首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The venous occlusion technique was used to measure capillary pressure in the forearm and foot of man over a wide range of venous pressures. In six recumbent subjects venous pressure (Pv) in the forearm (mean +/- SE) was 9.3 +/- 1.4 mmHg and the venous occlusion estimate of capillary pressure (Pc) was 17.0 +/- 1.6 mmHg, whereas in another six subjects Pv in the foot was 17.1 +/- 1.2 mmHg and Pc was 23.4 +/- 2.5 mmHg. Venous pressure in the limbs was increased either by changes in posture or by venous congestion with a sphygmomanometer cuff. On standing Pv in the foot increased to 95.2 +/- 1.5 mmHg and Pc rose to 112.8 +/- 3.1 mmHg. The relationship established between venous pressure and capillary pressure in the forearm is Pc = 1.16 Pv + 8.1, whereas in the foot the relationship is Pc = 1.2 Pv + 1.6. The magnitude and duration of the changes in capillary pressure were also recorded during reactive hyperemia. The venous occlusion method of measuring capillary pressure is simple and easily applied to studies in humans.  相似文献   

2.
3.
We have developed a model including three serial compliant compartments (arterial, capillary, and venous) separated by two resistances (arterial and venous) for interpreting in vivo single pulmonary arterial or venous occlusion pressure profiles and double occlusion. We formalized and solved the corresponding system of equations. We showed that in this model 1) pulmonary capillary pressure (Pc) profile after arterial or venous occlusion has an S shape, 2) the estimation of Pc by zero time extrapolation of the slow component of the arterial occlusion profile (Pcao) always overestimates Pc, 3) symmetrically such an estimation on the venous occlusion profile (Pcvo) always underestimates Pc, 4) double occlusion pressure (Pcdo) differs from Pc. We evaluated the impact of varying parameter values in the model with parameter sets drawn either from the literature or from arbitrary arterial and venous pressures, being respectively 20 and 5 mmHg. Resulting Pcao-Pc differences ranged from 0.4 to 5.4 mmHg and resulting Pcvo-Pc differences ranged from -0.3 to -5.0 mmHg. Pcdo-Pc was positive or negative, its absolute value in general being negligible (< 1.1 mmHg).  相似文献   

4.
5.
Venous occlusion capillary pressures (Pcv) were simultaneously compared with isogravimetric capillary pressures (PcI) in the same isolated perfused dog lung preparations. For 26 determinations, PcI averaged 1.23 +/- 0.22 (SE) mmHg higher than Pcv. However, the two measurements of capillary pressure were highly correlated (r = 0.99), and the following regression equation was obtained: Pcv = 1.12 PcI - 2.1. Pcv could be easily measured several times in the same preparation, either by total venous occlusion or regional venous occlusion using a Swan-Ganz balloon catheter. In addition, Pcv did not require an isogravimetric state for its determination. These data suggest that the major sites of filtration and vascular capacitance in the pulmonary circulation reside in the microvessels and that the more easily determined Pcv is an adequate measure of the average capillary filtration pressure in the lungs.  相似文献   

6.
7.
To study the effect of positive airway pressure (Paw) on the pressure gradient for venous return [the difference between mean systemic filling pressure (Pms) and right atrial pressure (Pra)], we investigated 10 patients during general anesthesia for implantation of defibrillator devices. Paw was varied under apnea from 0 to 15 cmH(2)O, which increased Pra from 7.3 +/- 3.1 to 10.0 +/- 2.3 mmHg and decreased left ventricular stroke volume by 23 +/- 22%. Episodes of ventricular fibrillation, induced for defibrillator testing, were performed during 0- and 15-cmH(2)O Paw to measure Pms (value of Pra 7.5 s after onset of circulatory arrest). Positive Paw increased Pms from 10.2 +/- 3.5 to 12.7 +/- 3.2 mmHg, and thus the pressure gradient for venous return (Pms - Pra) remained unchanged. Echocardiography did not reveal signs of vascular collapse of the inferior and superior vena cava due to lung expansion. In conclusion, we demonstrated that positive Paw equally increases Pra and Pms in humans and alters venous return without changes in the pressure gradient (Pms - Pra).  相似文献   

8.
Central venous pressure in humans during short periods of weightlessness   总被引:1,自引:0,他引:1  
Central venous pressure (CVP) was measured in 14 males during 23.3 +/- 0.6 s (mean +/- SE) of weightlessness (0.00 +/- 0.05 G) achieved in a Gulfstream-3 jet aircraft performing parabolic flight maneuvers and during either 60 or 120 s of +2 Gz (2.0 +/- 0.1 Gz). CVP was obtained using central venous catheters and strain-gauge pressure transducers. Heart rate (HR) was measured simultaneously in seven of the subjects. Measurements were compared with values obtained inflight at 1 G with the subjects in the supine (+1 Gx) and upright sitting (+1 Gz) positions, respectively. CVP was 2.6 +/- 1.5 mmHg during upright sitting and 5.0 +/- 0.7 mmHg in the supine position. During weightlessness, CVP increased significantly to 6.8 +/- 0.8 mmHg (P less than 0.005 compared with both upright sitting and supine inflight). During +2 Gz, CVP was 2.8 +/- 1.4 mmHg and only significantly lower than CVP during weightlessness (P less than 0.05). HR increased from 65 +/- 7 beats/min at supine and 70 +/- 5 beats/min during upright sitting to 79 +/- 7 beats/min (P less than 0.01 compared with supine) during weightlessness and to 80 +/- 6 beats/min (P less than 0.01 compared with upright sitting and P less than 0.001 compared with supine) during +2 Gz. We conclude that the immediate onset of weightlessness induces a significant increase in CVP, not only compared with the upright sitting position but also compared with the supine position at 1 G.  相似文献   

9.
10.
Limb replantation and microvascular transfer of flaps are sometimes complicated by postoperative venous thrombosis. Total venous occlusion can lead to complete shutdown of microvascular perfusion, resulting in failure of the transfer or replantation. Once venous return stops, it must be restored within a critical period of time for tissue survival. The purpose of this experiment was to delineate this critical period of time at which no reflow and irreversible muscle necrosis occurs by the use of a rat gracilis flap microcirculation model. The gracilis muscle of 40 male Wistar rats (135.3 +/- 37.2 g) was elevated on its vascular pedicle and mounted on a raised platform for videomicroscopic analysis. Animals were randomly assigned to one of four groups: (1) sham (no total venous occlusion), (2) 10 minutes of total venous occlusion, (3) 30 minutes of total venous occlusion, and (4) 60 minutes of total venous occlusion. Total venous occlusion was established by placing a microvascular clamp across the femoral vein at the junction of the gracilis pedicle. The number of flowing capillaries in five consecutive high-power fields (832x) were counted at baseline and at 5, 15, 30, 60, 120, 180 minutes, and 24 hours after reperfusion. At 24 hours after reperfusion, the gracilis muscles were harvested and stained with nitroblue tetrazolium. Percentage of muscle necrosis was measured by using computer planimetry. The data were reported as mean +/- standard error of mean and were compared between groups by analysis of variance and appropriate post hoc comparisons. Total venous occlusion for 10, 30, and 60 minutes showed a significant decrease in the number of flowing capillaries through 24-hour postreversal. There was a significant drop (p < 0.01) in the number of flowing capillaries from 30 minutes of total venous occlusion to 60 minutes of total venous occlusion at all times. Muscle necrosis was significantly increased in all three groups of total venous occlusion compared with the sham group (36.1 +/- 1.7 percent, 45.5 +/- 3.4 percent, 74.1 +/- 4.7 percent versus 14.3 +/- 1.7 percent, and p < 0.01). These results indicate that irreversible tissue damage occurs in a very short time interval (60 minutes) in this model, making the early detection of venous occlusion critical to the successful correction of this complication.  相似文献   

11.
After overnight food and fluid restriction, nine healthy males were examined before, during, and after lower body positive pressure (LBPP) of 11 +/- 1 mmHg (mean +/- SE) for 30 min and before, during, and after graded lower body negative pressure (LBNP) of -10 +/- 1, -20 +/- 2, and -30 +/- 2 mmHg for 20 min each. LBPP and LBNP were performed with the subject in the supine position in a plastic box encasing the subject from the xiphoid process and down, thus including the splanchnic area. Central venous pressure (CVP) during supine rest was 7.5 +/- 0.5 mmHg, increasing to 13.4 +/- 0.8 mmHg (P less than 0.001) during LBPP and decreasing significantly at each step of LBNP to 2.0 +/- 0.5 mmHg (P less than 0.001) at 15 min of -30 +/- 2 mmHg LBNP. Plasma arginine vasopressin (AVP) did not change significantly in face of this large variation in CVP of 11.4 mmHg. Mean arterial pressure increased significantly during LBPP from 100 +/- 2 to 117 +/- 3 Torr (P less than 0.001) and only at one point during LBNP of -30 +/- 2 mmHg from 102 +/- 1 to 115 +/- 5 mmHg (P less than 0.05). Heart rate did not change during LBPP but increased slightly from 51 +/- 3 to 55 +/- 3 beats/min (P less than 0.05) only at 7 min of LBNP of -30 +/- 2 mmHg. Plasma osmolality, sodium, and potassium did not change during the experiment. Hemoglobin concentration increased during LBPP and LBNP, whereas hematocrit only increased during LBNP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The effects of pulmonary arterial embolization on calculated pulmonary capillary pressure as determined by the venous occlusion technique are examined using a simple pressure-flow model for the lung. It is predicted that pulmonary, arterial embolization can induce significant underestimation of pulmonary capillary pressure in flowing vessels. This underestimation is related to the percent of vessels embolized and the caliber of pulmonary arteries that are embolized (i.e., the size of the emboli). Experimental verification of these theoretical findings is necessary before the conclusions can be extended to the interpretation of venous occlusion experiments in the lung.  相似文献   

13.
In six open-chest dogs, electrocardiogram- (ECG) controlled pulmonary arterial occlusion was performed during the control period and during the infusions of serotonin and histamine. A temporal series of instantaneous pulmonary capillary pressure and the longitudinal distributions of vascular resistance and compliance were evaluated in the intact left lower lung lobe. In the control period, we found a significant phasic variation of pulmonary capillary pressure (Pc) with the cardiac cycle. The ratio of arterial to venous resistances (Ra/Rv) was 6:4, and the ratio of arterial to capillary compliances (Ca/Cc) was 1:11. During the infusions of serotonin and histamine, Pc showed similar phasic variations, despite significant hemodynamic changes induced by these agents. Serotonin predominantly increased Ra, whereas histamine predominantly increased Rv. The ratio of Rv to the total resistance decreased significantly from 0.42 to 0.32 during the infusion of serotonin and increased significantly to 0.62 during the infusion of histamine. The data suggest that phasic Pc determined by ECG-controlled arterial occlusion reflects the pulsatility in the pulmonary microvascular bed under control conditions and after alterations of the pulmonary vascular resistance by serotonin and histamine.  相似文献   

14.
Recently, we presented a compartmental model of the pulmonary vascular resistance (R) and compliance (C) distribution with the configuration C1R1C2R2C3 (J. Appl. Physiol. 70: 2126-2136, 1991). This model was used to interpret the pressure vs. time data obtained after the sudden occlusion of the arterial inflow (AO), venous outflow (VO), or both inflow and outflow (DO) from an isolated dog lung lobe. In the present study, we present a new approach to the data analysis in terms of this model that is relatively simple to carry out and more robust. The data used to estimate the R's and C's are the steady-state arterial [Pa(0)] and venous [Pv(0)] pressures, the flow rate (Q), the area (A2) encompassed by Pa(t) after AO and the equilibrium pressure (Pd) after DO, and the average slope (m) of the Pa(t) and Pv(t) curves after VO. The following formulas can then be used to calculate the 2 R's and 3 C's: [Pa(0) - Pv(0)]/Q = R1 + R2 = RT, R1C1 congruent to to A2/[Pa(0) - Pd], R1 congruent to [Pa(0) - Pd]/Q, Q/m = C1 + C2 + C3 = CT, and C2 = CT - (RTC1/R2).  相似文献   

15.
16.
Halliwill, John R., Lori A. Lawler, Tamara J. Eickhoff,Michael J. Joyner, and Sharon L. Mulvagh. Reflex responses toregional venous pooling during lower body negative pressure in humans.J. Appl. Physiol. 84(2): 454-458, 1998.Lower body negative pressure is frequently used to simulateorthostasis. Prior data suggest that venous pooling in abdominal orpelvic regions may have major hemodynamic consequences. Therefore, we developed a simple paradigm for assessing regional contributions tovenous pooling during lower body negative pressure. Sixteen healthy menand women underwent graded lower body negative pressure protocols to 60 mmHg while wearing medical antishock trousers to prevent venous poolingunder three randomized conditions:1) no trouser inflation (control),2) only the trouser legs inflated, and 3) the trouser legs andabdominopelvic region inflated. Without trouser inflation, heart rateincreased 28 ± 4 beats/min, mean arterial pressure fell 3 ± 2 mmHg, and forearm vascular resistance increased 51 ± 9 units at 60 mmHg lower body negative pressure. With inflation of eitherthe trouser legs or the trouser legs and abdominopelvic region, heartrate and mean arterial pressure did not change during lower bodynegative pressure. By contrast, although the forearm vasoconstrictorresponse to lower body negative pressure was attenuated by inflation ofthe trouser legs (forearm vascular resistance 33 ± 10 units,P < 0.05 vs. control), attenuation was greater with the inflation of the trouser legs and abdominopelvic region (forearm vascular resistance 16 ± 5 units,P < 0.05 vs. control and trouserlegs-only inflation). Thus the hemodynamic consequences of pooling inthe abdominal and pelvic regions during lower body negative pressureappear to be less than in the legs in healthy individuals.

  相似文献   

17.
Volume expansion often ameliorates symptoms of orthostatic intolerance; however, the influence of this increased volume on integrated baroreflex control of vascular sympathetic activity is unknown. We tested whether acute increases in central venous pressure (CVP) diminished subsequent responsiveness of muscle sympathetic nerve activity (MSNA) to rapid changes in arterial pressure. We studied healthy humans under three separate conditions: control, acute 10 degrees head-down tilt (HDT), and saline infusion (SAL). In each condition, heart rate, arterial pressure, CVP, and peroneal MSNA were measured during 5 min of rest and then during rapid changes in arterial pressure induced by sequential boluses of nitroprusside and phenylephrine (modified Oxford technique). Sensitivities of integrated baroreflex control of MSNA and heart rate were assessed as the slopes of the linear portions of the MSNA-diastolic blood pressure and R-R interval-systolic pressure relations, respectively. CVP increased approximately 2 mmHg in both SAL and HDT conditions. Resting heart rate and mean arterial pressure were not different among trials. Sensitivity of baroreflex control of MSNA was decreased in both SAL and HDT condition, respectively: -3.1 +/- 0.6 and -3.3 +/- 1.0 versus -5.0 +/- 0.6 units.beat(-1).mmHg(-1) (P < 0.05 for SAL and HDT vs. control). Sensitivity of baroreflex control of the heart was not different among conditions. Our results indicate that small increases in CVP decrease the sensitivity of integrated baroreflex control of sympathetic nerve activity in healthy humans.  相似文献   

18.
A modified capillary electrophoretic method for the determination of nitric oxide correlated nitrate in several tissue homogenates is described in this study. The method was developed using a running buffer consisting of 200 mM lithium chloride and 10 mM borate buffer at pH 8.5, in a fused-silica column total 82 cm, effective 43 cm length and 75 μm I.D. The signal was measured at 214 nm and controlled current of 200 μA (equivalent to 12.7 kV) was applied in the reversed polarity direction. The sample was injected by vacuum pressure 50 ms (25 nl). In these conditions, bromide as internal standard and nitrate appeared at 7.2 and 8.9 min, respectively. Whole validation procedures were applied and satisfactory results were obtained. The nitrate levels of the tissue homogenates of control and -NAME applied (heart, brain, kidney, stomach, lung, testis and liver) were monitored by the present method and it was decided that the method is precise and accurate.  相似文献   

19.
A capillary gel electrophoretic (CGE) method for the quantitative analysis of RuBisCo in spinach leaves was developed. RuBisCo was resolved into large and small subunits in the presence of sodium dodecyl sulphate (SDS) by the CGE procedure which enabled the determination of the molecular weight of each unit accurately; the values so determined were in close agreement with those reported using other methods. Advantages of CGE over SDS-polyacrylamide gel electrophoresis and high-pressure gel filtration include decreased sample preparation and analysis time, superior resolution and greater sensitivity permitting reduced sample size and trace analysis. In addition, CGE provided precise quantification of RuBisCo and was demonstrated to be a viable alternative to other available methods of protein analysis.  相似文献   

20.
To provide a better understanding of analysis of arterial (AO) and venous occlusion (VO) tracings, using a constant and nonpulsatile perfusion pressure system, we set up an isolated in situ dog lobe preparation perfused with autologous blood. Four signals were recorded: arterial pressure, arterial inflow rate, venous pressure, and venous outflow rate. The four signals were recorded into the memory of a computer. When flow into the lobe was abruptly stopped (AO), flow out of the lung continued unchanged for approximately 150 ms and then decreased slowly to zero. Likewise, when flow out of the lung was abruptly stopped (VO), the flow into the lung continued unchanged for approximately 130 ms and then decreased slowly to zero. A monoexponential curve was fitted to different stretches of data between 0.1 and 5 s postocclusion and extrapolated to the instant of occlusion (defined here as the instant when flow at the site of occlusion becomes zero). The results indicate that 1) the first 150 ms postocclusion should be avoided because of the oscillatory artifacts generated by the occlusion maneuver, 2) use of a long segment of postocclusion data (5 s) tends to underestimate the middle pressure gradient and overestimate the arterial and venous pressure gradients, and 3) the changes in segmental vascular resistance under different experimental conditions were found to be unaffected by the criteria of analysis. Analysis of the postocclusion (AO and VO) tracings was found to be most compatible with the double-occlusion capillary pressure by fitting a stretch of data between 0.2 and 2.5 s postocclusion and extrapolating back to the instant when flow becomes zero at the site of occlusion but no earlier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号