首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A tyrosine kinase purified from calf uterus activates the hormone binding of endogenous estradiol receptor (ER) predephosphorylated and preinactivated by a nuclear phosphotyrosine phosphatase. The kinase also activates and phosphorylates the human estradiol receptor HEO synthesized in vitro, which differs from the wild type receptor HEGO because a glycine is replaced by a valine at position 400. Moreover, the kinase activates and phosphorylates a deletion mutant of HEO which consists almost exclusively of the hormone binding domain. Using HEGO and HEO in parallel and measuring both binding activation and phosphorylation of ER we now observe that the wild type receptor is a good kinase substrate, slightly better than HEO. Furthermore, HEGO like the calf uterus receptor in the presence of estradiol, stimulates the kinase. From present findings it appears that ER and uterus tyrosine kinase are functionally associated and that this association is abolished by glycine to valine substitution at position 400 of ER.  相似文献   

2.
The postsynaptic glycine receptor purified from rat spinal cord is rapidly and specifically phosphorylated by protein kinase C. The target for phosphorylation is the strychnine-binding subunit of the receptor (molecular mass of approximately 48 kDa), which is phosphorylated on serine residues to a final stoichiometry of approximately 0.8 mol of phosphate/mol of subunit. The 48-kDa phosphoprotein was analyzed by proteolytic cleavage and peptide mapping in order to localize the site of phosphorylation within the receptor molecule. Examination of the 32P-labeled receptor fragments generated by digestion with N-chlorosuccinimide, cyanogen bromide, and endoproteinase lysine C and of the deduced amino acid sequence of the 48-kDa protein (Grenningloh, G., Rienitz, A., Schmitt, B., Methfessel, C., Zensen, M., Beyreuther, K., Gundelfinger, E. D., and Betz, H. (1987) Nature 328, 215-220) indicates that the phosphorylation site is located in a region corresponding to the major intracellular loop of the predicted structure of the glycine receptor subunit and suggests serine 391 as the phosphorylated residue. In fact, a synthetic peptide corresponding to residues 384-392 of the 48-kDa subunit was specifically phosphorylated by protein kinase C. Moreover, tryptic digests of this phosphopeptide and of the phosphorylated 48-kDa subunit of the glycine receptor migrated to the same position in two-dimensional peptide mapping. Furthermore, antibodies elicited against peptide 384-392 were shown to inhibit the protein kinase C-dependent phosphorylation of the 48-kDa polypeptide. Interestingly, the relative position of the phosphorylated domain is similar to those known or proposed to be phosphorylated in other ligand-gated ion channel receptor subunits, thus suggesting further the existence of a homologous regulatory region in these receptor proteins.  相似文献   

3.
The most commonly detected polymorphism in human insulin receptor substrate-1 (IRS-1), a glycine to arginine change at codon 972 (G972R), is associated with an increased risk of Type 2 diabetes and insulin resistance. To determine the molecular mechanism by which this polymorphism may be linked to insulin resistance, we produced recombinant peptides comprising amino acid residues 925-1008 from IRS-1 that contain either a glycine or arginine at codon 972 and the two nearby tyrosine phosphorylation consensus sites (EY(941)MLM and DY(989)MTM), which are known binding sites for the p85alpha regulatory subunit of phosphatidylinositol 3-kinase. The wild type peptide could be phosphorylated at these sites in vitro by purified insulin receptor. Introduction of the G972R polymorphism into the peptide reduced the amount of tyrosine phosphorylation by >60%. Pull-down experiments indicated that there was an association between the IRS-1-(925-1008) peptide and the insulin receptor that was markedly enhanced by the presence of the G972R polymorphism. The use of additional overlapping fragments localized this interaction to domains between residues 950-986 of IRS-1 and residues 966-1271 of the insulin receptor, containing the tyrosine kinase domain of the receptor. In addition, the IRS-1-(925-1008) G972R peptide acted as a competitive inhibitor of insulin receptor and insulin-like growth factor-1 receptor autophosphorylation. Taken together, these data indicate that the G972R naturally occurring polymorphism of IRS-1 not only reduces phosphorylation of the substrate but allows IRS-1 to act as an inhibitor of the insulin receptor kinase, producing global insulin resistance.  相似文献   

4.
Previous studies have demonstrated that muscarinic cholinergic receptors (mAChR) become markedly phosphorylated when intact cardiac cells are stimulated with a muscarinic agonist. This process appears to be related to the process of receptor desensitization. However, the mechanism of agonist-induced phosphorylation of mAChR is not known. In situ phosphorylation studies suggested that agonist-induced phosphorylation of mAChR may involve the participation of a receptor-specific kinase and/or require agonist occupancy. These observations regarding phosphorylation and desensitization of mAChR are similar to observations made for beta-adrenergic receptors. Recent studies have indicated that homologous desensitization of beta-adrenergic receptors may be due to the phosphorylation of these receptors by a novel protein kinase that only recognizes the agonist-occupied form of the receptors. As muscarinic receptors are structurally homologous to beta-adrenergic receptors, we have initiated studies to identify the protein kinase responsible for the phosphorylation of muscarinic receptors by determining whether the chick heart muscarinic receptor would serve as a substrate for the beta-adrenergic receptor kinase (beta-AR kinase). We report that the purified and reconstituted chick heart muscarinic receptor serves as an excellent substrate in vitro for the beta-AR kinase. Phosphorylation of mAChR receptors by the beta-AR kinase was only observed in the presence of a muscarinic receptor agonist and was prevented in the presence of antagonist. Both the extent of phosphorylation (3-4 mol of P/mol of receptor) and the phosphoamino acid composition of the mAChR after incubation in vitro with beta-AR kinase were similar to the characteristics of agonist-induced phosphorylation of mAChR in situ.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
When a partially purified insulin receptor preparation immobilized on insulin-agarose is incubated with [gamma-32P]ATP, Mn2+, and Mg2+ ions, the receptor beta subunit becomes 32P-labeled. The 32P-labeling of the insulin receptor beta subunit is increased by 2-3-fold when src kinase is included in the phosphorylation reaction. In addition, the presence of src kinase results in the phosphorylation of a Mr = 125,000 species. The Mr = 93,000 receptor beta subunit and the Mr = 125,000 32P-labeled bands are absent when an insulin receptor-deficient sample, prepared by the inclusion of excess free insulin to inhibit the adsorption of the receptor to the insulin-agarose, is phosphorylated in the presence of the src kinase. These results indicate that the insulin receptor alpha and beta subunits are phosphorylated by the src kinase. The src kinase-catalyzed phosphorylation of the insulin receptor is not due to the activation of receptor autophosphorylation because a N-ethylmaleimide-treated receptor preparation devoid of receptor kinase activity is also phosphorylated by the src kinase. Conversely, the insulin receptor kinase does not catalyze phosphorylation of the active or N-ethylmaleimide-inactivated src kinase. Subsequent to src kinase-mediated tyrosine phosphorylation, the insulin receptor, either immobilized on insulin-agarose or in detergent extracts, exhibits a 2-fold increase in associated kinase activity using histone as substrate. src kinase mediates phosphorylation of predominantly tyrosine residues on both alpha and beta subunits of the insulin receptor. Tryptic peptide mapping of the 32P-labeled receptor alpha and beta subunits by high pressure liquid chromatography reveals that the src kinase-mediated phosphorylation sites on both receptor subunits exhibit elution profiles identical with those phosphorylated by the receptor kinase. Furthermore, the HPLC elution profile of the receptor auto- or src kinase-catalyzed phosphorylation sites on the receptor alpha subunit are also identical with that on the receptor beta subunit. These results indicate that: the src kinase catalyzes tyrosine phosphorylation of the insulin receptor alpha and beta subunits; and src kinase-catalyzed phosphorylation of insulin receptor can mimic the action of autophosphorylation to activate the insulin receptor kinase in vitro, although whether this occurs in intact cells remains to be determined.  相似文献   

6.
In response to insulin, tyrosine kinase activity of the insulin receptor is stimulated, leading to autophosphorylation and tyrosine phosphorylation of proteins including insulin receptor subunit (IRS)-1, IRS-2, and Shc. Phosphorylation of these proteins leads to activation of downstream events that mediate insulin action. Insulin receptor kinase activity is requisite for the biological effects of insulin, and understanding regulation of insulin receptor phosphorylation and kinase activity is essential to understanding insulin action. Receptor tyrosine kinase activity may be altered by direct changes in tyrosine kinase activity, itself, or by dephosphorylation of the insulin receptor by protein-tyrosine phosphatases. After 1 min of insulin stimulation, the insulin receptor was tyrosine phosphorylated 8-fold more and Shc was phosphorylated 50% less in 32D cells containing both IRS-1 and insulin receptors (32D/IR+IRS-1) than in 32D cells containing only insulin receptors (32D/IR), insulin receptors and IRS-2 (32D/IR+IRS-2), or insulin receptors and a form of IRS-1 that cannot be phosphorylated on tyrosine residues (32D/IR+IRS-1F18). Therefore, IRS-1 and IRS-2 appeared to have different effects on insulin receptor phosphorylation and downstream signaling. Preincubation of cells with pervanadate greatly decreased protein-tyrosine phosphatase activity in all four cell lines. After pervanadate treatment, tyrosine phosphorylation of insulin receptors in insulin-treated 32D/IR, 32D/ IR+IRS-2, and 32D/IR+IRS-1F18 cells was markedly increased, but pervanadate had no effect on insulin receptor phosphorylation in 32D/IR+IRS-1 cells. The presence of tyrosine-phosphorylated IRS-1 appears to increase insulin receptor tyrosine phosphorylation and potentially tyrosine kinase activity via inhibition of protein-tyrosine phosphatase(s). This effect of IRS-1 on insulin receptor phosphorylation is unique to IRS-1, as IRS-2 had no effect on insulin receptor tyrosine phosphorylation. Therefore, IRS-1 and IRS-2 appear to function differently in their effects on signaling downstream of the insulin receptor. IRS-1 may play a major role in regulating insulin receptor phosphorylation and enhancing downstream signaling after insulin stimulation.  相似文献   

7.
Exposure of beta 2-adrenergic receptors to agonists causes a rapid desensitization of the receptor-stimulated adenylyl cyclase, associated with an increased phosphorylation of the receptor. Agonist-promoted phosphorylation of the beta 2-adrenergic receptor (beta 2AR) by protein kinase A and the beta-adrenergic receptor kinase (beta ARK) is believed to promote a functional uncoupling of the receptor from the guanyl nucleotide regulatory protein Gs. More recently, palmitoylation of Cys341 of the receptor has also been proposed to play an important role in the coupling of the beta 2-adrenergic receptor to Gs. Here we report that substitution of the palmitoylated cysteine by a glycine (Gly341 beta 2 AR) using site directed mutagenesis leads to a receptor being highly phosphorylated and largely uncoupled from Gs. In Chinese hamster fibroblasts (CHW), stably transfected with the human receptor cDNAs, the basal phosphorylation level of Gly341 beta 2AR was found to be approximately 4 times that of the wild type receptor. This elevated phosphorylation level was accompanied by a depressed ability of the receptor to stimulate the adenylyl cyclase and to form a guanyl nucleotide-sensitive high affinity state for agonists. Moreover, exposure of this unpalmitoylated receptor to an agonist did not promote any further phosphorylation or uncoupling. A modest desensitization of the receptor-stimulated adenylyl cyclase response was observed but resulted from the agonist-induced sequestration of the unpalmitoylated receptor and could be blocked by concanavalin A. This contrasts with the agonist-promoted phosphorylation and uncoupling of the wild type receptor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A Chu  C Sumbilla  G Inesi  S D Jay  K P Campbell 《Biochemistry》1990,29(25):5899-5905
A systematic study of protein kinase activity and phosphorylation of membrane proteins by ATP was carried out with vesicular fragments of longitudinal tubules (light SR) and junctional terminal cisternae (JTC) derived from skeletal muscle sarcoplasmic reticulum (SR). Following incubation of JTC with ATP, a 170,000-Da glycoprotein, a 97,500-Da protein (glycogen phosphorylase), and a 55,000-60,000-Da doublet (containing calmodulin-dependent protein kinase subunit) underwent phosphorylation. Addition of calmodulin in the presence of Ca2+ (with no added protein kinase) produced a 10-fold increase of phosphorylation involving numerous JTC proteins, including the large (approximately 450,000 Da) ryanodine receptor protein. Calmodulin-dependent phosphorylation of the ryanodine receptor protein was unambiguously demonstrated by Western blot analysis. The specificity of these findings was demonstrated by much lower levels of calmodulin-dependent phosphorylation in light SR as compared to JTC, and by much lower cyclic AMP dependent kinase activity in both JTC and light SR. These observations indicate that the purified JTC contain membrane-bound calmodulin-dependent protein kinase that undergoes autophosphorylation and catalyzes phosphorylation of various membrane proteins. Protein dephosphorylation was very slow in the absence of added phosphatases, but was accelerated by the addition of phosphatase 1 and 2A (catalytic subunit) in the absence of Ca2+, and calcineurin in the presence of Ca2+. Therefore, in the muscle fiber, dephosphorylation of SR proteins relies on cytoplasmic phosphatases. No significant effect of protein phosphorylation was detected on the Ca2(+)-induced Ca2+ release exhibited by isolated JTC vesicles. However, the selective and prominent association of calmodulin-dependent protein kinase and related substrates with junctional membranes, its Ca2+ sensitivity, and its close proximity to the ryanodine and dihydropyridine receptor Ca2+ channels suggest that this phosphorylation system is involved in regulation of functions linked to these structures.  相似文献   

9.
The glutamic acid:tyrosine (Glu:Tyr) synthetic polymer was observed to inhibit the insulin receptor beta subunit autophosphorylation with an IC50 of 0.20 mg/ml in the absence and 0.15 mg/ml in the presence of insulin. Even though complete blockade of beta subunit autophosphorylation was observed at 4.0 mg/ml Glu:Tyr, insulin was still capable of stimulating the exogenous protein kinase activity of the insulin receptor toward Glu:Tyr. Histone H2B (1.3 mg/ml) was also observed to inhibit the beta subunit autophosphorylation by approximately 80% with an IC50 of 0.31 and 0.35 mg/ml in the absence and presence of insulin, respectively. Similar to the results with Glu:Tyr, insulin was found to stimulate histone H2B phosphorylation under these conditions. Comparisons between the time courses of beta subunit autophosphorylation with those of Glu:Tyr phosphorylation both in the presence and absence of insulin confirmed that insulin can stimulate the exogenous protein kinase activity of the insulin receptor in the complete absence of beta subunit autophosphorylation. Prephosphorylation of the insulin receptor (from 0 to 1.3 mol of phosphate/mol of insulin receptor) in the absence of insulin was found to have no significant effect on the exogenous protein kinase activity when assayed both in the presence and absence of insulin. Insulin was observed to stimulate the phosphorylation of Glu:Tyr approximately 3-fold independent of the extent of beta subunit autophosphorylation. In contrast, prephosphorylation of the insulin receptors in the presence of insulin was observed to enhance the exogenous protein kinase activity dependent on the extent of autophosphorylation, such that by 1.4 mol of phosphate incorporated per mol of insulin receptor, insulin was found to maximally stimulate the initial rate of Glu:Tyr phosphorylation (approximately 9-fold). These results demonstrate that the insulin-dependent autophosphorylation of the insulin receptor results in an amplification of the insulin stimulation of the exogenous protein kinase activity, whereas the insulin-independent autophosphorylation does not.  相似文献   

10.
11.
Lang B  Li H  Kang JF  Li YQ 《Life sciences》2003,73(7):893-905
Effects of norepinephrine (NE) on the glycine-mediated inhibitory response were investigated in neurons acutely dissociated from the rat spinal dorsal horn, using nystatin perforated patch recording mode under voltage-clamp conditions. NE reversibly and concentration dependently facilitated Cl(-) current induced by 3 x 10(-5) M glycine. NE neither changed the reversal potential of the glycine response nor affected the affinity of glycine to its receptor. This effect could be mimicked by clonidine (10(-7) M) and blocked by yohimbine (10(-6) M), respectively. N-[2(methylamino)ethyl]-5-isoquinoline sulfonamide dihydrochloride (H-89), an inhibitor of protein kinase A, effectively mimicked the effect of NE on glycine response, whereas chelerythrine (an inhibitor of protein kinase C) failed. NE further enhanced glycine response even in the presence of chelerythrine or stearoylcarnitine chloride (another inhibitor of protein kinase C) or chelerythrine together with stearoylcarnitine chloride. The present results suggest that alpha2-adrenoceptor is involved in the potentiation of NE on glycine response in freshly isolated spinal dorsal horn neurons. Activation of alpha2-adrenoceptor down-regulates the activity of protein kinase A that results in the potentiation of the glycinergic inhibitory effects within the spinal dorsal horn.  相似文献   

12.
cAMP-dependent protein kinase, protein kinase C, cGMP-dependent protein kinase, smooth muscle myosin light-chain kinase, and phosphorylase kinase were examined with respect to their ability to phosphorylate porcine atrial muscarinic receptors (mAcChRs). Experiments were performed both in detergent solution and in a reconstituted system containing the mAcChR alone or in the presence of the purified porcine atrial inhibitor guanine nucleotide binding protein (Gi). Only cAMP-dependent protein kinase was capable of phosphorylating the receptor under any of the experimental conditions examined. Phosphorylation of the mAcChR in the detergent-solubilized state resulted in a loss of ligand binding sites that was reversible upon treatment with calcineurin in the presence of calcium and calmodulin. Upon reconstitution, the apparent stoichiometry of phosphorylation was increased by about 15-fold. Carbachol-stimulated covalent incorporation of phosphate was found only in the reconstituted system in the presence of Gi, suggesting that the large agonist-stimulated increase in phosphorylation observed in vivo [Kwatra, M. M., & Hosey, M. M. (1986) J. Biol. Chem. 261, 12429-12432] may in part result from a unique receptor conformation that occurs upon association with this protein. Ligand binding studies indicated that phosphorylation of the mAcChR in the detergent-solubilized or reconstituted state did not affect its interaction with carbachol or L-quinuclidinyl benzilate in vitro. Carbachol-induced stimulation of the GTPase activity of Gi in the reconstituted system was also unaffected by phosphorylation.  相似文献   

13.
Phosphorylation of the adipocyte lipid-binding protein (ALBP) isolated from 3T3-L1 cells has been studied in vitro utilizing the wheat germ agglutinin-purified 3T3-L1 adipocyte insulin receptor and the soluble kinase domain of the human insulin receptor. Following insulin-stimulated, ATP-dependent autophosphorylation of the wheat germ agglutinin-purified receptor beta-subunit, ALBP was phosphorylated exclusively on tyrosine 19 in the sequence Glu-Asn-Phe-Asp-Asp-Tyr19, analogous to the substrate phosphorylation consensus sequence observed for several tyrosyl kinases. The concentration of insulin necessary for half-maximal receptor autophosphorylation (KIR0.5) was identical to that necessary for half-maximal ALBP phosphorylation (KALBP0.5), 10 nM. Kinetic analysis indicated that stimulation of ALBP phosphorylation by insulin was attributable to a 5-fold increase in the Vmax (to 0.33 fmol/min/fmol insulin-binding sites) while the Km for ALBP was largely unaffected. By utilizing the soluble kinase domain of the human receptor beta-subunit, the presence of oleate bound to ALBP increased the kcat/Km greater than 3-fold. Oleate dramatically inhibited autophosphorylation of the 38-kDa fragment of the soluble receptor kinase in a concentration dependent fashion (I0.5 approximately 4 microM). The 48-kDa kinase exhibited much less sensitivity to the effects of oleate (I0.5 approximately 190 microM). The inhibition of autophosphorylation of the 48-kDa soluble kinase by oleate was reversed by adding saturating levels of ALBP. These results demonstrate that in vitro the murine adipocyte lipid-binding protein is phosphorylated on tyrosine 19 in an insulin-stimulated fashion by the insulin receptor and that the presence of a bound fatty acid on ALBP increases the affinity of insulin receptor for ALBP. Inhibition of insulin receptor kinase activity by unbound fatty acids suggests that the end products of the lipogenic pathway may feedback inhibit the tyrosyl kinase and that fatty acid-binding proteins have the potential to modulate such interaction.  相似文献   

14.
The beta-adrenergic receptor (beta AR) kinase is a recently discovered enzyme which specifically phosphorylates the agonist-occupied form of the beta-adrenergic receptor. We have utilized the agonist-dependent nature of this phosphorylation reaction to characterize the ability of partial agonists to interact with the receptor. Partial agonists were tested for their ability to: 1) stimulate adenylate cyclase activity in a three-component reconstituted system, and 2) promote phosphorylation of beta AR by beta AR kinase. There is an excellent correlation between the ability of partial agonists to stimulate adenylate cyclase activity and promote receptor phosphorylation by beta AR kinase (y = 1.02x-0.01, r = 0.996, p less than 0.001). Peptide maps of receptor phosphorylated by beta AR kinase in the presence of full or partial agonists are virtually identical with the partial agonist pattern reduced in intensity. Moreover, kinetic studies of beta AR phosphorylation by beta AR kinase suggest that partial agonists alter the Vmax of the reaction with little, if any, effect on the Km. These results suggest that at steady state partial agonists transform a smaller portion of the receptor pool into the conformationally altered or activated form which serves as the substrate for beta AR kinase, although they do not completely rule out the possibility that a partial conformational change is occurring.  相似文献   

15.
Insulin causes rapid phosphorylation of the beta subunit (Mr = 95,000) of its receptor in broken cell preparations. This occurs on tyrosine residues and is due to activation of a protein kinase which is contained in the receptor itself. In the intact cell, insulin also stimulates the phosphorylation of the receptor and other cellular proteins on serine and threonine residues. In an attempt to find a protein that might link the receptor tyrosine kinase to these serine/threonine phosphorylation reactions, we have studied the interaction of a partially purified preparation of insulin receptor with purified preparations of serine/threonine kinases known to phosphorylate glycogen synthase. No insulin-dependent phosphorylation was observed when casein kinases I and II, phosphorylase kinase, or glycogen synthase kinase 3 was incubated in vitro with the insulin receptor. These kinases also failed to phosphorylate the receptor. By contrast, the insulin receptor kinase catalyzed the phosphorylation of the calmodulin-dependent kinase and addition of insulin in vitro resulted in a 40% increase in this phosphorylation. In the presence of calmodulin-dependent kinase and the insulin receptor kinase, insulin also stimulated the phosphorylation of calmodulin. Phosphoamino acid analysis showed an increase of phosphotyrosine content in both calmodulin and calmodulin-dependent protein kinase. These data suggest that the insulin receptor kinase may interact directly and specifically with the calmodulin-dependent kinase and calmodulin. Further studies will be required to determine if these phosphorylations modify the action of these regulatory proteins.  相似文献   

16.
The androgen receptor was purified from rat ventral prostate. The purified receptor migrated as a single band of mol. wt. 87000 on SDS-polyacrylamide gels, had a kd for R-1881 (17 beta-hydroxy-17 alpha-methyl-estra-4,9,11-trien-3-one) binding as 6 nM, and sedimentation coefficient of 4.5 S. Phosphorylation of the purified receptor was studied by incubating it with [gamma-32P]ATP in the presence of several purified protein kinases including cAMP-dependent protein kinase, and four cAMP-independent protein kinases (which were active towards substrates such as phosvitin and casein). Phosphorylation of the 87000 mol. wt. androgen receptor protein occurred only in the presence of a nuclear cAMP-independent protein kinase (of the N2 type). No auto-phosphorylation of the receptor was detected. The results indicate that the androgen receptor is a phosphoprotein. Further, phosphorylation of the androgen receptor by only a specific nuclear cAMP-independent protein kinase may be important in determining the dynamics of its function.  相似文献   

17.
In gastrointestinal smooth muscle cells, VPAC(2) receptor desensitization is exclusively mediated by G protein-coupled receptor kinase 2 (GRK2). The present study examined the mechanisms by which acetylcholine (ACh) acting via M(3) receptors regulates GRK2-mediated VPAC(2) receptor desensitization in gastric smooth muscle cells. Vasoactive intestinal peptide induced VPAC(2) receptor phosphorylation, internalization, and desensitization in both freshly dispersed and cultured smooth muscle cells. Costimulation with ACh in the presence of M(2) receptor antagonist (i.e., activation of M(3) receptors) inhibited VPAC(2) receptor phosphorylation, internalization, and desensitization. Inhibition was blocked by the selective protein kinase C (PKC) inhibitor bisindolylmaleimide, suggesting that the inhibition was mediated by PKC, derived from M(3) receptor activation. Similar results were obtained by direct activation of PKC with phorbol myristate acetate. In the presence of the M(2) receptor antagonist, ACh induced phosphorylation of Raf kinase inhibitory protein (RKIP), increased RKIP-GRK2 association, decreased RKIP-Raf-1 association, and stimulated ERK1/2 activity, suggesting that, upon phosphorylation by PKC, RKIP dissociates from its known target Raf to associate with, and block the activity of, GRK2. In muscle cells expressing RKIP(S153A), which lacks the PKC phosphorylation site, RKIP phosphorylation was blocked and the inhibitory effect of ACh on VPAC(2) receptor phosphorylation, internalization, and desensitization and the stimulatory effect on ERK1/2 activation were abolished. This study identified a novel mechanism of cross-regulation of G(s)-coupled receptor phosphorylation and internalization by G(q)-coupled receptors. The mechanism involved phosphorylation of RKIP by PKC, switching RKIP from association with Raf-1 to association with, and inhibition of, GRK2.  相似文献   

18.
The regulation of kinase activity associated with insulin receptor by phosphorylation and dephosphorylation has been examined using partially purified receptor immobilized on insulin-agarose. The immobilized receptor preparation exhibits predominately tyrosine but also serine and threonine kinase activities toward insulin receptor beta subunit and exogenous histone. Phosphorylation of the insulin receptor preparation with increasing concentrations of unlabeled ATP, followed by washing to remove the unreacted ATP, results in a progressive activation of the receptor kinase activity when assayed in the presence of histone and [gamma-32P]ATP. A maximal 4-fold activation is achieved by prior incubation of receptor with concentrations of ATP approaching 1 mM. High pressure liquid chromatographic analysis of tryptic hydrolysates of the 32P-labeled insulin receptor beta subunit reveals three domains of phosphorylation (designated peaks 1, 2, and 3). Phosphotyrosine and phosphoserine residues are present in these three domains while peak 2 contains phosphothreonine as well. Thus, at least seven sites are available for phosphorylation on the beta subunit of the insulin receptor. Incubation of the phosphorylated insulin receptor with alkaline phosphatase at 15 degrees C results in the selective dephosphorylation of the phosphotyrosine residues on the beta subunit of the receptor while the phosphoserine and phosphothreonine contents are not affected. The dephosphorylation of the receptor is accompanied by a marked 65% inhibition of the receptor kinase activity. Almost 90% of the decrease in [32P]phosphate content of the receptor after alkaline phosphatase treatment is accounted for by a decrease in phosphotyrosine content in peak 2, while very small decreases are observed in peaks 1 and 3, respectively. These results demonstrate that the extent of phosphorylation of tyrosine residues in receptor domain 2 closely parallels the receptor kinase activity state, suggesting phosphorylation of this domain may play a key role in regulating the insulin receptor tyrosine kinase.  相似文献   

19.
Her4 is a transmembrane receptor tyrosine kinase belonging to the ErbB-EGFR family. It plays a vital role in the cardiovascular and nervous systems, and mutations in Her4 have been found in melanoma and lung cancer. The kinase domain of Her4 forms a dimer complex, called the asymmetric dimer, which results in kinase activation. Although a crystal structure of the Her4 asymmetric dimer is known, the dimer affinity and the effect of the subsequent phosphorylation steps on kinase domain conformation are unknown. We report here the use of carboxyl-group footprinting MS on a recombinant expressed, Her4 kinase-domain construct to address these questions. Carboxyl-group footprinting uses a water-soluble carbodiimide, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, in the presence of glycine ethyl ester, to modify accessible carboxyl groups on glutamate and aspartate residues. Comparisons of Her4 kinase-domain monomers versus dimers and of unphosphorylated versus phosphorylated dimers were made to map the dimerization interface and to determine phosphorylation induced-conformational changes. We detected 37 glutamate and aspartate residues that were modified, and we quantified their extents of modification by liquid chromatography MS. Five residues showed changes in carboxyl-group modification. Three of these residues are at the predicted dimer interface, as shown by the crystal structure, and the remaining two residues are on loops that likely have altered conformation in the kinase dimer. Incubating the Her4 kinase dimers with ATP resulted in dramatic increase in Tyr-850 phosphorylation, located on the activation loop, and this resulted in a conformational change in this loop, as evidenced by reduction in carboxyl-group modification. The kinase monomer-dimer equilibrium was measured using a titration format in which the extent of carboxyl-group footprinting was mathematically modeled to give the dimer association constant (1.5-6.8 × 10(12) dm(2)/mol). This suggests that the kinase-domain makes a significant contribution to the overall dimerization affinity of the full-length Her4 protein.  相似文献   

20.
Previous in vivo studies have shown that the rabbit progesterone receptor undergoes two phosphorylation reactions: one basal and a second one which is hormone-dependent. We report here on the presence and characteristics of a kinase activity found in receptor preparations highly purified by immunoaffinity chromatography. 1. This kinase activity is not due to the receptor molecule itself since the two proteins may be separated by several chromatographic and immunological methods. 2. The presence of the kinase in receptor preparations is not an artefact of the purification procedure. The kinase binds to the receptor as shown by coelution in immunoaffinity experiments and during various chromatographies. This interaction probably takes place in vivo and is not artefactually formed during solubilization of the receptor since the kinase also copurifies with receptors isolated from the uterine nuclei of progestin-treated rabbits. 3. This enzyme may be classified as a casein kinase since it readily phosphorylates the latter substrate (Km approximately equal to 0.15 mg/ml) and is not regulated by cyclic nucleotides, Ca2+ and calmodulin or phospholipids. Its classification as a casein kinase I or II is difficult since on the one hand it is inhibited by heparin, activated by polyamines and may use both ATP and GTP, but on the other hand it modifies only serine residues, and is not inhibited by heparin when the receptor itself is employed as a substrate. 4. The kinase which copurifies with the receptor does not mimic in vitro the effects of the hormone-dependent phosphorylation of the receptor observed in vivo: there is no enhancement of kinase activity by the hormone, and the phosphorylated receptor does not exhibit the characteristic "upshift" in its electrophoretic mobility. Thus either this kinase is not the enzyme responsible for the hormone-dependent receptor phosphorylation or, during purification, a factor has been lost which is necessary for retaining the hormone dependency of the reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号