首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Facioscapulohumeral muscular dystrophy (FSHD) is caused by contraction of the D4Z4 repeat on chromosome 4q. Genetic confirmation of the clinical diagnosis of FSHD is complicated by the presence of a homologous repeat on chromosome 10q and the frequent repeat exchanges between both chromosomes. Here, we describe the genetic evaluation of an FSHD patient with a complex D4Z4 allele constitution in which the potentially pathogenic allele seemingly resides on chromosome 10, despite FSHD being exclusively linked to chromosome 4. Complementary allele typing and segregation analysis confirmed the clinical diagnosis of FSHD by revealing the chromosome 4 origin of the pathogenic allele in the presence of two exchanged repeat arrays, one on chromosome 4 and one on chromosome 10, an allele constitution that cannot be identified by conventional DNA diagnosis.  相似文献   

4.
Facioscapulohumeral muscular dystrophy (FSHD) is associated with contractions of the D4Z4 repeat in the subtelomere of chromosome 4q. Two allelic variants of chromosome 4q (4qA and 4qB) exist in the region distal to D4Z4. Although both variants are almost equally frequent in the population, FSHD is associated exclusively with the 4qA allele. We identified three families with FSHD in which each proband carries two FSHD-sized alleles and is heterozygous for the 4qA/4qB polymorphism. Segregation analysis demonstrated that FSHD-sized 4qB alleles are not associated with disease, since these were present in unaffected family members. Thus, in addition to a contraction of D4Z4, additional cis-acting elements on 4qA may be required for the development of FSHD. Alternatively, 4qB subtelomeres may contain elements that prevent FSHD pathogenesis.  相似文献   

5.
Physical mapping and in situ hybridization experiments have shown that a duplicated locus with a structural organization similar to that of the 4q35 locus implicated in facioscapulohumeral muscular dystrophy is present in the subtelomeric portion of 10q. We performed sequence analysis of the p13E-11 probe and of the adjacent KpnI tandem-repeat unit derived from a 10qter cosmid clone and compared our results with those published, by other laboratories, for the 4q35 region. We found that the sequence homology range is 98%-100% and confirmed that the only difference that can be exploited for differentiation of the 10qter from the 4q35 alleles is the presence of an additional BlnI site within the 10qter KpnI repeat unit. In addition, we observed that the high degree of sequence homology does facilitate interchromosomal exchanges resulting in displacement of the whole set of BlnI-resistant or BlnI-sensitive KpnI repeats from one chromosome to the other. However, partial translocations escape detection if the latter simply relies on the hybridization pattern from double digestion with EcoRI/BlnI and with p13E-11 as a probe. We discovered that the restriction enzyme Tru9I cuts at both ends of the array of KpnI repeats of different chromosomal origins and allows the use of cloned KpnI sequences as a probe by eliminating other spurious fragments. This approach coupled with BlnI digestion permitted us to investigate the structural organization of BlnI-resistant and BlnI-sensitive units within translocated chromosomes of 4q35 and 10q26 origin. A priori, the possibility that partial translocations could play a role in the molecular mechanism of the disease cannot be excluded.  相似文献   

6.
Facioscapulohumeral muscular dystrophy (FSHD) is caused by the shortening of a copy-number polymorphic array of 3.3 kb repeats (D4Z4) at one allelic 4q35.2 region. How this contraction of a subtelomeric tandem array causes FSHD is unknown but indirect evidence suggests that a short array has a cis effect on a distant gene or genes. It was hypothesized that the length of the D4Z4 array determines whether or not the array and a large proximal region are heterochromatic and thereby controls gene expression in cis. To test this, we used fluorescence in situ hybridization probes with FSHD and control myoblasts to characterize the distal portion of 4q35.2 with respect to the following: intense staining with the chromatin dye 4,6-diamidino-2-phenylindole; association with constitutively heterochromatic foci; extent of binding of heterochromatin protein 1; histone H3 methylation at lysine 9 and lysine 4; histone H4 lysine 8 acetylation; and replication timing within S-phase. Our results indicate that 4q35.2 does not resemble constitutive heterochromatin in FSHD or control myoblasts. Furthermore, in these analyses, the allelic 4q35.2 regions of FSHD myoblasts did not behave differently than those of control myoblasts. Other models for how D4Z4 array contraction causes long-distance regulation of gene expression in cis need to be tested.Communicated by S. Gerbi  相似文献   

7.
Autosomal dominant facioscapulohumeral muscular dystrophy (FSHD) is caused by deletion of most copies of the 3.3-kb subtelomeric D4Z4 repeat array on chromosome 4q. The molecular mechanisms behind the deletion and the high proportion of new mutations have remained elusive. We surveyed 35 de novo FSHD families and found somatic mosaicism in 40% of cases, in either the patient or an asymptomatic parent. Mosaic males were typically affected; mosaic females were more often the unaffected parent of a nonmosaic de novo patient. A genotypic-severity score, composed of the residual repeat size and the degree of somatic mosaicism, yields a consistent relationship with severity and age at onset of disease. Mosaic females had a higher proportion of somatic mosaicism than did mosaic males. The repeat deletion is significantly enhanced by supernumerary homologous repeat arrays. In 10% of normal chromosomes, 4-type repeat arrays are present on chromosome 10. In mosaic individuals, 4-type repeats on chromosome 10 are almost five times more frequent. The reverse configuration, also 10% in normal chromosomes, was not found, indicating that mutations may arise from transchromosomal interaction, to which the increase in 4-type repeat clusters is a predisposing factor. The somatic mosaicism suggests a mainly mitotic origin; mitotic interchromosomal gene conversion or translocation between fully homologous 4-type repeat arrays may be a major mechanism for FSHD mutations.  相似文献   

8.
Facioscapulohumeral muscular dystrophy (FSHD) is linked to contraction of an array of tandem 3.3-kb repeats (D4Z4) at 4q35.2 from 11-100 copies to 1-10 copies. The extent to which D4Z4 contraction at 4q35.2 affects overall 4q35.2 chromatin organization remains unclear. Because DNA replication timing is highly predictive of long-range chromatin interactions, we generated genome-wide replication-timing profiles for FSHD and control myogenic precursor cells. We compared non-immortalized myoblasts from four FSHD patients and three control individuals to each other and to a variety of other human cell types. This study also represents the first genome-wide comparison of replication timing profiles in non-immortalized human cell cultures. Myoblasts from both control and FSHD individuals all shared a myoblast-specific replication profile. In contrast, male and female individuals were readily distinguished by monoallelic differences in replication timing at DXZ4 and other regions across the X chromosome affected by X inactivation. We conclude that replication timing is a robust cell-type specific feature that is unaffected by FSHD-related D4Z4 contraction.  相似文献   

9.
Fasioscapulohumeral muscular dystrophy (FSHD) has recently been localized to 4q35. We have studied four families with FSHD. Linkage to the 4q35 probes D4S163, D4S139, and D4S171 was confirmed. We found no recombinants helpful in detailed localization of the FSHD gene. Two of our families include males with a rapidly progressive muscle disease that had been diagnosed, on the basis of clinical features, as Duchenne muscular dystrophy. One of these males is available for linkage study and shares the haplotype of his FSHD-affected aunt and cousin.  相似文献   

10.
11.
The Basque population is one of the oldest populations of Europe. It has been suggested that the Basques arose from a population established in western Europe during the late Paleolithic Age. The Basque language (Euskera) is a supposedly pre-Indo-European language that originates from the first settlers of Europe. The variable distribution of the major cystic fibrosis (CF) mutation (delta F508 deletion) in Europe, with higher frequencies of the mutation in northern Europe and lower frequencies in southern Europe, has suggested that the delta F508 mutation was spread by early farmers migrating from the Middle East during the Neolithic period. We have studied 45 CF families from the Basque Country, where the incidence of CF is approximately 1/4,500. The birthplaces of the parents and grandparents have been traced and are distributed according to their origin as Basque or Mixed Basque. The frequency of the delta F508 mutation in the chromosomes of Basque origin is 87%, compared with 58% in those of Mixed Basque origin. The analysis of haplotypes, both with markers closely linked to the CF gene and with intragenic markers, suggests that the delta F508 mutation was not spread by the Indo-European invasions but was already present in Europe more than 10,000 years ago, during the Paleolithic period.  相似文献   

12.
13.
A genetic map of five polymorphic markers in the area of the facioscapulohumeral muscular dystrophy (FSHD) gene on chromosome 4q35-qter has been constructed. With these five markers, a number of recombinants have been identified that allow ordering of the marker and the disease loci. The most likely locus order and the relative position of the FSHD gene supported by the recombinants is centromere-D4S171-F11-D4S187-D4S163-D4S139-FS HD-telomere. However, at least one recombination event appears to be inconsistent with this order and suggests a location of FSHD proximal to D4S139.  相似文献   

14.
We have used a combination of classical RFLPs and PCR-based polymorphisms including CA repeats and single-strand conformation polymorphisms to generate a fine-structure genetic map of the distal long arm of chromosome 4q. This map is now genetically linked to the pre-existing anchor map of 4pter-4q31 and generates, for the first time, a complete linkage map of this chromosome. The map consists of 32 anchor loci placed with odds of greater than 1,000:1. The high-resolution map in the cytogenetic region surrounding 4q35 provides the order 4cen-D4S171-F11-D4S187-D4S163-D4S139-4q ter. When we used somatic cell hybrids from a t(X;4)(p21;q35) translocation, these five markers fell into three groups consistent with the genetic map-D4S171 and F11 in 4pter-4q35, D4S163 and D4S139 in 4q35-4qter, and D4S187 as a junction fragment between these two regions. These markers are in tight linkage to the gene for facioscapulo-humeral muscular dystrophy (FSHD) mapped to this region by several collaborating investigators and provide a framework for further detailed analysis of this region.  相似文献   

15.
石姗平  习阳 《生命的化学》2020,40(2):277-283
面肩肱型肌营养不良症(facioscapulohumeral muscular dystrophy, FSHD)是世界范围内位列第三的肌营养不良症,呈常染色体显性遗传。FSHD以肌肉坏死为特征,在疾病表现、进展和发病年龄方面具有显著的家族内和家庭间变异性。在不同的年龄段,FSHD的症状表现程度各不相同,通常在青少年时期发病,20岁前的外显率达95%。本文综述了FSHD的发病机制、诊断和治疗的现状,并重点阐述了与治疗相关的研究进展,为今后该疾病的机制研究和临床治疗提供了参考。  相似文献   

16.
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominantly inherited neuromuscular disorder affecting facial and shoulder girdle muscles with subsequent progression to the pelvic girdle and lower extremities. The major gene involved has been localized to chromosome 4q35 (FSHD1A). The 4q35 DNA marker p13E-11 (D4F104S1) detects a de novo EcoRI DNA rearrangement of < 30 kb in isolated and familial cases. The intrafamilial size of the fragment is constant, inversely correlated with the severity, and directly correlated with the age of onset of the condition. There has been evidence of parental mosaicism in FSHD1A for the D4F104S1 locus. Four female and three male clinically unaffected parents have been described to be carriers of EcoRI fragments of the same size as their affected offspring, but with a markedly less intensive hybridization signal (semi-quantitative evidence). In our total sample of 42 FSHD1A families, we found semi-quantitative evidence of parental D4F104S1 mosaicism in 11 families (EcoRI fragment size range: 12–27 kb). On analysis with adjacent 4q35 probes (D4S163, D4S139), additional qualitative evidence of germline mosaicism could be obtained in two families. In our mosaic families and in the families reported in the literature, a female predominance of mosaicism carriers (13 females versus 5 males) could be noted. In our sample, mosaicism was observed in multigeneration families, in families with isolated cases, and in families with two and three affected children from seemingly unaffected parents. A short EcoRI fragment once having emerged in a mosaicism carrier was found to be transmitted autosomal dominantly to subsequent generations. Of all reported sporadic patients, 19% have a mosaic parent. Finding evidence of parental mosaicism in all our families with more than one affected child of seemingly unaffected parents suggests that there is no autosomal recessively inherited form of FSHD1A. Received: 5 March 1996 / Revised: 14 May 1996  相似文献   

17.
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant disease involving shortening of D4Z4, an array of tandem 3.3-kb repeat units on chromosome 4. These arrays are in subtelomeric regions of 4q and 10q and have 1–100 units. FSHD is associated with an array of 1–10 units at 4q35. Unambiguous clinical diagnosis of FSHD depends on determining the array length at 4q35, usually with the array-adjacent p13E-11 probe after pulsed-field or linear gel electrophoresis. Complicating factors for molecular diagnosis of FSHD are the phenotypically neutral 10q D4Z4 arrays, cross-hybridizing sequences elsewhere in the genome, deletions including the genomic p13E-11 sequence and part of D4Z4, translocations between 4q and 10q D4Z4 arrays, and the extremely high G + C content of D4Z4 arrays (73%). In this study, we optimized conditions for molecular diagnosis of FSHD with a 1-kb D4Z4 subfragment probe after hybridization with p13E-11. We demonstrate that these hybridization conditions allow the identification of FSHD alleles with deletions of the genomic p13E-11 sequence and aid in determination of the nonpathogenic D4Z4 arrays at 10q. Furthermore, we show that the D4Z4-like sequences present elsewhere in the genome are not tandemly arranged, like those at 4q35 and 10q26.  相似文献   

18.
A gene responsible for facioscapulohumeral muscular dystrophy (FSHD) has been localized at 4q35. Subsequently, it was found that probe p13E-11 detects a polymorphic EcoRI fragment, usually > 28 kb, in normal individuals, whereas in sporadic and familial FSHD cases, an EcoRI fragment, usually < 28 kb, was found. Although these findings have been amply confirmed, several aspects are as yet either controversial or unsolved. In the present investigation, 34 Brazilian FSHD families were studied at the clinical and the molecular level for the following purposes: to assess the frequency of new mutations and their effect on estimates of biological fitness, to characterize FSHD-associated EcoRI fragments detected with probe p13E-11 in familial--as compared with isolated--FSHD cases, and to assess whether anticipation occurs in multigenerational families. Results from our study suggest that new mutations are apparently frequent for FSHD and may account for at least one-third of the cases, that somatic mosaicism may not be rare, and that biological fitness appeared to be reduced in FSHD, ranging from 0.6 to 0.82 by different estimates, with no difference in sexes. Interestingly, the size of the new EcoRI fragment is apparently smaller in more severely affected isolated patients. Moreover, the age at onset of clinical signs, as well as the age at ascertainment, in patients from multigenerational families suggests that anticipation occurs for FSHD in the majority of the families.  相似文献   

19.
The genetic locus for facioscapulohumeral muscular dystrophy (FSHD) has been mapped to chromosome 4. We have examined linkage to five chromosome 4q DNA markers in 22 multigenerational FSHD families. Multipoint linkage analyses of the segregation of four markers in the FSHD families and in 40 multigenerational mapping families from the Centre d'Etude du Polymorphisme Humaine enabled these loci and FSHD to be placed in the following order: cen-D4S171-factor XI-D4S163-D4S139-FSHD-qter. One interval, D4S171-FSHD, showed significant sex-specific differences in recombination. Homogeneity tests supported linkage of FSHD to these 4q DNA markers in all of the families we studied. The position of FSHD is consistent with that generated by other groups as members of an international FSHD consortium.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号