首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 80 毫秒
1.
Corynebacterium glutamicum was engineered for the production of L-valine from glucose by deletion of the aceE gene encoding the E1p enzyme of the pyruvate dehydrogenase complex and additional overexpression of the ilvBNCE genes encoding the L-valine biosynthetic enzymes acetohydroxyacid synthase, isomeroreductase, and transaminase B. In the absence of cellular growth, C. glutamicum DeltaaceE showed a relatively high intracellular concentration of pyruvate (25.9 mM) and produced significant amounts of pyruvate, L-alanine, and L-valine from glucose as the sole carbon source. Lactate or acetate was not formed. Plasmid-bound overexpression of ilvBNCE in C. glutamicum DeltaaceE resulted in an approximately 10-fold-lower intracellular pyruvate concentration (2.3 mM) and a shift of the extracellular product pattern from pyruvate and L-alanine towards L-valine. In fed-batch fermentations at high cell densities and an excess of glucose, C. glutamicum DeltaaceE(pJC4ilvBNCE) produced up to 210 mM L-valine with a volumetric productivity of 10.0 mM h(-1) (1.17 g l(-1) h(-1)) and a maximum yield of about 0.6 mol per mol (0.4 g per g) of glucose.  相似文献   

2.
3.
4.
L-Valine can be formed successfully using C. glutamicum strains missing an active pyruvate dehydrogenase enzyme complex (PDHC). Wild-type C. glutamicum and four PDHC-deficient strains were compared by (13)C metabolic flux analysis, especially focusing on the split ratio between glycolysis and the pentose phosphate pathway (PPP). Compared to the wild type, showing a carbon flux of 69% ± 14% through the PPP, a strong increase in the PPP flux was observed in PDHC-deficient strains with a maximum of 113% ± 22%. The shift in the split ratio can be explained by an increased demand of NADPH for l-valine formation. In accordance, the introduction of the Escherichia coli transhydrogenase PntAB, catalyzing the reversible conversion of NADH to NADPH, into an L-valine-producing C. glutamicum strain caused the PPP flux to decrease to 57% ± 6%, which is below the wild-type split ratio. Hence, transhydrogenase activity offers an alternative perspective for sufficient NADPH supply, which is relevant for most amino acid production systems. Moreover, as demonstrated for L-valine, this bypass leads to a significant increase of product yield due to a concurrent reduction in carbon dioxide formation via the PPP.  相似文献   

5.
Pyruvate carboxylase is an important anaplerotic enzyme replenishing oxaloacetate consumed for biosynthesis during growth, or lysine and glutamic acid production in industrial fermentations. We used regions of homology from pyruvate carboxylase sequences of 12 different species (corresponding to the ATP- and pyruvate-binding sites), to design polymerase chain reaction (PCR) primers for amplifying a fragment of the pyruvate carboxylase (pc) gene from C. glutamicum genomic DNA. This 850-base-pair fragment was used to probe a C. glutamicum cosmid library and four candidate pc cosmids were identified. The fragment was sequenced and the sequence of the complete gene was obtained by several rounds of primer synthesis, PCR on one of the positive cosmids, and sequencing. The C. glutamicumpc sequence shows 64% homology with the pc gene of Mycobacterium tuberculosis and 44% homology with the human pc gene. Regions of ATP, pyruvate and biotin binding have also been identified. Received: 16 December 1997 / Received revision: 31 March 1998 / Accepted: 19 April 1998  相似文献   

6.
The function of three Corynebacterium glutamicum shikimate dehydrogenase homologues, designated as qsuD (cgR_0495), cgR_1216, and aroE (cgR_1677), was investigated. A disruptant of aroE required shikimate for growth, whereas a qsuD-deficient strain did not grow in medium supplemented with either quinate or shikimate as sole carbon sources. There was no discernible difference in growth rate between wild-type and a cgR_1216-deficient strain. Enzymatic assays showed that AroE both reduced 3-dehydroshikimate, using NADPH as cofactor, and oxidized shikimate, the reverse reaction, using NADP+ as cofactor. The reduction reaction was ten times faster than the oxidation. QsuD reduced 3-dehydroquinate using NADH and oxidized quinate using NAD+ as cofactor. Different from the other two homologues, the product of cgR_1216 displayed considerably lower enzyme activity for both the reduction and the oxidation. The catalytic reaction of QsuD and AroE was highly susceptible to pH. Furthermore, reduction of 3-dehydroshikimate by AroE was inhibited by high concentrations of shikimate, but neither quinate nor aromatic amino acids had any effect on the reaction. Expression of qsuD mRNA was strongly enhanced in the presence of shikimate, whereas that of cgR_1216 and aroE decreased. We conclude that while AroE is the main catalyst for shikimate production in the shikimate pathway, QsuD is essential for quinate/shikimate utilization.  相似文献   

7.
Pyruvate carboxylase was recently sequenced in Corynebacterium glutamicum and shown to play an important role of anaplerosis in the central carbon metabolism and amino acid synthesis of these bacteria. In this study we investigate the effect of the overexpression of the gene for pyruvate carboxylase (pyc) on the physiology of C. glutamicum ATCC 21253 and ATCC 21799 grown on defined media with two different carbon sources, glucose and lactate. In general, the physiological effects of pyc overexpression in Corynebacteria depend on the genetic background of the particular strain studied and are determined to a large extent by the interplay between pyruvate carboxylase and aspartate kinase activities. If the pyruvate carboxylase activity is not properly matched by the aspartate kinase activity, pyc overexpression results in growth enhancement instead of greater lysine production, despite its central role in anaplerosis and aspartic acid biosynthesis. Aspartate kinase regulation by lysine and threonine, pyruvate carboxylase inhibition by aspartate (shown in this study using permeabilized cells), as well as well-established activation of pyruvate carboxylase by lactate and acetyl coenzyme A are the key factors in determining the effect of pyc overexpression on Corynebacteria physiology.  相似文献   

8.

Background

Pyruvate kinase is an important element in flux control of the intermediate metabolism. It catalyzes the irreversible conversion of phosphoenolpyruvate into pyruvate and is under allosteric control. In Corynebacterium glutamicum, this enzyme was regarded as promising target for improved production of lysine, one of the major amino acids in animal nutrition. In pyruvate kinase deficient strains the required equimolar ratio of the two lysine precursors oxaloacetate and pyruvate can be achieved through concerted action of the phosphotransferase system (PTS) and phosphoenolpyruvate carboxylase (PEPC), whereby a reduced amount of carbon may be lost as CO2 due to reduced flux into the tricarboxylic acid (TCA) cycle. In previous studies, deletion of pyruvate kinase in lysine-producing C. glutamicum, however, did not yield a clear picture and the exact metabolic consequences are not fully understood.

Results

In this work, deletion of the pyk gene, encoding pyruvate kinase, was carried out in the lysine-producing strain C. glutamicum lysCfbr, expressing a feedback resistant aspartokinase, to investigate the cellular response to deletion of this central glycolytic enzyme. Pyk deletion was achieved by allelic replacement, verified by PCR analysis and the lack of in vitro enzyme activity. The deletion mutant showed an overall growth behavior (specific growth rate, glucose uptake rate, biomass yield) which was very similar to that of the parent strain, but differed in slightly reduced lysine formation, increased formation of the overflow metabolites dihydroxyacetone and glycerol and in metabolic fluxes around the pyruvate node. The latter involved a flux shift from pyruvate carboxylase (PC) to PEPC, by which the cell maintained anaplerotic supply of the TCA cycle. This created a metabolic by-pass from PEP to pyruvate via malic enzyme demonstrating its contribution to metabolic flexibility of C. glutamicum on glucose.

Conclusion

The metabolic flux analysis performed illustrates the high flexibility of the metabolic network of C. glutamicum to compensate for external perturbation. The organism could almost maintain its growth and production performance through a local redirection of the metabolic flux, thereby fulfilling all anabolic and catabolic needs. The formation of the undesired overflow metabolites dihydroxyacetone and glycerol, in the deletion mutant, however, indicates a limiting capacity of the metabolism down-stream of their common precursor glyceraldehyde 3-phosphate and opens possibilities for further strain engineering.  相似文献   

9.
Summary A simple electroporation method for isolating restriction deficient mutants from Corynebacterium glutamicum has been developed. This procedure will also be useful for isolations of restriction deficient mutants of other microorganisms.  相似文献   

10.
The monomeric isocitrate dehydrogenase (IDH) of Corynebacterium glutamicum is compared to the topologically distinct dimeric IDH of Escherichia coli. Both IDHs have evolved to efficiently catalyze identical reactions with similar pH optimum as well as striking specificity toward NADP and isocitrate. However, the monomeric IDH is 10-fold more active (calculated as kcat/Km.isocitrate/Km.NADP) and 7-fold more NADP-specific than the dimeric enzyme, favoring NADP over NAD by a factor of 50,000. Such an extraordinary coenzyme specificity is not rivaled by any other characterized dehydrogenases. In addition, the monomeric enzyme is 10-fold more specific for isocitrate. The spectacular substrate specificity may be predominantly attributed to the isocitrate-assisted stabilization of catalytic complex during hydride transfer. No significant overall sequence identity is found between the monomeric and dimeric enzymes. However, structure-based alignment leads to the identification of three regions in the monomeric enzyme that match closely the three motifs located in the central region of dimeric IDHs and the homologous isopropylmalate dehydrogenases. The role of Lys253 as catalytic residue has been demonstrated by site-directed mutagenesis. Our results suggest that monomeric and dimeric forms of IDHs are functionally and structurally homologous.  相似文献   

11.
Pyruvate kinase activity is an important element in the flux control of the intermediate metabolism. The purified enzyme from Corynebacterium glutamicum demonstrated a marked sigmoidal dependence of the initial rate on the phosphoenolpyruvate concentration. In the presence of the negative allosteric effector ATP, the phosphoenolpyruvate concentration at the half-maximum rate (S0.5) increased from 1.2 to 2.8 mM, and cooperation, as expressed by the Hill coefficient, increased from 2.0 to 3.2. AMP promoted opposite effects: the S0.5 was decreased to 0.4 mM, and the enzyme exhibited almost no cooperation. The maximum reaction rate was 702 U/mg, which corresponded to an apparent kcat of 2,540 s-1. The enzyme was not influenced by fructose-1,6-diphosphate and used Mn2+ or Co2+ as cations. Sequence determination of the C. glutamicum pyk gene revealed an open reading frame coding for a polypeptide of 475 amino acids. From this information and the molecular mass of the native protein, it follows that the pyruvate kinase is a tetramer of 236 kDa. Comparison of the deduced polypeptide sequence with the sequences of other bacterial pyruvate kinases showed 39 to 44% homology, with some regions being very strongly conserved.  相似文献   

12.

Background  

Infections of bacterial cultures by bacteriophages are serious problems in biotechnological laboratories. Apart from such infections, prophage induction in the host cells may also be dangerous. Escherichia coli is a commonly used host in biotechnological production, and many laboratory strains of this bacterium harbour lambdoid prophages. These prophages may be induced under certain conditions leading to phage lytic development. This is fatal for further cultivations as relatively low, though still significant, numbers of phages may be overlooked. Thus, subsequent cultures of non-lysogenic strains may be infected and destroyed by such phage.  相似文献   

13.
The phosphoenol pyruvate carboxylase gene (ppc) of lysine-producing Corynebacterium glutamicum and C. lactofermentum strains was inactivated by marker exchange mutagenesis. The mutants lacked completely phosphoenol pyruvate carboxylase (PEP carboxylase) activity, but grew in minimal medium containing glucose as the sole carbon source. In addition, the ppc strains produced equivalent titers of lysine in shake flasks and in 10-l fermentation experiments as their parent strains. To address the question of how ppc Corynebacterium strains generate oxaloacetate (OAA) for their own metabolism as well as for high-level lysine production, we measured the activities of enzymes leading to OAA synthesis. Whereas pyruvate carboxylase activity was not detected in any of the strains, phosphoenol pyruvate carboxykinase (PEP carboxykinase) activity was found to be significantly higher in C. glutamicum ppc mutants compared to the parent strains. On the other hand, PEP carboxykinase activity in C. lactofermentum was essentially absent. As glyxylate cycle enzymes are strongly repressed by glucose, they are not likely to compensate for the lack of PEP carboxylase activity. PEP carboxykinase, among several candidates, could play this role. Correspondence to: M. Gubler  相似文献   

14.
The alpha-ketoglutarate dehydrogenase complex of Escherichia coli utilizes pyruvate as a poor substrate, with an activity of 0.082 units/mg of protein compared with 22 units/mg of protein for alpha-ketoglutarate. Pyruvate fully reduces the FAD in the complex and both alpha-keto[5-14C]glutarate and [2-14C]pyruvate fully [14C] acylate the lipoyl groups with approximately 10 nmol of 14C/mg of protein, corresponding to 24 lipoyl groups. NADH-dependent succinylation by [4-14C]succinyl-CoA also labels the enzyme with approximately 10 nmol of 14C/mg of protein. Therefore, pyruvate is a true substrate. However, the pyruvate and alpha-ketoglutarate activities exhibit different thiamin pyrophosphate dependencies. Moreover, 3-fluoropyruvate inhibits the pyruvate activity of the complex without affecting the alpha-ketoglutarate activity, and 2-oxo-3-fluoroglutarate inhibits the alpha-ketoglutarate activity without affecting the pyruvate activity. 3-Fluoro[1,2-14C]pyruvate labels about 10% of the E1 components (alpha-ketoacid dehydrogenases). The dihydrolipoyl transsuccinylase-dihydrolipoyl dehydrogenase subcomplex (E2E3) is activated as a pyruvate dehydrogenase complex by addition of E. coli pyruvate dehydrogenase, the E1 component of the pyruvate dehydrogenase complex. All evidence indicates that the alpha-ketoglutarate dehydrogenase complex purified from E. coli is a hybrid complex containing pyruvate dehydrogenase (approximately 10%) and alpha-ketoglutarate dehydrogenase (approximately 90%) as its E1 components.  相似文献   

15.
Pyruvate kinase (PYK) is an important enzyme in the intermediary metabolism and has attracted much attention as a target for metabolic engineering of Corynebacterium glutamicum. Genome sequencing revealed that the 308 residue of PYK was mutated from methionine in model strain C. glutamicum ATCC14067 to isoleucine in L-serine-producing strain C. glutamicum SYPS-062. Consequently, a significantly lower PYK activity (77%) was noted in C. glutamicum SYPS-062, when compared with that in C. glutamicum ATCC14067. To confirm the role of this point mutation, pyk in both C. glutamicum SYPS-062 and C. glutamicum SYPS-062-33aΔSSAA was reversely mutated to restore the PYK enzyme activity, which led to a 33.1% and 28.8% decrease in L-serine titer, respectively. This is the first report to show that the (Met-308→Ile) mutation site of pyk is closely associated with its activity and apparently affected L-serine production. Furthermore, pyk was deleted in strain C. glutamicum SYPS-062-33aΔSSAA, and the resulting strain did not show alteration in growth rate and presented a 12% increase in L-serine production.  相似文献   

16.
The regulatory effects of alpha-ketoisovalerate on purified bovine heart pyruvate dehydrogenase complex and endogenous pyruvate dehydrogenase kinase were investigated. Incubation of pyruvate dehydrogenase complex with 0.125 to 10 mM alpha-ketoisovalerate caused an initial lag in enzymatic activity, followed by a more linear but inhibited rate of NADH production. Incubation with 0.0125 or 0.05 mM alpha-ketoisovalerate caused pyruvate dehydrogenase inhibition, but did not cause the initial lag in pyruvate dehydrogenase activity. Gel electrophoresis and fluorography demonstrated the incorporation of acyl groups from alpha-keto[2-14C]isovalerate into the dihydrolipoyl transacetylase component of the enzyme complex. Acylation was prevented by pyruvate and by arsenite plus NADH. Endogenous pyruvate dehydrogenase kinase activity was stimulated specifically by K+, in contrast to previous reports, and kinase stimulation by K+ correlated with pyruvate dehydrogenase inactivation. Maximum kinase activity in the presence of K+ was inhibited 62% by 0.1 mM thiamin pyrophosphate, but was inhibited only 27% in the presence of 0.1 mM thiamin pyrophosphate and 0.1 mM alpha-ketoisovalerate. Pyruvate did not affect kinase inhibition by thiamin pyrophosphate at either 0.05 or 2 mM. The present study demonstrates that alpha-ketoisovalerate acylates heart pyruvate dehydrogenase complex and suggests that acylation prevents thiamin pyrophosphate-mediated kinase inhibition.  相似文献   

17.
During the review period, several structures of component enzymes and domains of enzymes of this multienzyme complex were determined. Three structures of the flavoprotein component, dihydrolipoamide dehydrogenase, became available. The structure of the core component, dihydrolipoyl acetyltransferase, can in principle be constructed from the known structures of its modules: the lipoyl, the peripheral subunit-binding and the catalytic domain. Dynamic aspects, such as the structure and function of the inter-domain linkers in dihydrolipoyl acetyltransferase and the conformational changes invlved in the mechanism of electron transfer in dihydrolipoamide dehydrogenase, remain to be clarified. Although several questions concerning the structure of the individual components of the complex have been solved, there is still much to learn about the assembly pathway. In mammalian complexes, the structure and function of protein X remains something of a riddle.  相似文献   

18.
19.
Monomeric isocitrate dehydrogenase was expressed in Corynebacterium glutamicum cells harboring pEK-icdES1, a plasmid carrying the gene for the enzyme. Two- to three-fold higher expression levels of the recombinant enzyme were observed in such cells when grown in fermentors, compared to those grown in shaker incubators. The enzyme was purified to homogeneity by ammonium sulfate fractionation, Sephadex G-150 gel filtration, FPLC Mono Q anion-exchange chromatography, and affinity gel chromatography. Approximately 4 mg of 98% pure recombinant enzyme was obtained per liter of bacterial culture. Our results also include optimum buffer conditions for purification and storage of the enzyme.  相似文献   

20.
To investigate primary effects of a pyruvate kinase (PYK) defect on glucose metabolism in Corynebacterium glutamicum, a pyk-deleted mutant was derived from wild-type C. glutamicum ATCC13032 using the double-crossover chromosome replacement technique. The mutant was then evaluated under glutamic acid-producing conditions induced by biotin limitation. The mutant showed an increased specific rate of glucose consumption, decreased growth, higher glutamic acid production, and aspartic acid formation during the glutamic acid production phase. A significant increase in phosphoenolpyruvate (PEP) carboxylase activity and a significant decrease in PEP carboxykinase activity occurred in the mutant, which suggested an enhanced overall flux of the anaplerotic pathway from PEP to oxaloacetic acid in the mutant. The enhanced anaplerotic flux may explain both the increased rate of glucose consumption and the higher productivity of glutamic acid in the mutant. Since the pyk-complemented strain had similar metabolic profiles to the wild-type strain, the observed changes represented intrinsic effects of pyk deletion on the physiology of C. glutamicum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号