首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Middle Latency Auditory Evoked Potentials (MLAEPs) were recorded from 15 healthy subjects in order to evaluate the influence of different repetition rates on the latency and the amplitude of their main components Na, Pa and Nb. MLAEPs were obtained from Cz-ipsilateral ear lobe by averaging responses to 2000 monaural clicks delivered to both ears, at 65 dB SL of intensity, for each of 3 different repetition rates (1.1, 4.1, 8.1 Hz). Time base was 100 ms, analogical band-pass filter 5-1000 Hz (off-line digital bandpass: 20-100 Hz). The statistical analysis (repeated measures analysis of variance), demonstrated that, the latency and the amplitude of the Nb component were slightly influenced by repetition rate while Pa and Na were not. Moreover Nb showed the greatest interindividual variability (as already pointed out by other authors too); thus, we suggest that a stimulus rate of 8.1 Hz and the analysis of Na and Pa component only, can be regarded as the best assessment for MLAEPs evaluation when they are used for clinical purposes.  相似文献   

2.
We recorded middle latency auditory evoked potentials (MAEPs) in young (20–40 years) and elderly (60–80 years) subjects with normal hearing. The Pa component was prolonged in latency and markedly enhanced in amplitude in the elderly subjects. No changes were found in Na, or in the binaural interaction of the MAEP. Differences in Pa amplitude and latency were not due exclusively to changes in auditory thresholds, since they were not duplicated by changes in stimulus intensity, and persisted when MAEPs from selected young and old subjects were compared at similar SPL levels. The enhancement of Pa amplitude appears to reflect age-related central modifications in auditory processing.  相似文献   

3.
The auditory P50 in humans may consist of overlapping potentials. To test this hypothesis, we manipulated the conditions of stimulus discrimination and motor response difficulty and evaluated the data by factor analysis. Twenty right-handed males (mean age 27 years) performed the following 4 tasks: (1) a counting task, (2) an easy Go, No-Go task, (3) a difficult Go, No-Go task, and (4) a choice reaction task. Middle latency auditory evoked potentials were obtained with 100 times summation triggered by the onset of the auditory stimulus. Four factors were extracted by factor analysis for a 0–100 ms time period. Factor 1, the maximum factor loading at 91 ms, corresponded to N1, and factor 4, the maximum factor loading at 23 ms, appeared to correspond to P30. The latency of the maximum factor loading in factor 2 was adjacent to that in factor 3, the latency of factor 2 being 12 ms earlier than that of factor 3. Factor 2 and factor 3 latencies were approximately 55 ms which corresponded to the P50. Factor 3 started rising at the point that factor 2 reached the maximum factor loading, and the factor score demonstrated a significant group difference only when analyzed by motor response criteria. These results suggest that the P50 in humans consists of overlapping potentials and that a part of the potential might relate to a motor response process.  相似文献   

4.
体温过高对大鼠脑干听觉诱发电位和中潜伏期反应的影响   总被引:2,自引:0,他引:2  
目的 :探讨体温过高对大鼠脑干听觉诱发电位 (BAEP)和听觉中潜伏期反应 (MLR )的影响。方法 :诱发电位仪颅表记录大鼠BAEP和MLR ;体表物理升温法逐步升高麻醉大鼠体温 ,传感探头式数字体温计监测大鼠直肠体温 ;主要观察BAEP和MLR的波峰潜伏期 (PL)、波峰间潜伏期 (IPL)和波幅随体温升高而发生的变化及它们消失的临界体温。结果 :BAEP各波PL及Ⅰ Ⅱ、Ⅰ Ⅲ、Ⅰ ⅣIPL随体温升高 ( 3 7~ 41.5℃ )而逐步缩短 ,但当体温升高至 42℃和超过 42℃时各波PL及Ⅰ Ⅱ、Ⅰ ⅣIPL不再继续缩短 ,并略有反向延长 ;MLR各波PL和P1 P3、P2 P3IPL也随体温升高 ( 3 7~ 43℃ )而缩短。随体温升高 ,BAEP和MLR波幅的主要表现为降低 ,特别是在体温升高至42℃以后。BAEP和MLR在体温 ( 4 3 .1± 0 .5)℃时出现不可逆性消失 ,且两者同步消失。结论 :体温过高对大鼠BAEP和MLR有相似的显著影响 ,体温过高至一临界值时会造成BAEP和MLR的不可逆性损害。  相似文献   

5.
6.
Short latency somatosensory evoked potentials (SSEPs) elicited by median nerve stimulation were monitored in 14 adult patients undergoing cardiac surgery under cardiopulmonary bypass and induced hypothermia. SSEPs were recorded at 1–2°C steps as the body temperature was lowered from 37°C to 20°C to determine temperature-dependent changes. Hypothermia produced increased latencies of the peaks of N10, P14 and N19 components, the prolongation was more severe for the later components so that N10−P14 and P14−N19 interpeak latencies were also prolonged. The temperature-latency relationship had a linear correlation. The magnitude of latency prolongation (msec) with 1°C decline in temperature was 0.61, 1.15, 1.56 for N10,P4 and N19 components, respectively, and 0.39 and 0.68 for interpeak latencies N10−P14 and P14−N19, respectively. The rise time and duration of the 3 SSEP components increased progressively with cooling. Cortically generated component, N19 was consistently recordable at a temperature above 26°C, usually disappearing between 20°C and 25°C. On the other hand, more peripherally generated components, N10 and P14, were more resistant to the effect of hypothermia; P14 was always elicitable at 21°C or above, whereas N10 persisted even below 20°C. The amplitude of SSEP components had a poor correlation with temperature; there was a slight tendency for N10 and P14 to increase and for N19 to decrease with declining temperature. Because incidental hypothermia is common in comatose and anesthetized patients, temperature-related changes must be taken into consideration during SSEP monitoring under these circumstances.  相似文献   

7.
The temporo-spatial organization of Na and Pa middle latency auditory components evoked by monaural clicks delivered separately to right and left ears was assessed by sequential mapping of scalp potentials. The potential field distribution was found to be different for the two components and was assessed by calculating the maximal potential differences in the Na/Pa time period. These data are compatible with the hypothesis that distinct generators are responsible for the two components. Scalp potential field configuration observed for Na suggests a deep generator, which could be situated at the mesencephalic or diencephalic level. Bilateral cortical generators tangentially orientated satisfactorily account for the distribution of the Pa potential field, which could be related to simultaneous activation of both supratemporal auditory cortices in response to monaural stimulation.  相似文献   

8.
大鼠脑干听觉诱发电位和中潜伏期反应的生后发育   总被引:10,自引:0,他引:10  
目的:探讨大鼠脑干听觉诱发电位(BAEP)和听觉中潜伏期反应(MLR)生后发育模式的异同。方法:在同一批新生SD纯种大鼠连续10周同时观察BAEP和MLR生后发育的变化。结果:BAEP和MLR分别在生后14d和17d出现;BAEP各波峰潜伏期(PL)随鼠龄增长而递减,生后3-4周是PL缩短的主要时期,I波PL在生后29d达成年值,其余各波PL在生后70d全部达成年值;首次出现的MLR,其Po和Na两波PL已达成年值,而Pa、Nb和Pb和PL也随鼠龄增长而缩短,但生后20-23d很快就达成年值;BAEP的Ⅰ、Ⅲ、Ⅳ波和MLR的Nb、Pb波波幅在生后3-4周期间迅速递增,且峰值明显大于成年值,然后逐渐回降。结论:大鼠MLR和BAEP生后发育的模式基本相同,但MLR各波PL较早达成年值。  相似文献   

9.
The middle latency vestibular evoked potential (ML-VsEP) recorded with scalp electrodes in man in response to impulses of angular acceleration is dominated by a forehead positive peak at about 15 ms and a negative peak at about 20 ms; the peak amplitude of this component is about 30 μV. This is followed by slower, smaller amplitude activity. The latency of this initial peak is similar to the latency of the vestibulo-ocular reflex (VOR) in monkeys. The present study was undertaken to elucidate the possible relation between the ML-VsEPs and VOR. This included recordings from forehead-mastoid electrodes (sites used to record VsEP) and other scalp electrodes and the recording of potentials due to eye movement: the electro-oculogram. Direct recording of eye movements was also conducted using an infra-red reflection device in those experiments in which the head was not moved. The recordings were conducted in man during vestibular stimulation eliciting VsEPs, during voluntary eye movements and during caloric and optokinetic stimulation. These experiments indicated that the 15–20 ms component of the ML-VsEP was not due to movements of the eye (corneoretinal dipole). The large amplitude 15–20 ms component of the ML-VsEP was similar in general magnitude, waveform, polarity, duration and rise time to the highly synchronous pre-saccadic spike (neural and/or myogenic) which precedes nystagnys and voluntary saccades. It therefore probably represents vestibular-initiated electrical activity in motor units of the extra-ocular muscles which then produce anti-compensatory saccades.  相似文献   

10.
Slow cortical auditory potentials have been studied in man during dichotic click train stimulation perceived as a moving sonic image. Higher values of the amplitude of N1 and P2 components were observed as compared to the response to unmoving image. The amplitude of these components gradually increases with changes in the click frequency within a train (from 15 to 60 Hz), the lower border of this band approximately corresponding to the time interval which is necessary for formation of the sonic image.  相似文献   

11.
Experiment 1 elicited the P1, N1, P2, and N2 components of the long latency auditory evoked potential (AEP) using a 1000 Hz tone presented at 30, 50, or 70 dB SPL and 1-, 3-, or 5-second inter-stimulus intervals to assess the relative effects of the combination of these variables on component amplitude and latency. Four blocks of 16 tone presentations each were recorded from each subject to determine if changes in the AEP would occur because of short-term habituation. Both stimulus factors interacted significantly in a systematic fashion for the amplitude measures, with increases in latency also associated with increases in intensity and inter-stimulus interval. Only minor changes across the four trial blocks for either the amplitude or latency measures were observed over the various stimulus presentation conditions. Experiment 2 employed the same tone stimulus presented at 50 dB SPL and a 3-second inter-stimulus interval. Eight blocks of 64 trials were recorded from each subject on each day for four days to investigate long-term habituation effects. No substantial changes in any of the component amplitudes or latencies were obtained across the 32 trial blocks. It was concluded that intensity and inter-stimulus interval interact to determine AEP amplitude as well as latency values and that the constituent components do not change appreciably with repeated stimulus presentations, even after several days.  相似文献   

12.
The amplitude-temporal and spectral characteristics of the short-latency auditory evoked potentials (SLAEP) recorded under conditions of monoaural stimulation with sound clicks with initial phase of rarefaction followed by compression and alteration, with the intensity of 60 dB and frequency of 11.1 Hz, were studied in ipsi- and contralateral derivations. Substantial changes in SLAEP morphology in response to polarity inversion of the acoustic stimulus were found. Waves II, IV, VI, and VII changed to the greatest extent. The spectral analysis detected three main SLAEP components: low- (LF), medium- (MF), and high-frequency (HF) components as well as the respective frequency bands. Change in the click phase from rarefaction to compression resulted in bilateral redistribution of power between the MF and HF components. This was expressed as a decrease in the HF peak power and simultaneous rise of MF power. Selective effects of the polarity inversion of the sound stimulus on the MF and HF components support the finding that the activity of SLAEP-generating structures are mainly reflected in the mentioned components. It is suggested that two populations of phase-sensitive units are represented in the auditory analyzer. These populations determine the characteristic changes in SLAEP morphology and spectral characteristics.  相似文献   

13.
Objectives and mehtods: Four sets of measurements were obtained from 11 patients (44–80 years old) with small, localized pontine lesions due to vascular disease: (1) Monaural auditory brain-stem evoked potentials (ABEPs; peaks I to VI); (2) Binaural ABEPs processed for their binaural interaction components (BICs) in the latency range of peaks IV to VI; (3) magnetic resonance imaging (MRI) of the brain-stem; and (4) psychoacoustics of interaural time disparity measures of binaural localization. ABEPs and BICs were analyzed for peak latencies and interpeak latency differences. Three-channel Lissajous' trajectories (3-CLTs) were derived for ABEPs and BICs and the latencies and orientations of the equivalent dipoles of ABEP and BICs were inferred from them.Results: Intercomponent latency measures of monaurally evoked ABEPs were abnormal in only 3 of the 11 patients. Consistent correlations between sites of lesion and neurophysiological abnormality were obtained in 9 of the 11 patients using 3-CLT measures of BICs. Six of the 11 patients had absence of one or more BIC components. Seven of the 11 had BICs orientation abnormality and 3 had latency abnormalities. Trapezoid body (TB) lesions (6 patients) were associated with an absent (two patients with ventral-caudal lesions) or abnormal (one patient with ventral-rostral lesions) dipole orientation of the first component (at the time of ABEPs IV), and sparing of this component with midline ventral TB lesions (two patients). A deviant orientation of the second BICs component (at the time of ABEPs V) was observed with ventral TB lesions. Psychoacoustic lateralization in these patients was biased toward the center. Rostral lateral lemniscus (LL) lesions (3 patients) were associated with absent (one patient) or abnormal (two patients) orientation of the third BICs component (at the time of ABEPs VI); and a side-biased lateralization with behavioral testing.Conclusions: These results indicate that: (1) the BICs component occurring at the time of ABEPs peak IV is dependent on ventral-caudal TB integrity; (2) the ventral TB contributes to the BICs component at the time of ABEPs peak V; and (3) the rostral LL is a contributing generator of the BICs component occurring at the time of ABEP peak VI.  相似文献   

14.
Experiments were conducted on 40 rabbits; a study was made of the dependence of the amplitude and the latent period of the auditory evoked potentials on the intensity, duration, accretion front, frequency and the rhythm of the acoustic stimuli (the intervals between them). The intensity of the stimuli, the accretion front and the interstimulus intervals proved to influence the induced potential parameters.  相似文献   

15.
A study was made of the influence of stimuli with different informational specificity (a checkerboard pattern, the image of a house, the word "house") on respective EPs recorded in the occipital zone (OZ) and symmetrical postero-temporal areas (T5 and T6) of the cerebral cortex. Paired comparisons were carried out of distribution histograms of the maxima of negative and positive EP components. A statistical control of heterogeneity of such distributions by the Brand--Snedecker formula allowed to detect the histogram fragments, where the differences were most pronounced. All the fragments were included in the period from 0 to 250 ms. Estimation of discrimination indices testified to the influence of stimulus informational specificity on the respective EPs of the occipital and temporal areas of the left hemisphere.  相似文献   

16.
17.
18.
Auditory evoked potentials (AEP) can be simultaneously recorded on-line as a succession of 11 waves, through a single input channel of a mini-computer. Since the response waves differ widely in frequency, a computing routine has been developed to display the whole response pattern in a single picture. Based upon a non-linear samples reduction of the digitized response, this routine allows a logarithmic transformation of the time axis. The method improves the identification of the AEP components and provides an objective estimate of the central auditory pathway for both neurophysiological and neuroclinical studies.  相似文献   

19.
Thresholds of the event-related potentials (ERPs) appearance were measured for one stationary and four moving auditory images presented in silence or under forward masking conditions. The difference between thresholds in silence and after noise masker was considered as masking level. Under the forward masking, the amplitude of the ERP to the first click in the test series decreased in guinea pig auditory cortex. Masking level decreased with the time lag between signal and masker and didn't depend on the fused auditory image localization that corresponded to the first click in different test signals. This fact can support the hypothesis that for the long test signals the initial part can be masked more than the final one. The ERPs amplitude to next clicks in test series depended on interaction of two factors: forward masking in the "masker-signal" system and interaction of separate ERPs in the series evoked by the test signal.  相似文献   

20.
The topography of the brain-stem (ABR), middle latency (MLR) and cortical (ACR) evoked responses was investigated in chilfren with nornal speech and language development and those with either a language or motor speech disorder. The aim was to determine whether it is possible to discriminate between the groups of children in terms of the evoked potential characteristics.There were significant inter-group differences, particularly relating to the amplitude of the different responses. The ABR in both the language and motor speech groups exhibited smaller amplitudes for waves I, III and V than the control group, with no change in latency. Two explanations were suggested; firstly abnormal functioning of the peripheral hearing mechanism even though the hearing thresholds were normal which could be a secondary effect due to deprivation normal speech recording effects due to differences in the electrical conductivity of tissue and the distance separating the generator site and recording electrodes. The MLR in the motor speech group was significantly larger at the mastoid and temporal electrode sites than either the control or language groups. This was considered to be an enhanced myogenic response like the other exaggerated brain-stem reflexes seen in congenital suprabulbar paresis. Significantly larger amplitudes of the ACR were also recorded from the motor speech group at the Cz electrode site. This was thought to be due to underactivity of some normal cortical inhibitory system and not a direct result of increased MLR amplitude.The ACR in the language disordered children exhibited an abnormal left temporal hemispheric dominance and a more inverted or ‘dissimilar’ wave from at the T3 electrode site on the correlation analysis. These findings suggest impaired functioning of the left temporal cortex in our children who have failed to develop language normally. We feel that this has more significance for the language abnormality than the low amplitude ABRs which were observed in both the language and motor speech disordered children.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号