that the illumination of dark-raised flies triggers the dissociation of Dmoesin from the light-sensitive transient receptor potential (TRP) and TRP-like channels, followed by the migration of Dmoesin from the membrane to the cytoplasm. Furthermore, we show that light-activated migration of Dmoesin results from the dephosphorylation of a conserved threonine in Dmoesin. The expression of a Dmoesin mutant form that impairs this phosphorylation inhibits Dmoesin movement and leads to light-induced retinal degeneration. Thus, our data strongly suggest that the light- and phosphorylation-dependent dynamic association of Dmoesin to membrane channels is involved in maintenance of the photoreceptor cells.  相似文献   

13.
Mammalian diacylglycerol kinases are a family of enzymes that catalyze the phosphorylation of diacylglycerol to produce phosphatidic acid. The extent of interaction of these enzymes with monoacylglycerols is the focus of the present study. Because of the structural relationship between mono- and diacylglycerols, one might expect the monoacylglycerols to be either substrates or inhibitors of diacylglycerol kinases. This would have some consequence to lipid metabolism. One of the lipid metabolites that would be affected is 2-arachidonoyl glycerol, which is an endogenous ligand for the CB1 cannabinoid receptor. We determined if the monoglycerides 2-arachidonoyl glycerol or 2-oleoyl glycerol affected diacylglycerol kinase activity. We found that 2-arachidonoyl glycerol is a very poor substrate for either the epsilon or the zeta isoforms of diacylglycerol kinases. Moreover, 2-arachidonoyl glycerol is an inhibitor for both of these diacylglycerol kinase isoforms. 2-oleoyl glycerol is also a poor substrate for these two isoforms of diacylglycerol kinases. As an inhibitor, 2-oleoyl glycerol inhibits diacylglycerol kinase ε less than does 2-arachidonoyl glycerol, while for diacylglycerol kinase ζ, these two monoglycerides have similar inhibitory potency. These results have implications for the known role of diacylglycerol kinase ε in neuronal function and in epilepsy since the action of this enzyme will remove 1-stearoyl-2-arachidonoylglycerol, the precursor of the endocannabinoid 2-arachidonoyl glycerol.  相似文献   

14.
Deficient protein kinase C activity in turnip, a Drosophila learning mutant   总被引:3,自引:0,他引:3  
The Drosophila mutant turnip was initially isolated based on poor learning performance (Quinn, W.G., Sziber, P.P., and Booker, R. (1979) Nature 277, 212-214). Here we show that turnip is dramatically reduced in protein kinase C (PKC) activity. In addition, turnip flies are deficient in phosphorylation of a 76-kDa head membrane protein (hereafter pp76) which is a major substrate for protein kinase C in homogenates of wild-type flies. Reduced PKC activity, defective pp76 phosphorylation, and most of turnip's learning deficiency co-map genetically to a region on the X-chromosome, 18A5-18D1-2, spanned by the deletion Df(1)JA27. Apparently turnip+ is not a structural gene for PKC because Drosophila PKC genes map elsewhere in the genome. Our results suggest that turnip gene product is required for activation of PKC and that PKC plays a role in associative learning in Drosophila.  相似文献   

15.
Summary A Drosophila visual mutant rdgA has photoreceptive cells which degenerate gradually after eclosion. Fine structure of the retinular cells of rdgA KS60 and rdgA K014 was studied during early stages of degeneration to determine the initial morphological defects. The retinular cells of these two alleles showed the following structural abnormality within 1 day after eclosion: (1) rhabdomeres were small and irregular in shape; (2) cisternae of the rough endoplasmic reticulum were more numerous than those in normal retinular cells; (3) submicrovillar cisternae were absent; and (4) lysosomes were fewer than normal. Three-dimensional reconstruction of serial sections of the ommatidia showed that the degeneration of mutant rhabdomeres proceeds more rapidly in regions remote from the nuclei. These results suggest that the process of turnover of rhabdomeric microvilli is abnormal in rdgA. We also confirmed an increase of lysosomes and destruction of cellular organelles, as reported by previous investigators at more advanced stages of degeneration.  相似文献   

16.
17.
The Drosophila retinal degeneration A (rdgA) mutant has photoreceptor cells that degenerate within a week after eclosion. The degeneration starts with the disruption of the subrhabdomeric cisternae (SRC), which are the organelles essential for the transport of phospholipids to the photoreceptive membranes. Our previous biochemical and molecular studies suggested that the rdgA gene encodes an eye-specific diacylglycerol kinase (DGK). In this study, we show that retinal degeneration is prevented by the introduction of the eye-DGK gene in the rdgA mutant genome, suggesting that the DGK activity is crucial for the maintenance of the photoreceptor. Furthermore, by immunohistochemical analysis, we have demonstrated that the rdgA protein is predominantly associated with the SRC, suggesting that the conversion from diacylglycerol (DG) to phosphatidic acid (PA) most actively occurs in SRC. The analysis of the eyes of mutants homozygous for rdgA and eye-protein kinase C mutations indicates that retinal degeneration is caused by the deficiency of PA rather than excessive accumulation of DG. From these data, we conclude that the production of PA in the SRC membranes is essential for the maintenance of the photoreceptor. © 1997 John Wiley & Sons, Inc. J Neurobiol 32 : 695–706, 1997  相似文献   

18.
Transient receptor potential (TRP) channels are essential components of biological sensors that detect changes in the environment in response to a myriad of stimuli. A major difficulty in the study of TRP channels is the lack of pharmacological agents that modulate most members of the TRP superfamily. Notable exceptions are the thermoTRPs, which respond to either cold or hot temperatures and are modulated by a relatively large number of chemical agents. In the present study we demonstrate by patch clamp whole cell recordings from Schneider 2 and Drosophila photoreceptor cells that carvacrol, a known activator of the thermoTRPs, TRPV3 and TRPA1 is an inhibitor of the Drosophila TRPL channels, which belongs to the TRPC subfamily. We also show that additional activators of TRPV3, thymol, eugenol, cinnamaldehyde and menthol are all inhibitors of the TRPL channel. Furthermore, carvacrol also inhibits the mammalian TRPM7 heterologously expressed in HEK cells and ectopically expressed in a primary culture of CA3–CA1 hippocampal brain neurons. This study, thus, identifies a novel inhibitor of TRPC and TRPM channels. Our finding that the activity of the non-thermoTRPs, TRPL and TRPM7 channels is modulated by the same compound as thermoTRPs, suggests that common mechanisms of channel modulation characterize TRP channels.  相似文献   

19.
Drosophila phototransduction results in the opening of two classes of cation channels, composed of the channel subunits transient receptor potential (TRP), TRP-like (TRPL), and TRPgamma. Here, we report that one of these subunits, TRPL, is translocated back and forth between the signaling membrane and an intracellular compartment by a light-regulated mechanism. A high level of rhabdomeral TRPL, characteristic of dark-raised flies, is functionally manifested in the properties of the light-induced current. These flies are more sensitive than flies with no or reduced TRPL level to dim background lights, and they respond to a wider range of light intensities, which fit them to function better in darkness or dim background illumination. Thus, TRPL translocation represents a novel mechanism to fine tune visual responses.  相似文献   

20.
Although chronic hyperglycemia reduces insulin sensitivity and leads to impaired glucose utilization, short term exposure to high glucose causes cellular responses positively regulating its own metabolism. We show that exposure of L6 myotubes overexpressing human insulin receptors to 25 mm glucose for 5 min decreased the intracellular levels of diacylglycerol (DAG). This was paralleled by transient activation of diacylglycerol kinase (DGK) and of insulin receptor signaling. Following 30-min exposure, however, both DAG levels and DGK activity returned close to basal levels. Moreover, the acute effect of glucose on DAG removal was inhibited by >85% by the DGK inhibitor R59949. DGK inhibition was also accompanied by increased protein kinase C-alpha (PKCalpha) activity, reduced glucose-induced insulin receptor activation, and GLUT4 translocation. Glucose exposure transiently redistributed DGK isoforms alpha and delta, from the prevalent cytosolic localization to the plasma membrane fraction. However, antisense silencing of DGKdelta, but not of DGKalpha expression, was sufficient to prevent the effect of high glucose on PKCalpha activity, insulin receptor signaling, and glucose uptake. Thus, the short term exposure of skeletal muscle cells to glucose causes a rapid induction of DGK, followed by a reduction of PKCalpha activity and transactivation of the insulin receptor signaling. The latter may mediate, at least in part, glucose induction of its own metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号