首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The complex process of angiogenesis is controlled by the vascular endothelial growth factor (VEGF) and its receptors and by the recently isolated angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2) that signal through the transmembrane endothelial receptor tyrosine kinase Tie2. We report here the characterization of a novel form of Ang-2 (Ang-2B) with a truncated amino-terminal domain resulting from an alternative splicing of the gene. While previous reports have found the expression of Ang-2 limited to the embryo, female reproductive organs, and tumor tissues, we have observed striking changes in Ang-2 expression during chicken testicular development and regression. The expression of Ang-2 and VEGF is abundant in prepuberal testis and low in quiescent adult testis. Testicular regression is accompanied by high expression of Ang-2 and very low expression of VEGF. These observations are in accordance with the proposal that Ang-2 induces angiogenesis in the presence of VEGF and vascular regression in its absence.  相似文献   

2.
To explore the potential of combined delivery of osteogenic and angiogenic factors to bone marrow stromal cells (BMSCs) for repair of critical-size bone defects, we followed the formation of bone and vessels in tissue-engineered constructs in nude mice and rabbit bone defects upon introducing different combinations of BMP-2, vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1) to BMSCs with adenoviral vectors. Better osteogenesis and angiogenesis were found in co-delivery group of BMP-2, VEGF and angiopoietin-1 than any other combination of these factors in both animal models, indicating combined gene delivery of angiopoietin-1 and VEGF165 into a tissue-engineered construct produces an additive effect on BMP-2-induced osteogenesis.  相似文献   

3.
Angiogenesis is a regulated process involving the proliferation, migration, and remodeling of different cell types particularly mature endothelial cells and recently discovered progenitor cells, named as endothelial progenitor cells (EPCs). Up to now, many attempts have been made to understand the dynamic balance of pro- and anti-angiogenic factors on EPCs on different milieu. It has been accepted that Ang-1, -2 and Tie-1, -2 signaling play a key role on angiogenesis pathways in endothelial lineage cells. In the current experiment, the angiogenic/angio-modulatory potency of Ang-1 and -2 was investigated on isolated EPCs. Freshly isolated EPCs were exposed to different concentrations of Ang-1 and -2 (25 and 50?ng/ml) over a course of 7 and 14 days. Corroborating to our results, a superior effect of Ang-1 on angiogenic properties, including an increased concentration of vascular endothelial growth factor, in vitro tubulogenesis, EPC migratory, Tie-2 expression and clonogenicity, was determined. A large amount of positive mature endothelium markers was achieved in EPCs being-exposed to Ang-1 peptide. Nonetheless, the number of CD133 positive cells increased in the presence of Ang-2. Collectively, we conclude that Ang-1 potentially induces functional and mature vascular-like behavior in EPCs more than Ang-2.  相似文献   

4.
Sonic Hedgehog (Shh)-deficient mice have a severe lung branching defect. Recent studies have shown that hedgehog signaling is involved in vascular development and it is possible that the diminished airway branching in Shh-deficient mice is due to abnormal pulmonary vasculature formation. Therefore, we investigated the role of Shh in pulmonary vascular development using Shh/Tie2lacZ compound mice, which exhibit endothelial cell-specific LacZ expression, and Pecam-1 immunohistochemistry. In E11.5-13.5 Shh-deficient mice, the pulmonary vascular bed is decreased, but appropriate to the decrease in airway branching. However, when E12.5 Shh-deficient lungs were cultured for 4-6 days, the vascular network deteriorated compared to wild-type lungs. The expression of vascular endothelial growth factor (Vegf) or its receptor Vegfr2 (KDR/Flk-1) was not different between E12.5-13.5 Shh-deficient and wild-type lungs. In contrast, angiopoietin-1 (Ang1), but not Ang2 or the angiopoietin receptor Tie2, mRNA expression was downregulated in E12.5-E13.5 lungs of Shh null mutants. Recombinant Ang1 alone was unable to restore in vitro branching morphogenesis in Shh-deficient lungs. Conversely, the angiogenic factor fibroblast growth factor (Fgf)-2 alone or in combination with Ang1, increased vascularization and tubular growth and branching of Shh-deficient lungs in vitro. The angiogenic factors did not overcome the reduced smooth muscle cell differentiation in the Shh null lungs. These data indicate that early vascular development, mediated by Vegf/Vegfr2 signaling proceeds normally in Shh-deficient mice, while later vascular development and stabilization of the primitive network mediated by the Ang/Tie2 signaling pathway are defective, resulting in an abnormal vascular network. Stimulation of vascularization with angiogenic factors such as Fgf2 and Ang1 partially restored tubular growth and branching in Shh-deficient lungs, suggesting that vascularization is required for branching morphogenesis.  相似文献   

5.
Genomic structure and alternative splicing of chicken angiopoietin-2   总被引:1,自引:0,他引:1  
Angiopoietin-1 (Ang-1) prevents endothelial cell apoptosis and promotes blood vessel stability, while angiopoietin-2 (Ang-2), a natural antagonist of Ang-1, disrupts blood vessel structure and induces apoptosis. We have sequenced the chicken angiopoietin-2 gene that spans about 46 kb of DNA and is split in 9 exons by 8 introns. Alternative splicing of the gene gives rise to three different species of Ang-2 mRNAs: Ang-2A, Ang-2B, and Ang-2C. The three mRNA isoforms, also present in humans, codify for proteins with an identical fibrinogen-like C-terminal domain and a different coiled-coil N-terminal domain. Ang-2A and particularly Ang-2C are expressed in immature testis and regressed adult testis undergoing vascular remodeling, while their expression is barely detectable in quiescent adult testis. Conversely, Ang-2B is only detectable in adult testis. The new isoforms with truncated amino-terminal domains may modulate the Tie2 receptor during vascular angiogenesis and regression.  相似文献   

6.
Kaposi's sarcoma (KS) is a highly angiogenic and inflammatory neoplasia. The angiogenic and inflammatory cytokine angiopoietin-2 (Ang-2) is strongly expressed in KS due to Kaposi's sarcoma-associated herpesvirus (KSHV) infection. In the present study, we determined how Ang-2 contributes to development of KS by using telomerase-immortalized human umbilical vein endothelial cells (TIVE) as a model, which become malignantly transformed and express increased levels of Ang-2 following KSHV infection. Ang-2 released from TIVE-KSHV cells induces tyrosine phosphorylation of Tie-2 receptor from both human and mouse endothelial cells and promotes angiogenesis in nude mice. Functional inhibition or expressional “knock-down” of Ang-2 in these cells blocks angiogenesis and inhibits tumor growth. Ang-2 suppression also reduces the numbers of infiltrating monocytes/macrophages in tumors. In transwell-based cell migration assays, Ang-2 indeed enhances migration of human monocytes in a dose-dependent manner. These results underscore a pivotal role of KSHV-induced Ang-2 in KS tumor development by promoting both angiogenesis and inflammation. Our data also suggest that selective drug targeting of Ang-2 may be used for treatment of KS.  相似文献   

7.
Leptin induces angiopoietin-2 expression in adipose tissues   总被引:15,自引:0,他引:15  
Adipose tissues consisting of adipocytes, microvasculature, and stroma are completely ablated upon over-expression of leptin in rats. This tissue regression is mediated by enhanced lipid beta-oxidation, adipocyte dedifferentiation, and apoptosis. To further characterize this phenomenon, we studied the possible effect of leptin on the adipose microvasculature. Tissue microvasculature is maintained by the interplay between positive and negative signals mediated by factors including vascular endothelial growth factor (VEGF), basic fibroblast growth factor, angiopoietin-1 (Ang-1), and Ang-2. Expression of the negative signal Ang-2 was reported in fetal tissues and in the adult ovary, which undergoes vascular remodeling or regression. We demonstrate that leptin induces the expression of Ang-2 in adipose tissue without a concomitant increase in VEGF. Induction of Ang-2 occurred in an autocrine manner, as demonstrated in cultured adipocytes but not in several other cell types. This tissue-specific induction of Ang-2 coincided with initiation of apoptosis in adipose endothelial cells. We propose that induction of Ang-2 by leptin in adipose cells is one of the events leading to adipose tissue regression.  相似文献   

8.
Sonic hedgehog (Shh) has been found to regulate the angiogenic growth factor such as VEGF, Ang-1, and Ang-2 during ischemic insults, but the underlying mechanism is not fully understood. In this study, we employed oxygen–glucose deprivation (OGD) in astrocytes to mimic the ischemia in vitro. We found that OGD could induce the expressions of VEGF, Ang-1, and Ang-2, with the expression of Shh signaling components increased. Moreover, inhibiting the Shh signaling pathway with 5EI, a specific antibody, could decrease the expressions of VEGF, Ang-1, and Ang-2. Furthermore, the administration of exogenous Shh could induce the expressions of VEGF, Ang-1, and Ang-2 in astrocytes. The results of silencing Gli-1, or NR2F2, exhibited that exogenous Shh could regulate the expressions of VEGF, Ang-1, and Ang-2 in astrocytes by activating the NR2F2, but not the Gli-1. These results suggested that Shh could regulate the angiogenic growth factor after ischemic insults in astrocytes, and the regulation was partially mediated by the NR2F2.  相似文献   

9.
10.
The tumor suppressor Pdcd4 is involved in multiple pathways. Considering its biological action conflicting data in the literature exist and, consequently, our own studies point to a cell type specific action of Pdcd4. In the present study, using several Pdcd4 knock down cell lines we succeeded to identify angiopoietin-2 (Ang-2) as a gene up-regulated on the mRNA and protein level. The subsequent enhanced peptide secretion forced wild type Bon-1 cells in a neoplastic direction demonstrated by increased proliferation and colony formation while cell adhesion was decreased. Most likely, the stimulation of Ang-2 is in part mediated by increased activation of AP-1 but different signal transduction pathways may also be involved since we found opposite activation of PI3K/Akt/mTOR and MAPK7ERK pathways (both known to regulate in Ang-2 expression). Ang-2 is a modulator of vascular remodeling. Therefore, we analyzed the effect of supernatants from Pdcd4 knock-down cell lines on endothelial cells. Again, we detected reduced cell adhesion and increased colony formation. Probably, the most impressive effect was described on tube formation in a model for angiogenesis. Tube length and junctions of endothelial cells treated with conditioned medium from Pdcd4 knock-down cells were considerably increased. Both, up-regulation of Ang-2 and down-regulation of Pdcd4 are described for many tumors. However, this is the first study showing a direct impact of Pdcd4 on Ang-2 levels and, thereby, angiogenesis. Our data suggest a completely new mechanism for Pdcd4 to act as a tumor suppressor rendering Pdcd4 an attractive target for new therapeutic strategies in cancer treatment.  相似文献   

11.
Angiogenesis is the central pathological process in hepatocellular carcinoma (HCC), and its progression is affected by tumor cells and the microenvironment. Activated hepatic stellate cells (aHSCs) are the most significant stromal cells involved in HCC. This study was aimed to explore the effects and mechanisms of aHSCs on angiogenesis in HCC. We isolated primary hepatoma cells, aHSCs, and hepatic vascular endothelial cells from human HCC samples. Then, we performed a novel in vitro assay and in vivo experiment in a nude mouse HCC model to investigate the functions of aHSCs on angiogenesis in HCC. Our results demonstrated that aHSCs are the primary sources of angiopoietin-1 (Ang-1) in human HCC in vitro, and aHSCs could promote hepatic vascular endothelial cell (HVEC) growth by secreting Ang-1. Furthermore, aHSCs could induce HVEC microtubule formation, and this ability was reduced when Ang-1 expression was silenced in aHSCs. In addition, CD34 expression in a nude mouse HCC model was downregulated when Ang-1 messenger RNA was silenced in aHSCs. Our data also indicated that HSC Ang-1 expression could be inhibited by overexpressing Raf kinase inhibitor protein. Therefore, we suggest that aHSCs promote angiogenesis through secreting Ang-1, potentially providing an interesting target for antiangiogenic therapies for HCC.  相似文献   

12.
The angiopoietins/Tie-2 system is essential for the maintenance of vascular integrity and angiogenesis. The functional role of angiopoietin-2 (Ang-2) in the regulation of angiogenesis is dependent on other growth factors such as VEGF and a given physiopathological conditions. This study investigates the potential role of Ang-2 in myocardial angiogenesis and fibrosis formation in the diabetic db/db mouse. Diabetic db/db mice received intramyocardial administration of either adenovirus Ang-2 (Ad-CMV-Ang-2) or Ad-β-gal. The levels of Tie-2, VEGF, caspase-3, Wnt7b, fibroblast-specific protein-1 (FSP-1), and adhesion molecules (ICAM-1 and VCAM-1) expression were measured. Apoptosis, capillary density, and cardiac fibrosis were also analyzed in the db/db mouse hearts. Overexpression of Ang-2 suppressed Tie-2 and VEGF expression in db/db mouse hearts together with significant upregulation of Wnt7b expression. Overexpression of Ang-2 also sensitizes ICAM-1 and VCAM-1 expression in db/db mouse hearts. Immunohistochemical analysis revealed that overexpression of Ang-2 resulted in a gradual apoptosis as well as interstitial fibrosis formation, these leading to a significant loss of capillary density. Data from these studies were confirmed in cultured mouse heart microvascular endothelial cells (MHMEC) exposed to excessive Ang-2. Exposure of MHMEC to Ang-2 resulted in increased caspase-3 activity and endothelial apoptosis. Knockdown of Ang-2 attenuated high glucose-induced endothelial cell apoptosis. Further, counterbalance of Ang-2 by overexpression of Ang-1 reversed loss of capillary density and fibrosis formation in db/db mouse hearts. Our data demonstrate that Ang-2 increases endothelial apoptosis, sensitizes myocardial microvascular inflammation, and promotes cardiac fibrosis and thus contributes to loss of capillary density in diabetic diseases.  相似文献   

13.
The blood vessels formed in asthmatic airways are involved in inflammatory and airway remodeling processes in chronic asthma. Vascular endothelial cell growth factor (VEGF) and angiopoietin-1 (Ang-1) are primary angiogenic growth factors, involved in the formation of such blood vessels. VEGF has been reported to contribute to non-specific airway hyper-responsiveness, have chemotactic effects on eosinophils, and enhance airway smooth muscle cell proliferation. Furthermore, Th2 cells have receptors for VEGF, and Th2-associated cytokines increase VEGF production. There are reports that elevated levels of VEGF correlates with the severity of asthma. Ang-1 has been shown to induce pro-inflammatory effects such as eosinophil chemotaxis via tie-2 receptors. Reports indicate ang-1 contribution to increased secretion of matrix metalloproteinase-2 (MMP-2) and decreased secretion of tissue inhibitors of metalloproteinase-2 (TIMP-2). However, Ang-1 has also been shown to exhibit several anti-inflammatory properties such as suppressing expression of adhesion molecules, blocking vascular permeability and eosinophil chemotaxis induced by VEGF. These findings support the notion that apart from their roles in blood vessels formation, these angiogenic growth factors are directly involved in the pathogenesis of chronic asthma. This paper reviews individual and combined roles of VEGF and Ang-1. The potential therapeutic applications involving these factors are also discussed.  相似文献   

14.
Signaling and regulation of endothelial cell survival by angiopoietin-2   总被引:1,自引:0,他引:1  
Angiopoietins are ligands for endothelial cell-specific Tie-2 receptors. Whereas angiopoietin-1 (Ang-1) activates these receptors and promotes cell survival, migration, and sprouting, little information is available regarding how Ang-2 influences these cells. In this study, we evaluated signaling pathways and biological effects of physiological concentrations of Ang-2 in cultured human umbilical vein endothelial cells. Ang-2 at 150 and 300 ng/ml elicited a transient (reaching peak values within 15 min of exposure) increase in the phosphorylation of Tie-2 receptors, protein kinase B (Akt), ERK1/2, and p38 members of the mitogen-activated protein kinases. However, unlike Ang-1, Ang-2 significantly inhibited JNK/SAPK phosphorylation. When vascular endothelial growth factor (VEGF) was present along with Ang-2, ERK1/2 phosphorylation was inhibited, whereas augmentation of Ang-1-induced ERK1/2 phosphorylation was triggered by VEGF. Ang-2 treatment had no effect on cell migration and in vitro wound healing but significantly attenuated serum deprivation-induced apoptosis and promoted survival. These effects were completely reversed by phosphatidylinositol 3 (PI3)-kinase and ERK1/2 inhibitors but were augmented by an inhibitor of the p38 pathway. These results suggest that Ang-2 promotes endothelial cell survival through the ERK1/2 and PI3-kinase pathways and that this angiopoietin is not a strong promoter of endothelial cell migration. We also conclude that the nature of interactions in terms of ERK1/2 activation between Ang-2 and VEGF is different from that of Ang-1 and VEGF.  相似文献   

15.
Sonic hedgehog (Shh) is a prototypical morphogen known to regulate epithelial/mesenchymal interactions during embryonic development. We found that the hedgehog-signaling pathway is present in adult cardiovascular tissues and can be activated in vivo. Shh was able to induce robust angiogenesis, characterized by distinct large-diameter vessels. Shh also augmented blood-flow recovery and limb salvage following operatively induced hind-limb ischemia in aged mice. In vitro, Shh had no effect on endothelial-cell migration or proliferation; instead, it induced expression of two families of angiogenic cytokines, including all three vascular endothelial growth factor-1 isoforms and angiopoietins-1 and -2 from interstitial mesenchymal cells. These findings reveal a novel role for Shh as an indirect angiogenic factor regulating expression of multiple angiogenic cytokines and indicate that Shh might have potential therapeutic use for ischemic disorders.  相似文献   

16.
gamma-Secretase cleaves the transmembrane domains of several integral membrane proteins involved in vasculogenesis. Here, we investigated the role of gamma-secretase in the regulation of postnatal angiogenesis using gamma-secretase inhibitors (GSI). In endothelial cell (EC), gamma-secretase activity was up-regulated under hypoxia or the treatment of vascular endothelial growth factor (VEGF). The treatment of GSI significantly attenuated growth factor-induced EC proliferation and migration as well as c-fos promoter activity in a dose-dependent manner. In vascular smooth muscle cell (VSMC), treatment of GSI significantly attenuated growth factor-induced VEGF and fibroblast growth factor-2 (FGF-2) expression. Indeed, GSI attenuated VEGF-induced tube formation and inhibited FGF-2-induced angiogenesis on matrigel in mice as quantified by FITC-lectin staining of EC. Overall, we demonstrated that gamma-secretase may be key molecule in postnatal angiogenesis which may be downstream molecule of growth factor-induced growth and migration in EC, and regulate the expression of angiogenic growth factors in VSMC.  相似文献   

17.
Inflammation and angiogenesis are associated with pathological disorders. TNF-alpha is a major inflammatory cytokine that also regulates angiogenesis. TNF-alpha has been shown to regulate Tie-2 and angiopoietin (Ang) expression, but the functional significance is less clear. In this study, we showed that TNF-alpha induced a weak angiogenic response in a mouse cornea assay. Systemic overexpression of Ang-1 or Ang-2 dramatically increased corneal angiogenesis induced by TNF-alpha. In the absence of TNF-alpha, neither Ang-1 nor Ang-2 promoted corneal angiogenesis. Low doses (0-25 ng/ml) of TNF-alpha increased vascular branch formation of cultured endothelial cells. Overexpression of Ang-1 or Ang-2 enhanced the effects of TNF-alpha. These data suggest that Tie-2 signaling synergistically amplifies and participates in TNF-alpha-mediated angiogenesis. In addition, high doses (>/=50 ng/ml) of TNF-alpha induced apoptosis in endothelial cells, but addition of Ang-1 or Ang-2 significantly reduced cell death. Enhanced endothelial cell survival was correlated with Akt phosphorylation. Collectively, our data reveal dual functional roles of Tie-2: low doses enhance TNF-alpha-induced angiogenesis, and high doses attenuate TNF-alpha-induced cell death. The study provides evidence supporting a role for Tie-2 in inflammatory angiogenesis.  相似文献   

18.
19.
Methylglyoxal is a highly reactive dicarbonyl degradation product formed from triose phosphates during glycolysis. Methylglyoxal forms stable adducts primarily with arginine residues of intracellular proteins. The biologic role of this covalent modification in regulating cell function is not known. Here we report that in mouse kidney endothelial cells, high glucose causes increased methylglyoxal modification of the corepressor mSin3A. Methylglyoxal modification of mSin3A results in increased recruitment of O-GlcNAc-transferase, with consequent increased modification of Sp3 by O-linked N-acetylglucosamine. This modification of Sp3 causes decreased binding to a glucose-responsive GC-box in the angiopoietin-2 (Ang-2) promoter, resulting in increased Ang-2 expression. Increased Ang-2 expression induced by high glucose increased expression of intracellular adhesion molecule 1 and vascular cell adhesion molecule 1 in cells and in kidneys from diabetic mice and sensitized microvascular endothelial cells to the proinflammatory effects of tumor necrosis factor alpha. This novel mechanism for regulating gene expression may play a role in the pathobiology of diabetic vascular disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号