首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Teng N  Wang J  Chen T  Wu X  Wang Y  Lin J 《The New phytologist》2006,172(1):92-103
Leaves of Arabidopsis thaliana grown under elevated or ambient CO2 (700 or 370 micromol mol(-1), respectively) were examined for physiological, biochemical and structural changes. Stomatal characters, carbohydrate and mineral nutrient concentrations, leaf ultrastructure and plant hormone content were investigated using atomic absorption spectrophotometry, transmission electron microscopy and enzyme-linked immunosorbent assay (ELISA). Elevated CO2 reduced the stomatal density and stomatal index of leaves, and also reduced stomatal conductance and transpiration rate. Elevated CO2 increased chloroplast number, width and profile area, and starch grain size and number, but reduced the number of grana thylakoid membranes. Under elevated CO2, the concentrations of carbohydrates and plant hormones, with the exception of abscisic acid, increased whereas mineral nutrient concentrations declined. These results suggest that the changes in chloroplast ultrastructure may primarily be a consequence of increased starch accumulation. Accelerated A. thaliana growth and development in elevated CO2 could in part be attributed to increased foliar concentrations of plant hormones. The reductions in mineral nutrient concentrations may be a result of dilution by increased concentrations of carbohydrates and also of decreases in stomatal conductance and transpiration rate.  相似文献   

2.
An increase in leaf mass per area (MLA) of plants grown at elevated [CO2] is often accompanied by accumulation of non-structural carbohydrates, and has been considered to be a response resulting from source-sink imbalance. We hypothesized that the increase in MLA benefits plants by increasing the net assimilation rate through maintaining a high leaf nitrogen content per area (NLA). To test this hypothesis, Polygonum cuspidatum was grown at ambient (370 micro mol mol-1) and elevated (700 micro mol mol-1) [CO2] with three levels of N supply. Elevated [CO2] significantly increased MLA with smaller effects on NLA and leaf mass ratio (fLM). The effect of change in MLA on plant growth was investigated by the sensitivity analysis: MLA values observed at ambient and elevated [CO2] were substituted into a steady-state growth model to calculate the relative growth rate (R). At ambient [CO2], substitution of a high MLA (observed at elevated [CO2]) did not increase R, compared with R for a low MLA (observed at ambient [CO2]), whereas at elevated [CO2] the high MLA always increased R compared with R at the low MLA. These results suggest that the increase in MLA contributes to growth enhancement under elevated [CO2]. The optimal combination of fLM and MLA to maximize R was determined for different [CO2] and N availabilities. The optimal fLM was nearly constant, while the optimal MLA increased at elevated [CO2], and decreased at higher N availabilities. The changes in fLM of actual plants may compensate for the limited plasticity of MLA.  相似文献   

3.
Optimal nitrogen allocation controls tree responses to elevated CO2   总被引:1,自引:0,他引:1  
Despite the abundance of experimental data, understanding of forest responses to elevated CO2 is limited. Here I show that a key to previously unexplained production and leaf area responses lies in the interplay between whole-plant nitrogen (N) allocation and leaf photosynthesis. A simple tree growth model, controlled by net growth maximization through optimization of leaf area index (LAI) and plant N, is used to analyse CO2 responses in both young, expanding and closed, steady-state canopies. The responses are sensitive to only two independent parameters, the photosynthetic capacity per leaf N (a) and the fine-root N:leaf N ratio. The model explains observed CO2 responses of photosynthesis, production and LAI in four forest free air CO2 enrichment (FACE) experiments. Insensitivity of LAI except at low LAI, increase in light-use efficiency, and photosynthetic down-regulation (as a result of reduced leaf N per area) at elevated CO2 are all explained through the combined effects on a and leaf quantum efficiency. The model bridges the gap between the understanding of leaf-level and plant-level responses and provides a transparent framework for interpreting and linking structural (LAI) and functional (net primary production (NPP):gross primary production (GPP) ratio, light-use efficiency, photosynthetic down-regulation) responses to elevated CO2.  相似文献   

4.
Light and soil water content affect leaf surface area expansion through modifications in epidermal cell numbers and area, while effects on leaf thickness and mesophyll cell volumes are far less documented. Here, three-dimensional imaging was applied in a study of Arabidopsis thaliana leaf growth to determine leaf thickness and the cellular organization of mesophyll tissues under moderate soil water deficit and two cumulative light conditions. In contrast to surface area, thickness was highly conserved in response to water deficit under both low and high cumulative light regimes. Unlike epidermal and palisade mesophyll tissues, no reductions in cell number were observed in the spongy mesophyll; cells had rather changed in volume and shape. Furthermore, leaf features of a selection of genotypes affected in leaf functioning were analysed. The low-starch mutant pgm had very thick leaves because of unusually large palisade mesophyll cells, together with high levels of photosynthesis and stomatal conductance. By means of an open stomata mutant and a 9-cis-epoxycarotenoid dioxygenase overexpressor, it was shown that stomatal conductance does not necessarily have a major impact on leaf dimensions and cellular organization, pointing to additional mechanisms for the control of CO(2) diffusion under high and low stomatal conductance, respectively.  相似文献   

5.
6.
7.
Eimert K  Wang SM  Lue WI  Chen J 《The Plant cell》1995,7(10):1703-1712
A recessive Arabidopsis mutation, carbohydrate accumulation mutant1 (cam1), which maps to position 22.8 on chromosome 3, was identified by screening leaves of ethyl methanesulfonate-mutagenized M2 plants stained with iodine for altered starch content. Increased starch content in leaves of the cam1 mutant was observed at the onset of flowering. This mutant also had a delayed floral initiation phenotype with more rosette leaves than the parental line. In addition, activities of several enzymes associated with starch metabolism were altered in the cam1 mutant. The late-flowering mutant gigantea (gi) also manifested an elevated starch level in leaves. However, not all late-flowering mutants had increased leaf starch content. Double mutants cam1 adg1 (for ADP-glucose pyrophosphorylase), cam1 pgm (for phosphoglucomutase), and gi pgm had no observable starch in leaves but showed the late-flowering phenotype, demonstrating that the elevated starch content is not the cause of late floral initiation. The pleiotropic effects of cam1 and gi suggest that they may play regulatory roles in starch metabolism and floral initiation. These data suggest that starch accumulation and floral initiation may share a common regulatory pathway.  相似文献   

8.
To understand the growth response to drought, we performed a proteomics study in the leaf growth zone of maize (Zea mays L.) seedlings and functionally characterized the role of starch biosynthesis in the regulation of growth, photosynthesis and antioxidant capacity, using the shrunken-2 mutant (sh2), defective in ADP-glucose pyrophosphorylase. Drought altered the abundance of 284 proteins overrepresented for photosynthesis, amino acid, sugar and starch metabolism, and redox-regulation. Changes in protein levels correlated with enzyme activities (increased ATP synthase, cysteine synthase, starch synthase, RuBisCo, peroxiredoxin, glutaredoxin, thioredoxin and decreased triosephosphate isomerase, ferredoxin, cellulose synthase activities, respectively) and metabolite concentrations (increased ATP, cysteine, glycine, serine, starch, proline and decreased cellulose levels). The sh2 mutant showed a reduced increase of starch levels under drought conditions, leading to soluble sugar starvation at the end of the night and correlating with an inhibition of leaf growth rates. Increased RuBisCo activity and pigment concentrations observed in WT, in response to drought, were lacking in the mutant, which suffered more oxidative damage and recovered more slowly after re-watering. These results demonstrate that starch biosynthesis contributes to maintaining leaf growth under drought stress and facilitates enhanced carbon acquisition upon recovery.  相似文献   

9.
Few studies regarding the effects of elevated atmospheric CO(2) concentrations on plant lipid metabolism have been carried out. Here, the effects of elevated CO(2) concentration on lipid composition in mature seeds and in leaves during the diurnal cycle of Arabidopsis thaliana were investigated. Plants were grown in controlled climate chambers at elevated (800 ppm) and ambient CO(2) concentrations. Lipids were extracted and characterized using thin layer chromatography (TLC) and gas liquid chromatography. The fatty acid profile of total leaf lipids showed large diurnal variations. However, the elevated CO(2) concentration did not induce any significant differences in the diurnal pattern compared with the ambient concentration. The major chloroplast lipids monogalactosyldiacylglycerol (MGDG) and phosphatidylglycerol (PG) were decreased at elevated CO(2) in favour of phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Elevated CO(2) produced a 25% lower ratio of 16:1trans to 16:0 in PG compared with the ambient concentration. With good nutrient supply, growth at elevated CO(2) did not significantly affect single seed weight, total seed mass, oil yield per seed, or the fatty acid profile of the seeds. This study has shown that elevated CO(2) induced changes in leaf lipid composition in A. thaliana, whereas seed lipids were unaffected.  相似文献   

10.
The long-term response of leaf photosynthesis to rising CO2 concentrations [CO2] depends on biochemical and morphological feedbacks. Additionally, responses to elevated [CO2] might depend on the nutrient availability and the light environment, affecting the net carbon uptake of a forest stand. After 6 yr of exposure to free-air CO2 enrichment (EUROFACE) during two rotation cycles (with fertilization during the second cycle), profiles of light, leaf characteristics and photosynthetic parameters were measured in the closed canopy of a poplar (Populus) short-rotation coppice. Net photosynthetic rate (A(growth)) was 49% higher in poplars grown in elevated [CO2], independently of the canopy position. Jmax significantly increased (15%), whereas leaf carboxylation capacity (Vcmax), leaf nitrogen (N(a)) and chlorophyll (Chl(a)) were unaffected in elevated [CO2]. Leaf mass per unit area (LMA) increased in the upper canopy. Fertilization created more leaves in the top of the crown. These results suggest that the photosynthetic stimulation by elevated [CO2] in a closed-canopy poplar coppice might be sustained in the long term. The absence of any down-regulation, given a sufficient sink capacity and nutrient availability, provides more carbon for growth and storage in this bioenergy plantation.  相似文献   

11.
Potato plants (Solanum tuberosum cv. Bintje) were grown in open top chambers under ambient (400 microL L(-1)) and elevated CO2 (720 microL L(-1)). After 50 days one half of each group was transferred to the other CO2 concentration and the effects were studied in relation to leaf age (old, middle-aged and young leaves) in each of the four groups. Under long-term exposure to elevated CO2, photosynthesis increased between 10% and 40% compared to ambient CO2. A subsequent shift of the same plants to ambient CO2 caused a 20-40% decline in photosynthetic rate, which was most pronounced in young leaves. After shifting from long-term ambient to elevated CO2, photosynthesis also increased most strongly in young leaves (90%); these experiments show that photosynthesis was downregulated in the upper young fully expanded leaves of potato growing long-term under elevated CO2. Soluble sugar content in all leaf classes under long-term exposure was stable irrespective of the CO2 treatment, however under elevated CO2 young leaves showed a strongly increased starch accumulation (up to 400%). In all leaf classes starch levels dropped in response to the shift from 720 to 400 microL L(-1) approaching ambient CO2 levels. After the shift to 720 microL L(-1), sucrose and starch levels increased, principally in young Leaves. There is clear evidence that leaves of different age vary in their responses to changes in atmospheric CO2 concentration.  相似文献   

12.
Long-term exposure of plants to elevated [CO2] leads to a number of growth and physiological effects, many of which are interpreted in the context of ameliorating the negative impacts of drought. However, despite considerable study, a clear picture in terms of the influence of elevated [CO2] on plant water relations and the role that these effects play in determining the response of plants to elevated [CO2] under water-limited conditions has been slow to emerge. In this paper, four areas of research are examined that represent critical, yet uncertain, themes related to the response of plants to elevated [CO2] and drought. These include (1) fine-root proliferation and implications for whole-plant water uptake; (2) enhanced water-use efficiency and consequences for drought tolerance; (3) reductions in stomatal conductance and impacts on leaf water potential; and (4) solute accumulation, osmotic adjustment and dehydration tolerance of leaves. A survey of the literature indicates that the growth of plants at elevated [CO2] can lead to conditions whereby plants maintain higher (less negative) leaf water potentials. The mechanisms that contribute to this effect are not fully known, although CO2-induced reductions in stomatal conductance, increases in whole-plant hydraulic conductance and osmotic adjustment may be important. Less understood are the interactive effects of elevated [CO2] and drought on fine-root production and water-use efficiency, and the contribution of these processes to plant growth in water-limited environments. Increases in water-use efficiency and reductions in water use can contribute to enhanced soil water content under elevated [CO2]. Herbaceous crops and grasslands are most responsive in this regard. The conservation of soil water at elevated [CO2] in other systems has been less studied, but in terms of maintaining growth or carbon gain during drought, the benefits of CO2-induced improvements in soil water content appear relatively minor. Nonetheless, because even small effects of elevated [CO2] on plant and soil water relations can have important implications for ecosystems, we conclude that this area of research deserves continued investigation. Future studies that focus on cellular mechanisms of plant response to elevated [CO2] and drought are needed, as are whole-plant investigations that emphasize the integration of processes throughout the soil--plant--atmosphere continuum. We suggest that the hydraulic principles that govern water transport provide an integrating framework that would allow CO2-induced changes in stomatal conductance, leaf water potential, root growth and other processes to be uniquely evaluated within the context of whole-plant hydraulic conductance and water transport efficiency.  相似文献   

13.
We examined the effect of manipulating photosystem II (PSII) redox poise on respiratory flux in leaves of Arabidopsis thaliana. Measurements were made on wild-type (WT) plants and npq4 mutant plants deficient in non-photochemical quenching (NPQ). Two experiments were carried out. In the first experiment, WT and mutant warm-grown plants were exposed to three different irradiance regimes [75, 150 and 300 micromol photosynthetically active radiation (PAR)], and leaf dark respiration was measured in conjunction with PSII redox poise. In the second experiment, WT and mutant warm-grown plants were shifted to 5 degrees C and 75, 150 or 300 micromol PAR, and dark respiration was measured alongside PSII redox poise in cold-treated and cold-developed leaves. Despite significant differences in PSII redox poise between genotypes and irradiance treatments, neither genotype nor growth irradiance had any effect upon the rate of respiration in warm-grown, cold-treated or cold-developed leaves. We conclude that changes in PSII redox poise, at least within the range experienced here, have no direct impacts on rates of leaf dark respiration, and that the respiratory cold acclimation response is unrelated to changes in chloroplast redox poise.  相似文献   

14.
15.
Poplar trees sustain close to the predicted increase in leaf photosynthesis when grown under long-term elevated CO2 concentration ([CO2]). To investigate the mechanisms underlying this response, carbohydrate accumulation and protein expression were determined over four seasons of growth. No increase in the levels of soluble carbohydrates was observed in the young expanding or mature sun leaves of the three poplar genotypes during this period. However, substantial increases in starch levels were observed in the mature leaves of all three poplar genotypes grown in elevated [CO2]. Despite the very high starch levels, no changes in the expression of photosynthetic Calvin cycle proteins, or in the starch biosynthetic enzyme ADP-glucose pyrophosphorylase (AGPase), were observed. This suggested that no long-term photosynthetic acclimation to CO2 occurred in these plants. Our data indicate that poplar trees are able to 'escape' from long-term, acclimatory down-regulation of photosynthesis through a high capacity for starch synthesis and carbon export. These findings show that these poplar genotypes are well suited to the elevated [CO2] conditions forecast for the middle of this century and may be particularly suited for planting for the long-term carbon sequestration into wood.  相似文献   

16.
Plant growth, photosynthesis and leaf constituents were examined in the wild-type (WT) and mutant nar1 of barley (Hordeum vulgare L. cv. Steptoe) that contains a defective structural gene encoding NADH-dependent nitrate reductase (NADH-NAR). In controlled environment experiments, total biomass, rates of photosynthesis, stomatal conductance, intercellular CO(2) concentrations and foliar non-structural carbohydrate levels were unchanged or differed slightly in the mutant compared with the WT. Both genotypes displayed accelerated plant growth rates when the CO(2) partial pressure was increased from 36 to 98 Pa. Total NADH-NAR activity was 90% lower in the mutant than in the WT, and this was further decreased by CO(2) enrichment in both genotypes. Inorganic nitrate was greater in the mutant than in the WT, whereas in situ nitrate assimilation by excised leaves was two-fold greater for the WT than for the mutant. Foliar ammonia was 50% lower in the mutant than in the WT under ambient CO(2). Ammonia levels in the WT were decreased by about one-half by CO(2) enrichment, whereas ammonia was unaffected by elevated CO(2) in mutant leaves. Total soluble amino acid concentrations in WT and mutant plants grown in the ambient CO(2) treatment were 30.1 and 28.4 micromol g(-1) FW, respectively, when measured at the onset of the light period. Seven of the twelve individual amino acids reported here increased during the first 12 h of light in the ambient CO(2) treatment, leading to a doubling of total soluble amino acids in the WT. The most striking effect of the mutation was to eliminate increases of glutamine, aspartate and alanine during the latter half of the photoperiod in the ambient CO(2) treatment. Growth in elevated CO(2) decreased levels of total soluble amino acids on a diurnal basis in the WT but not in mutant barley leaves. The above results indicated that a defect in NADH-NAR primarily affected nitrogenous leaf constituents in barley. Also, we did not observe synergistic effects of CO(2) enrichment and decreased foliar NADH-NAR activity on most N-containing compounds.  相似文献   

17.
A field study was carried out to quantify plant growth and the foliar chemistry of transgenic Bacillus thuringiensis (Bt) cotton (cv. GK-12) exposed to ambient CO2 and elevated (double-ambient) CO2 for different lengths of time (1, 2 and 3 months) in 2004 and 2005. The results indicated that CO2 levels significantly affected plant height, leaf area per plant and leaf chemistry of transgenic Bt cotton. Significantly, higher plant height and leaf area per plant were observed after cotton plants that were grown in elevated CO2 were compared with plants grown in ambient CO2 for 1, 2 and 3 months in the investigation. Simultaneously, significant interaction between CO2 level x investigating year was observed in leaf area per plant. Moreover, foliar total amino acids were increased by 14%, 13%, 11% and 12%, 14%, 10% in transgenic Bt cotton after exposed to elevated CO2 for 1, 2 or 3 months compared with ambient CO2 in 2004 and 2005, respectively. Condensed tannin occurrence increased by 17%, 11%, 9% in 2004 and 12%, 11%, 9% in 2005 in transgenic Bt cotton after being exposed to elevated CO2 for 1, 2 or 3 months compared with ambient CO2 for the same time. However, Bt toxin decreased by 3.0%, 2.9%, 3.1% and 2.4%, 2.5%, 2.9% in transgenic Bt cotton after exposed to elevated CO2 for 1, 2 or 3months compared with ambient CO2 for same time in 2004 and 2005, respectively. Furthermore, there was prominent interaction on the foliar total amino acids between the CO2 level and the time of cotton plant being exposed to elevated CO2. It is presumed that elevated CO2 can alter the plant growth and hence ultimately the phenotype allocation to foliar chemistical components of transgenic Bt cotton, which may in turn, affect the plant-herbivore interactions.  相似文献   

18.
Image sequence processing methods were applied to study the effect of elevated CO2 on the diel leaf growth cycle for the first time in a dicot plant. Growing leaves of Populus deltoides, in stands maintained under ambient and elevated CO2 for up to 4 years, showed a high degree of heterogeneity and pronounced diel variations of their relative growth rate (RGR) with maxima at dusk. At the beginning of the season, leaf growth did not differ between treatments. At the end of the season, final individual leaf area and total leaf biomass of the canopy was increased in elevated CO2. Increased final leaf area at elevated CO2 was achieved via a prolonged phase of leaf expansion activity and not via larger leaf size upon emergence. The fraction of leaves growing at 30–40% day?1 was increased by a factor of two in the elevated CO2 treatment. A transient minimum of leaf expansion developed during the late afternoon in leaves grown under elevated CO2 as the growing season progressed. During this minimum, leaves grown under elevated CO2 decreased their RGR to 50% of the ambient value. The transient growth minimum in the afternoon was correlated with a transient depletion of glucose (less than 50%) in the growing leaf in elevated CO2, suggesting diversion of glucose to starch or other carbohydrates, making this substrate temporarily unavailable for growth. Increased leaf growth was observed at the end of the night in elevated CO2. Net CO2 exchange and starch concentration of growing leaves was higher in elevated CO2. The extent to which the transient reduction in diel leaf growth might dampen the overall growth response of these trees to elevated CO2 is discussed.  相似文献   

19.
20.
Sugarcane (Saccharum officinarum L. cv. CP72-2086) was grown in sunlit greenhouses at daytime [CO(2)] of 360 (ambient) and 720 (elevated)mumolmol(-1). Drought stress was imposed for 13d when plants were 4 months old, and various photosynthetic parameters and levels of nonstructural carbohydrates were determined for uppermost fully expanded leaves of well-watered (control) and drought stress plants. Control plants at elevated [CO(2)] were 34% and 25% lower in leaf stomatal conductance (g(s)) and transpiration rate (E) and 35% greater in leaf water-use efficiency (WUE) than their counterparts at ambient [CO(2)]. Leaf CO(2) exchange rate (CER) and activities of Rubisco, NADP-malate dehydrogenase, NADP-malic enzyme and pyruvate P(i) dikinase were marginally affected by elevated [CO(2)], but were reduced by drought, whereas activity of PEP carboxylase was reduced by elevated [CO(2)], but not by drought. At severe drought developed at day 12, leaf g(s) and WUE of ambient-[CO(2)] stress plants declined to 5% and 7%, while elevated-[CO(2)] stress plants still maintained g(s) and WUE at 20% and 74% of their controls. In control plants, elevated [CO(2)] did not enhance the midday levels of starch, sucrose, or reducing sugars. For both ambient- and elevated-[CO(2)] stress plants, severe drought did not affect the midday level of sucrose but substantially reduced that of starch. Nighttime starch decomposition in control plants was 55% for ambient [CO(2)] and 59% for elevated [CO(2)], but was negligible for stress plants of both [CO(2)] treatments. For both ambient-[CO(2)] control and stress plants, midday sucrose level at day 12 was similar to the predawn value at day 13. In contrast, sucrose levels of elevated-[CO(2)] control and stress plants at predawn of day 13 were 61-65% of the midday values of day 12. Levels of reducing sugars were much greater for both ambient- and elevated-[CO(2)] stress plants, implying an adaptation to drought stress. Sugarcane grown at elevated [CO(2)] had lower leaf g(s) and E and greater leaf WUE, which helped to delay the adverse effects of drought and, thus, allowed the stress plants to continue photosynthesis for at least an extra day during episodic drought cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号