首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of the inoculant strain Sphingomonas paucimobilis 20006FA (isolated from a phenanthrene-contaminated soil) on the dynamics and structure of microbial communities and phenanthrene elimination rate were studied in soil microcosms artificially contaminated with phenanthrene. The inoculant managed to be established from the first inoculation as it was evidenced by denaturing gradient gel electrophoresis analysis, increasing the number of cultivable heterotrophic and PAH-degrading cells and enhancing phenanthrene degradation. These effects were observed only during the inoculation period. Nevertheless, the soil biological activity (dehydrogenase activity and CO2 production) showed a late increase. Whereas gradual and successive changes in bacterial community structures were caused by phenanthrene contamination, the inoculation provoked immediate, significant, and stable changes on soil bacterial community. In spite of the long-term establishment of the inoculated strain, at the end of the experiment, the bioaugmentation did not produce significant changes in the residual soil phenanthrene concentration and did not improve the residual effects on the microbial soil community.  相似文献   

2.
Hexachlorocyclohexane (HCH) has been banned for use in technologically advanced countries; however, it is still in use in tropical countries like India. Earlier we reported the degradation of HCH isomers by Sphingomonas paucimobilis within 12 days of incubation. Here we report the role of different factors that could enhance the degradation rate of HCH isomers. We found that an increase in the cell number from 102 to 108 cells/ml resulted in an increased degradation rate of HCH isomers viz. α, β, γ, and δ-HCH. While α-HCH and γ-HCH disappeared completely from the medium within 3 days of incubation, a maximum of only 90% and 85% degradation was observed for β and δ-HCH, respectively. We have also observed that adapted cultures degraded HCH isomers more efficiently than did the normal cultures. Received: 16 February 2000 / Accepted: 23 May 2000  相似文献   

3.
Sphingomonas paucimobilis degrades aerobically , , and -hexachlorocyclohexane. With -HCH, complete degradation occurred after 3 days but with and , and with -HCH, 98 and 56 % degradation occurred after 12 and 8 days of incubation, respectively. Pentachlorocyclohexene was formed as the primary metabolite during the degradation of all the HCH isomers. © Rapid Science Ltd. 1998  相似文献   

4.
鞘氨醇单胞菌PY3菲降解基因的克隆及序列分析   总被引:3,自引:0,他引:3  
将菲降解菌鞘氨醇单胞菌(Sphingomanas sp.)PY3的DNA片段与pUC119质粒连接后,转化大肠杆菌JM109,经筛选得到两个质粒,分别命名为pUp1(带有23kb外源DNA片段)和pUp2(带有39kb外源DNA片段)。pUp 1的DNA含有2个ORF。ORF 1由275个氨基酸组成,与恶臭假单胞菌(Pseudomonas putida)F1的甲苯水解酶及菌株Pseudomonas CF600的甲苯水解酶在氨基酸水平上有47%的同源性。ORF 2由327个氨基酸组成,与嗜热脂肪芽孢杆菌(Bacillus stearothermophilus)的邻苯二酚双加氧酶(phe B)及紫红红球菌(Rhodococcus rhodochrous)CTM的邻苯二酚双加氧酶(C23O)在氨基酸水平上分别有57%和44%的同源性。  相似文献   

5.
Beta-Hexachlorocyclohexane (beta-HCH) is the most recalcitrant among the alpha-, beta-, gamma-, and delta-isomers of HCH and causes serious environmental pollution problems. We demonstrate here that the haloalkane dehalogenase LinB, reported earlier to mediate the second step in the degradation of gamma-HCH in Sphingomonas paucimobilis UT26, metabolizes beta-HCH to produce 2,3,4,5,6-pentachlorocyclohexanol.  相似文献   

6.
Sphingomonas paucimobilis , isolated from a soil in Manitoba, Canada, was able to utilize diclofop-methyl, (R,S)-methyl-2-[4-(2,4-dichlorophenoxy)phenoxy]propionate, as the sole source of carbon and energy. An actively growing aerobic culture completely degraded 1.5 μg diclofop-methyl ml−1 to diclofop acid within 54 h, at 25°C. A biphasic growth pattern indicated that this organism was capable of degrading diclofop acid to 4-(2,4-dichlorophenoxy)phenol and 2,4-dichlorophenol and/or phenol. The accumulation of 2,4-dichlorophenol in the growth medium, however, suggested that Sphingomonas paucimobilis was unable to utilize this compound as a source of carbon and energy. Received 26 April 1999/ Accepted in revised form 30 July 1999  相似文献   

7.
Sphingomonas paucimobilis SYK-6 converts vanillate and syringate to protocatechuate and 3-O-methylgallate (3MGA), respectively. 3MGA is metabolized via multiple pathways involving 3MGA 3,4-dioxygenase, protocatechuate 4,5-dioxygenase (LigAB), and gallate dioxygenase whereas protocatechuate is degraded via the protocatechuate 4,5-cleavage pathway. Here the secondary role of LigAB in syringate metabolism is investigated. The reaction product of 3MGA catalyzed by His-tagged LigAB was identified as 4-carboxy-2-hydroxy-6-methoxy-6-oxohexa-2,4-dienoate (CHMOD) and 2-pyrone-4,6-dicarboxylate (PDC), indicating that 3MGA is transformed to CHMOD and PDC by both reactions catalyzed by DesZ and LigAB. Mutant analysis revealed that the 3MGA catabolic pathways involving LigAB are functional in SYK-6.  相似文献   

8.
The degradation rates of mixtures of pyrene (PYR), fluoranthene (FLA), and phenanthrene (PHE) by Sphingomonas paucimobilis EPA 505 were measured in the presence of the nonionic surfactant Tween 80. For strain EPA 505, FLA and PHE are growth substrates, while PYR is not. Linear degradation rates ranging from 0.05 to 2.2 mg x L(-1) x h(-1) were observed for FLA, PYR, and PHE at approximately 10(7) colony-forming units (CFU)/mL. At lower biomass, PYR degradation exhibited lognormal degradation. The degradation rates of PYR, FLA, and PHE increased with increasing biomass and substrate concentration. At high FLA concentrations, FLA degradation rates were faster in the presence of surfactant than in the absence of surfactant, suggesting that some of the FLA was transported directly into the cell from the micellar phase. In mixtures, PHE was the preferred substrate and was utilized first, followed by FLA and then PYR. Once the competing substrates were degraded, the remaining substrate was degraded at the same rate or faster than the rate found in the single-substrate system. Based on the results with Tween 80, it appears that PHE, PYR, and FLA are competing for the same enzymatic sites.  相似文献   

9.
The ability of the dibenzofuran- and dibenzo-p-dioxin-mineralizing bacterium Sphingomonas sp. strain RW1 (R.-M. Wittich, H. Wilkes, V. Sinnwell, W. Francke, and P. Fortnagel, Appl. Environ. Microbiol. 58:1005-1010, 1992) to oxidize chlorinated derivatives of dibenzofuran and dibenzo-p-dioxin was analyzed. Strain RW1 degraded several mono- and dichlorinated dibenzofurans and dibenzo-p-dioxins, but it did not degrade more highly chlorinated congeners. Most mono- and dichlorinated dibenzofurans and dibenzo-p-dioxins investigated in this study were degraded to the corresponding mono- and dichlorinated salicylates and catechols, respectively, together with salicylate and catechol. This indicates an initial dioxygenolytic attack on the substituted as well as on the nonsubstituted aromatic nucleus of most of the target compounds. Strain RW1 could not grow at the expense of monochlorinated dibenzo-p-dioxins and dibenzofurans as carbon sources, with the exception of 4-chlorodibenzofuran, which was stoichiometrically converted to 3-chlorosalicylate.  相似文献   

10.
Sphingomonas paucimobilis SYK-6 has the ability to transform a lignin-related biphenyl compound, 2,2′-dihydroxy-3,3′-dimethoxy-5,5′-dicarboxybiphenyl (DDVA), to 5-carboxyvanillic acid (5CVA) via 2,2′,3-trihydroxy-3′-methoxy-5,5′-dicarboxybiphenyl (OH-DDVA). In the 4.9-kb HindIII fragment containing the OH-DDVA meta-cleavage dioxygenase gene (ligZ), we found a novel hydrolase gene (ligY) responsible for the conversion of the meta-cleavage compound of OH-DDVA to 5CVA. Incorporation of 18O from H218O into 5CVA indicated there was a hydrolytic conversion of the OH-DDVA meta-cleavage compound to 5CVA. LigY exhibited hydrolase activity only toward the meta-cleavage compound of OH-DDVA, suggesting its restricted substrate specificity.  相似文献   

11.
West TP  Fullenkamp NA 《Microbios》2000,102(402):89-101
The ability of casamino acids and vitamin-assay casamino acids to support gellan production by Sphingomonas paucimobilis ATCC 31461 was examined in a medium containing glucose or corn syrup as the carbon source relative to yeast extract supplementation. When glucose or corn syrup served as the carbon source, the presence of yeast extract in the growth medium stimulated gellan production by strain ATCC 31461 on casamino acids. Using vitamin-assay casamino acids as the nitrogen source, the addition of vitamins lowered gellan synthesis by glucose-grown cells regardless of yeast extract supplementation while gellan elaboration by corn syrup-grown strain ATCC 31461 cells could only be increased by supplementing vitamins into medium lacking yeast extract. Independent of carbon source, the absence of yeast extract in the medium reduced biomass production. Biomass production by the strain grown on either carbon source was increased by supplementing vitamins in the medium containing yeast extract.  相似文献   

12.
Cultures of Mycobacterium sp. strain PYR-1 were dosed with anthracene or phenanthrene and after 14 days of incubation had degraded 92 and 90% of the added anthracene and phenanthrene, respectively. The metabolites were extracted and identified by UV-visible light absorption, high-pressure liquid chromatography retention times, mass spectrometry, 1H and 13C nuclear magnetic resonance spectrometry, and comparison to authentic compounds and literature data. Neutral-pH ethyl acetate extracts from anthracene-incubated cells showed four metabolites, identified as cis-1,2-dihydroxy-1,2-dihydroanthracene, 6,7-benzocoumarin, 1-methoxy-2-hydroxyanthracene, and 9,10-anthraquinone. A novel anthracene ring fission product was isolated from acidified culture media and was identified as 3-(2-carboxyvinyl)naphthalene-2-carboxylic acid. 6,7-Benzocoumarin was also found in that extract. When Mycobacterium sp. strain PYR-1 was grown in the presence of phenanthrene, three neutral metabolites were identified as cis- and trans-9,10-dihydroxy-9,10-dihydrophenanthrene and cis-3,4-dihydroxy-3,4-dihydrophenanthrene. Phenanthrene ring fission products, isolated from acid extracts, were identified as 2,2′-diphenic acid, 1-hydroxynaphthoic acid, and phthalic acid. The data point to the existence, next to already known routes for both gram-negative and gram-positive bacteria, of alternative pathways that might be due to the presence of different dioxygenases or to a relaxed specificity of the same dioxygenase for initial attack on polycyclic aromatic hydrocarbons.  相似文献   

13.
A carbazole-utilizing bacterium was isolated by enrichment from petroleum-contaminated soil. The isolate, designated Sphingomonas sp. strain XLDN2-5, could utilize carbazole (CA) as the sole source of carbon, nitrogen, and energy. Washed cells of strain XLDN2-5 were shown to be capable of degrading dibenzofuran (DBF) and dibenzothiophene (DBT). Examination of metabolites suggested that XLDN2-5 degraded DBF to 2-hydroxy-6-(2-hydroxyphenyl)-6-oxo-2,4-hexadienic acid and subsequently to salicylic acid through the angular dioxygenation pathway. In contrast to DBF, strain XLDN2-5 could transform DBT through the ring cleavage and sulfoxidation pathways. Sphingomonas sp. strain XLDN2-5 could cometabolically degrade DBF and DBT in the growing system using CA as a substrate. After 40 h of incubation, 90% of DBT was transformed, and CA and DBF were completely removed. These results suggested that strain XLDN2-5 might be useful in the bioremediation of environments contaminated by these compounds.  相似文献   

14.

Exopolymers have been associated with the initial adhesion of bacteria, which is the primary step for biofilm formation. Moreover, the polymeric matrix of biofilms has a considerable influence on some of the most important physical and physiological properties of biofilms. The role of extracellular polymers in biofilm formation was studied using three mutants of Sphingomonas paucimobilis with increasing capabilities for exopolymer production. The physical, biochemical and physiological properties of three different layers of each biofilm were determined. The layers were detached by submitting the biofilm to increasing shear stress. The results revealed that the presence of exopolymers in the growth medium was essential for biofilm formation. The mutant producing the highest amount of exopolymer formed very thick biofilms, while the biofilms formed by the medium exopolymer producer were on average 8 times thinner. The lowest exopolymer producer did not form biofilm. In both types of biofilms, exopolymer density increased with depth, although this tendency was more significant in thinner biofilms. Cell distribution was also more heterogeneous in thinner biofilms, exhibiting a greater accumulation of cells in the inner layers. The thicker biofilms had very low activity in the inner layer. This was related to a high accumulation of proteins and DNA in this layer due to cell lysis and hydrolytic activity. Activity in the thin biofilm was constant throughout its depth, suggesting that there was no nutrient limitation. The production of exopolymers by each cell was constant throughout the depth of the biofilms, although it was greater in the case of the higher producer.  相似文献   

15.
A bacterial strain was isolated from a Mumbai coastal area. It was dosed with anthracene and phenanthrene, and, after 14 days of incubation, it had degraded 90% and 93% of the anthracene and phenanthrene, respectively. The metabolites were extracted and identified by ultraviolet (UV)-visible light absorption, high-performance liquid chromatography, mass spectrometry, and by comparing with actual compounds and data. Neutral extracts from anthracene showed four metabolites, viz 1,2-dihydroxyanthracene, 6,7-benzocoumarin, 1-methoxy-2-hydroxyanthracene, and 9,10 anthraquinone. When Pseudomonas were grown in the presence of phenanthrene, two metabolites, viz 9,10-dihydroxyphenanthrene and 3,4-dihydroxyphenanthrene were identified.  相似文献   

16.
Sphingomonas sp. strain TTNP3 degrades 4(3′,5′-dimethyl-3′-heptyl)-phenol and unidentified metabolites that were described previously. The chromatographic analyses of the synthesized reference compound and the metabolites led to their identification as 2(3′,5′-dimethyl-3′-heptyl)-1,4-benzenediol. This finding indicates that the nonylphenol metabolism of this bacterium involves unconventional degradation pathways where an NIH shift mechanism occurs.  相似文献   

17.
Sphingomonas paucimobilis SYK-6 degrades ferulic acid to vanillin, and it is further metabolized through the protocatechuate 4,5-cleavage pathway. We obtained a Tn5 mutant of SYK-6, FA2, which was able to grow on vanillic acid but not on ferulic acid. A cosmid which complemented the growth deficiency of FA2 on ferulic acid was isolated. The 5.2-kb BamHI-EcoRI fragment in this cosmid conferred the transformation activity of ferulic acid to vanillin on Escherichia coli host cells. A sequencing analysis revealed the genes ferB and ferA in this fragment; these genes consist of 852- and 2,127-bp open reading frames, respectively. The deduced amino acid sequence of ferB showed 40 to 48% identity with that of the feruloyl-coenzyme A (CoA) hydratase/lyase genes of Pseudomonas and Amycolatopsis ferulic acid degraders. On the other hand, the deduced amino acid sequence of ferA showed no significant similarity to the feruloyl-CoA synthetase genes of other ferulic acid degraders. However, the deduced amino acid sequence of ferA did show 31% identity with pimeloyl-CoA synthetase of Pseudomonas mendocina 35, which has been classified as a new superfamily of acyl-CoA synthetase (ADP forming) with succinyl-CoA synthetase (L. B. Sánchez, M. Y. Galperin, and M. Müller, J. Biol. Chem. 275:5794-5803, 2000). On the basis of the enzyme activity of E. coli carrying each of these genes, ferA and ferB were shown to encode a feruloyl-CoA synthetase and feruloyl-CoA hydratase/lyase, respectively. p-coumaric acid, caffeic acid, and sinapinic acid were converted to their corresponding benzaldehyde derivatives by the cell extract containing FerA and FerB, thereby indicating their broad substrate specificities. We found a ferB homolog, ferB2, upstream of a 5-carboxyvanillic acid decarboxylase gene (ligW) involved in the degradation of 5,5'-dehydrodivanillic acid. The deduced amino acid sequence of ferB2 showed 49% identity with ferB, and its gene product showed feruloyl-CoA hydratase/lyase activity with a substrate specificity similar to that of FerB. Insertional inactivation of each fer gene in S. paucimobilis SYK-6 suggested that the ferA gene is essential and that ferB and ferB2 genes are involved in ferulic acid degradation.  相似文献   

18.
Peroxidases (PRX, EC 1.11.1.7) are widely distributed across microorganisms, plants, and animals; and, in plants, they have been implicated in a variety of secondary metabolic reactions. In particular, horseradish (Armoracia rusticana) root represents the main source of commercial PRX production. The prxC1a gene, which encodes horseradish PRX (HRP) C, is expressed mainly in the roots and stems of the horseradish plant. HRP C1a protein is shown to be synthesized as a preprotein with both a N-terminal (NTPP) and a C-terminal propeptide (CTPP). These propeptides, which might be responsible for intracellular localization or secretion, are removed before or concomitant with production of the mature protein. We investigated the functional role of HRP C1a NTPP and CTPP in the determination of the vesicular transport route, using an analytical system of transgenically cultured tobacco cells (Nicotiana tabacum, BY2). Here, we report that NTPP and CTPP are necessary and sufficient for accurate localization of mature HRP C1a protein to vacuoles of the vesicular transport system. We also demonstrate that HRP C1a derived from a preprotein lacking CTPP is shunted into the secretory pathway.  相似文献   

19.
Polychlorinated biphenyls (PCBs) are important environmental pollutants and have been found to have adverse effects on a number of different organisms. Aerobic biodegradation of PCBs occurs through direct oxidation of the biphenyl nucleus. Biphenyl degraders are instrumental in the mineralization of PCBs to CO2 and water. Here two bacteria, Alcaligenes faecalis type II strain BPSI-2 and Sphingomonas paucimobilis strain BPSI-3, are described that exhibit synergistic mineralization of biphenyl (using 14C-UL-biphenyl) when grown as a co-culture. Mineralization rates (23·7 and 9·1 nmol nmol−1 h−1, respectively) and extent of mineralization (38·1% and 24·4%, respectively) were significantly different between the strains as well as when compared to the co-culture (35·2 nmol nmol−1 h−1 and 45·2%). Both strains were originally isolated from an enrichment culture, BSEN-2. The co-culture of BPSI-2 and 3 showed a threefold increase in mineralization rate compared with the parent culture and a decrease in the time taken for 14CO2 evolution to occur. There was no significant difference in the extent of mineralization between the co-culture and BSEN-2. Examination of enrichment cultures at the community level may play a role in optimizing bioremediation programmes.  相似文献   

20.
The application of Fourier Transform near infrared spectroscopy (FT-NIRS) to near real-time monitoring of polysaccharide and biomass concentration was investigated using a gellan-producing strain of Sphingomonas paucimobilis grown in a stirred tank reactor. Successful models for both biomass and gellan were constructed despite the physichochemical complexity of the viscous process fluid. Modelling of biomass proved more challenging than for gellan, partly because of the low range of biomass concentration but a model with a good correlation coefficient (0.94) was formulated based on second derivative spectra. The gellan model was highly satisfactory, with an excellent correlation coefficient (0.98), again based on second derivative spectra. No sample pre-treatment was required and all spectral scanning was carried out on whole broth. Additionally, both models should be robust in practice since both were formulated using low numbers of factors. Thus, the near real time simultaneous monitoring of gellan and biomass in this highly complex matrix using FT-NIRS potentially opens the way to greatly improved process control strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号