首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Models describing fluctuations in population size should include both density dependence and stochastic effects. We examine the relative contribution of variation in parameters of the expected dynamics as well as demographic and environmental stochasticity to fluctuations in a population of a small passerine bird, the pied flycatcher, that was newly established in a Dutch study area. Using the theta-logistic model of density regulation, we demonstrate that the estimated quasi-stationary distribution including demographic stochasticity is close to the stationary distribution ignoring demographic stochasticity, indicating a long expected time to extinction. We also show that the variance in the estimated quasi-stationary distribution is especially sensitive to variation in the density regulation function. Reliable population projections must therefore account for uncertainties in parameter estimates which we do by using the population prediction interval (PPI). After 2 years the width of the 90% PPI was already larger than the corresponding estimated range of variation in the quasi-stationary distribution. More precise prediction of future population size than can be derived from the quasi-stationary distribution could only be made for a time span less than about five years.  相似文献   

2.
We review the role of density dependence in the stochastic extinction of populations and the role density dependence has played in population viability analysis (PVA) case studies. In total, 32 approaches have been used to model density regulation in theoretical or applied extinction models, 29 of them are mathematical functions of density dependence, and one approach uses empirical relationships between density and survival, reproduction, or growth rates. In addition, quasi-extinction levels are sometimes applied as a substitute for density dependence at low population size. Density dependence further has been modelled via explicit individual spacing behaviour and/or dispersal. We briefly summarise the features of density dependence available in standard PVA software, provide summary statistics about the use of density dependence in PVA case studies, and discuss the effects of density dependence on extinction probability. The introduction of an upper limit for population size has the effect that the probability of ultimate extinction becomes 1. Mean time to extinction increases with carrying capacity if populations start at high density, but carrying capacity often does not have any effect if populations start at low numbers. In contrast, the Allee effect is usually strong when populations start at low densities but has only a limited influence on persistence when populations start at high numbers. Contrary to previous opinions, other forms of density dependence may lead to increased or decreased persistence, depending on the type and strength of density dependence, the degree of environmental variability, and the growth rate. Furthermore, effects may be reversed for different quasi-extinction levels, making the use of arbitrary quasi-extinction levels problematic. Few systematic comparisons of the effects on persistence between different models of density dependence are available. These effects can be strikingly different among models. Our understanding of the effects of density dependence on extinction of metapopulations is rudimentary, but even opposite effects of density dependence can occur when metapopulations and single populations are contrasted. We argue that spatially explicit models hold particular promise for analysing the effects of density dependence on population viability provided a good knowledge of the biology of the species under consideration exists. Since the results of PVAs may critically depend on the way density dependence is modelled, combined efforts to advance statistical methods, field sampling, and modelling are urgently needed to elucidate the relationships between density, vital rates, and extinction probability.  相似文献   

3.
马祖飞  李典谟 《生态学报》2003,23(12):2702-2710
影响种群绝灭的随机干扰可分为种群统计随机性、环境随机性和随机灾害三大类。在相对稳定的环境条件下和相对较短的时间内,以前两类随机干扰对种群绝灭的影响为生态学家关注的焦点。但是,由于自然种群动态及其影响因子的复杂特征,进一步深入研究随机干扰对种群绝灭的作用在理论上和实践上都必须发展新的技术手段。本文回顾了种群统计随机性与环境随机性的概念起源与发展,系统阐述了其分析方法。归纳了两类随机性在种群绝灭研究中的应用范围、作用方式和特点的异同和区别方法。各类随机作用与种群动态之间关系的理论研究与对种群绝灭机理的实践研究紧密相关。根据理论模型模拟和自然种群实际分析两方面的研究现状,作者提出了进一步深入研究随机作用与种群非线性动态方法的策略。指出了随机干扰影响种群绝灭过程的研究的方向:更多的研究将从单纯的定性分析随机干扰对种群动力学简单性质的作用,转向结合特定的种群非线性动态特征和各类随机力作用特点具体分析绝灭极端动态的成因,以期做出精确的预测。  相似文献   

4.
Large herbivore populations can suffer important oscillations with considerable effects on ecosystem functions and services, yet our capacity to predict population fate is limited and conditional upon the availability of data. This study investigated the interannual variation in the growth rate of populations ofCapra pyrenaica Schinz, 1838, and its extinction risk by comparing the dynamics of populations that were stable for more than two decades (Gredos and Tortosa-Beceite), populations that had increased recently (Tejeda-Almijara), and populations that were in decline (Cazorla-Segura) or extinct (the Pyrenees population; hereafter, bucardo). To estimate quasi-extinction threshold assessments (50% of population extinct in this study), which have implications for the conservation of the species, we used empirical data and the predictions derived from several theoretical models. The results indicate that when variance of log population growth rate reaches a specific threshold, the probability of quasi-extinction increased drastically. ForC. pyrenaica, we recommend keeping population variance < 0.05, which will reduce the likelihood that the irruptive oscillations caused by environmental and demographic stochasticity will put the population at risk. Models to predict the dynamics ofC. pyrenaica populations should incorporate temporal stochasticity because, in this study, it strongly increased the likelihood that a population declined.  相似文献   

5.
1. The effects of changes in habitat size and quality on the expected population density and the expected time to extinction of Sorex araneus are studied by means of mathematical models that incorporate demographic stochasticity.
2. Habitat size is characterized by the number of territories, while habitat quality is represented by the expected number of offspring produced during the lifetime of an individual.
3. The expected population density of S. araneus is shown to be mainly influenced by the habitat size. The expected time to extinction of S. araneus populations due to demographic stochasticity, on the other hand, is much more affected by the habitat quality.
4. In a more general setting we demonstrate that, irrespective of the actual species under consideration, the likelihood of extinction as a consequence of demographic stochasticity is more effectively countered by increasing the reproductive success and survival of individuals then by increasing total population size.  相似文献   

6.
Understanding the factors that affect most severely the extinction risk of populations is crucial for maintaining biodiversity. An important general pattern derived from stochastic population theory is that time to extinction should decrease with increasing environmental stochasticity. Drake and Lodge recently provided one of the first pieces of experimental support for this simple prediction by artificially manipulating the dynamics of populations of Daphnia. A future challenge will be to include both demographic stochasticity and environmental stochasticity in such studies.  相似文献   

7.
Using a long-term demographic data set, we estimated the separate effects of demographic and environmental stochasticity in the growth rate of the great tit population in Wytham Wood, United Kingdom. Assuming logistic density regulation, both the demographic (sigma2d = 0.569) and environmental (sigma2e = 0.0793) variance, with interactions included, were significantly greater than zero. The estimates of the demographic variance seemed to be relatively insensitive to the length of the study period, whereas reliable estimates of the environmental variance required long time series (at least 15 yr of data). The demographic variance decreased significantly with increasing population density. These estimates are used in a quantitative analysis of the demographic factors affecting the risk of extinction of this population. The very long expected time to extinction of this population (approximately 10(19) yr) was related to a relatively large population size (>/=120 pairs during the study period). However, for a given population size, the expected time to extinction was sensitive to both variation in population growth rate and environmental stochasticity. Furthermore, the form of the density regulation strongly affected the expected time to extinction. Time to extinction decreased when the maximum density regulation approached K. This suggests that estimates of viability of small populations should be given both with and without inclusion of density dependence.  相似文献   

8.
Understanding population extinctions is a chief goal of ecological theory. While stochastic theories of population growth are commonly used to forecast extinction, models used for prediction have not been adequately tested with experimental data. In a previously published experiment, variation in available food was experimentally manipulated in 281 laboratory populations of Daphnia magna to test hypothesized effects of environmental variation on population persistence. Here, half of those data were used to select and fit a stochastic model of population growth to predict extinctions of populations in the other half. When density-dependent demographic stochasticity was detected and incorporated in simple stochastic models, rates of population extinction were accurately predicted or only slightly biased. However, when density-dependent demographic stochasticity was not accounted for, as is usual when forecasting extinction of threatened and endangered species, predicted extinction rates were severely biased. Thus, an experimental demonstration shows that reliable estimates of extinction risk may be obtained for populations in variable environments if high-quality data are available for model selection and if density-dependent demographic stochasticity is accounted for. These results suggest that further consideration of density-dependent demographic stochasticity is required if predicted extinction rates are to be relied upon for conservation planning.  相似文献   

9.
Estimating the time to extinction in an island population of song sparrows   总被引:6,自引:0,他引:6  
We estimated and modelled how uncertainties in stochastic population dynamics and biases in parameter estimates affect the accuracy of the projections of a small island population of song sparrows which was enumerated every spring for 24 years. The estimate of the density regulation in a theta-logistic model (theta = 1.09 suggests that the dynamics are nearly logistic, with specific growth rate r1 = 0.99 and carrying capacity K = 41.54. The song sparrow population was strongly influenced by demographic (ŝigma2(d) = 0.66) and environmental (ŝigma2(d) = 0.41) stochasticity. Bootstrap replicates of the different parameters revealed that the uncertainties in the estimates of the specific growth rate r1 and the density regulation theta were larger than the uncertainties in the environmental variance sigma2(e) and the carrying capacity K. We introduce the concept of the population prediction interval (PPI), which is a stochastic interval which includes the unknown population size with probability (1 - alpha). The width of the PPI increased rapidly with time because of uncertainties in the estimates of density regulation as well as demographic and environmental variance in the stochastic population dynamics. Accepting a 10% probability of extinction within 100 years, neglecting uncertainties in the parameters will lead to a 33% overestimation of the time it takes for the extinction barrier (population size X = 1) to be included into the PPI. This study shows that ignoring uncertainties in population dynamics produces a substantial underestimation of the extinction risk.  相似文献   

10.
Demographic stochasticity has a substantial influence on the growth of small populations and consequently on their extinction risk. Mating system is one of several population characteristics that may affect this. We use a stochastic pair-formation model to investigate the combined effects of mating system, sex ratio, and population size on demographic stochasticity and thus on extinction risk. Our model is designed to accommodate a continuous range of mating systems and sex ratios as well as several levels of stochasticity. We show that it is not mating system alone but combinations of mating system and sex ratio that are important in shaping the stochastic dynamics of populations. Specifically, polygyny has the potential to give a high demographic variance and to lower the stochastic population growth rate substantially, thus also shortening the time to extinction, but the outcome is highly dependent on the sex ratio. In addition, population size is shown to be important. We find a stochastic Allee effect that is amplified by polygyny. Our results demonstrate that both mating system and sex ratio must be considered in conservation planning and that appreciating the role of stochasticity is key to understanding their effects.  相似文献   

11.
Training in Population Ecology asks for scalable applications capable of embarking students on a trip from basic concepts to the projection of populations under the various effects of density dependence and stochasticity. Demography_Lab is an educational tool for teaching Population Ecology aspiring to cover such a wide range of objectives. The application uses stochastic models to evaluate the future of populations. Demography_Lab may accommodate a wide range of life cycles and can construct models for populations with and without an age or stage structure. Difference equations are used for unstructured populations and matrix models for structured populations. Both types of models operate in discrete time. Models can be very simple, constructed with very limited demographic information or parameter‐rich, with a complex density‐dependence structure and detailed effects of the different sources of stochasticity. Demography_Lab allows for deterministic projections, asymptotic analysis, the extraction of confidence intervals for demographic parameters, and stochastic projections. Stochastic population growth is evaluated using up to three sources of stochasticity: environmental and demographic stochasticity and sampling error in obtaining the projection matrix. The user has full control on the effect of stochasticity on vital rates. The effect of the three sources of stochasticity may be evaluated independently for each vital rate. The user has also full control on density dependence. It may be included as a ceiling population size controlling the number of individuals in the population or it may be evaluated independently for each vital rate. Sensitivity analysis can be done for the asymptotic population growth rate or for the probability of extinction. Elasticity of the probability of extinction may be evaluated in response to changes in vital rates, and in response to changes in the intensity of density dependence and environmental stochasticity.  相似文献   

12.
Inbreeding depression may induce rapid extinction due to positive feedbacks between inbreeding depression and reduction of population size, which is often referred to as extinction vortex by inbreeding depression. The present analysis has demonstrated that the extinction vortex is likely to happen with realistic parameter values of genomic mutation rate of lethals or semilethals, equilibrium population size, intrinsic rate of natural increase, and rate of population decline caused by nongenetic extrinsic factors. Simulation models incorporating stochastic fluctuations of population size further indicated that extinction by inbreeding depression is facilitated by environmental fluctuations in population size. The results suggest that there is a positive interaction between genetic stochasticity and environmental stochasticity for extinction of populations by inbreeding depression. Received: May 10, 1999 / Accepted: November 5, 1999  相似文献   

13.
The role of local habitat geometry (habitat area and isolation) in predicting species distribution has become an increasingly more important issue, because habitat loss and fragmentation cause species range contraction and extinction. However, it has also become clear that other factors, in particular regional factors (environmental stochasticity and regional population dynamics), should be taken into account when predicting colonisation and extinction. In a live trapping study of a mainland-island metapopulation of the root vole (Microtus oeconomus) we found extensive occupancy dynamics across 15 riparian islands, but yet an overall balance between colonisation and extinction over 4 years. The 54 live trapping surveys conducted over 13 seasons revealed imperfect detection and proxies of population density had to be included in robust design, multi-season occupancy models to achieve unbiased rate estimates. Island colonisation probability was parsimoniously predicted by the multi-annual density fluctuations of the regional mainland population and local island habitat quality, while extinction probability was predicted by island population density and the level of the recent flooding events (the latter being the main regionalized disturbance regime in the study system). Island size and isolation had no additional predictive power and thus such local geometric habitat characteristics may be overrated as predictors of vole habitat occupancy relative to measures of local habitat quality. Our results suggest also that dynamic features of the larger region and/or the metapopulation as a whole, owing to spatially correlated environmental stochasticity and/or biotic interactions, may rule the colonisation – extinction dynamics of boreal vole metapopulations. Due to high capacities for dispersal and habitat tracking voles originating from large source populations can rapidly colonise remote and small high quality habitat patches and re-establish populations that have gone extinct due to demographic (small population size) and environmental stochasticity (e.g. extreme climate events).  相似文献   

14.
This paper addresses effects of trophic complexity on basal species, in a Lotka–Volterra model with stochasticity. We use simple food web modules, with three trophic levels, and expose every species to random environmental stochasticity and analyze (1) the effect of the position of strong trophic interactions on temporal fluctuations in basal species’ abundances and (2) the relationship between fluctuation patterns and extinction risk. First, the numerical simulations showed that basal species do not simply track the environment, i.e. species dynamics do not simply mirror the characteristics of the applied environmental stochasticity. Second, the extinction risk of species was related to the fluctuation patterns of the species.More specifically, we show (i) that despite being forced by random stochasticity without temporal autocorrelation (i.e. white noise), there is significant temporal autocorrelation in the time series of all basal species’ abundances (i.e. the spectra of basal species are red-shifted), (ii) the degree of temporal autocorrelation in basal species time series is affected by food web structure and (iii) the degree of temporal autocorrelation tend to be correlated to the extinction risks of basal species.Our results emphasize the role of food web structure and species interactions in modifying the response of species to environmental variability. To shed some light on the mechanisms we compare the observed pattern in abundances of basal species with analytically predicted patterns and show that the change in the predicted pattern due to the addition of strong trophic interactions is correlated to the extinction risk of the basal species. We conclude that much remain to be understood about the mechanisms behind the interaction among environmental variability, species interactions, population dynamics and vulnerability before we quantitatively can predict, for example, effects of climate change on species and ecological communities. Here, however, we point out a new possible approach for identifying species that are vulnerable to environmental stochasticity by checking the degree of temporal autocorrelation in the time series of species. Increased autocorrelation in population fluctuations can be an indication of increased extinction risk.  相似文献   

15.
We estimate the mean time to extinction of small populations in an environment with constant carrying capacity but under stochastic demography. In particular, we investigate the interaction of stochastic variation in fecundity and sex ratio under several different schemes of density dependent population growth regimes. The methods used include Markov chain theory, Monte Carlo simulations, and numerical simulations based on Markov chain theory. We find a strongly enhanced extinction risk if stochasticity in sex ratio and fluctuating population size act simultaneously as compared to the case where each mechanism acts alone. The distribution of extinction times deviates slightly from a geometric one, in particular for short extinction times. We also find that whether maximization of intrinsic growth rate decreases the risk of extinction or not depends strongly on the population regulation mechanism. If the population growth regime reduces populations above the carrying capacity to a size below the carrying capacity for large r (overshooting) then the extinction risk increases if the growth rate deviates from an optimal r-value.  相似文献   

16.
Conservation Biologists have found that demographic stochasticity causes the mean time to extinction to increase exponentially with population size. This has proved helpful in analyses determining extinction times and characterizing the pathway to extinction. The aim of this investigation is to explore the possible interactions between environmental/demographic noises and the scaling effect of the mean population size with its variance, which is expected to follow Taylor’s power law relationship. We showed that the combined effects of environmental/demographic noises and the scaling of population size variability interact with the population dynamics and affect the mean time to extinction.  相似文献   

17.
Metapopulation extinction risk is the probability that all local populations are simultaneously extinct during a fixed time frame. Dispersal may reduce a metapopulation’s extinction risk by raising its average per-capita growth rate. By contrast, dispersal may raise a metapopulation’s extinction risk by reducing its average population density. Which effect prevails is controlled by habitat fragmentation. Dispersal in mildly fragmented habitat reduces a metapopulation’s extinction risk by raising its average per-capita growth rate without causing any appreciable drop in its average population density. By contrast, dispersal in severely fragmented habitat raises a metapopulation’s extinction risk because the rise in its average per-capita growth rate is more than offset by the decline in its average population density. The metapopulation model used here shows several other interesting phenomena. Dispersal in sufficiently fragmented habitat reduces a metapopulation’s extinction risk to that of a constant environment. Dispersal between habitat fragments reduces a metapopulation’s extinction risk insofar as local environments are asynchronous. Grouped dispersal raises the effective habitat fragmentation level. Dispersal search barriers raise metapopulation extinction risk. Nonuniform dispersal may reduce the effective fraction of suitable habitat fragments below the extinction threshold. Nonuniform dispersal may make demographic stochasticity a more potent metapopulation extinction force than environmental stochasticity.  相似文献   

18.
This study analyzes extinction patterns for two species of orb spiders monitored annually on 77 islands over a continuous 20-yr period. One species, Argiope argentata, has large populations sometimes crashing quickly to extinction and a much weaker relation of extinction likelihood to population size than does the other species, Metepeira datona. Demographic models were built for both species and matched against observations. Differences between the species in life-history traits-estimated with measurements from the field-together with incorporation of demographic stochasticity, a population ceiling, and environmental stochasticity, were necessary to fit the observed extinction curves. As predicted from life-history patterns, long-term population growth rates (and hence predicted extinction probabilities) are relatively very sensitive to values of juvenile survivorship. Models are also sensitive to variation in the population ceiling and environmental noise, which tend to act in a complementary manner. A simple model with no age structure was able to fit the data on large initial population sizes but not on small initial population sizes, showing that life cycle characteristics interact with the various sources of stochasticity and hence have to be taken into account to produce a precise model of the extinction process.  相似文献   

19.
Australia's last mega-carnivore marsupial, the Tasmanian devil Sarcophilus harrisii , Dasyuridae is endemic to the island state of Tasmania. The recent appearance and rapid spread of a debilitating and usually lethal, cancer-like disease has raised concerns regarding the species' future. We used a demographic matrix modelling approach to evaluate the potential long-term implications of epidemics on this population. Both adult survival and temporally autocorrelated re-occurrence of disease were expressed as a function of female abundance. Large fluctuations in abundance resulted when disease outbreaks were conditioned to be density-dependent; however, this resulted in a low probability of quasi-extinction due to the dissipation of disease transmission at low densities. Epidemic stochasticity alone in an otherwise deterministic model resulted in major population cycles occurring every 77–146 yr, consistent with historical reports. Although epidemics in this species may not result in extinction directly, the contemporary presence of additional mortality sources during periods of low abundance may increase extinction risk.  相似文献   

20.
It is accepted that accurate estimation of risk of population extinction, or persistence time, requires prediction of the effect of fluctuations in the environment on population dynamics. Generally, the greater the magnitude, or variance, of environmental stochasticity, the greater the risk of population extinction. Another characteristic of environmental stochasticity, its colour, has been found to affect population persistence. This is important because real environmental variables, such as temperature, are reddened or positively temporally autocorrelated. However, recent work has disagreed about the effect of reddening environmental stochasticity. Ripa and Lundberg (1996) found increasing temporal autocorrelation (reddening) decreased the risk of extinction, whereas a simple and powerful intuitive argument (Lawton 1988) predicts increased risk of extinction with reddening. This study resolves the apparent contradiction, in two ways, first, by altering the dynamic behaviour of the population models. Overcompensatory dynamics result in persistence times increasing with increased temporal autocorrelation; undercompensatory dynamics result in persistence times decreasing with increased temporal autocorrelation. Secondly, in a spatially subdivided population, with a reasonable degree of spatial heterogeneity in patch quality, increasing temporal autocorrelation in the environment results in decreasing persistence time for both types of competition. Thus, the inclusion of coloured noise into ecological models can have subtle interactions with population dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号