首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extant gars represent the remaining members of a formerly diverse assemblage of ancient ray-finned fishes and have been the subject of multiple phylogenetic analyses using morphological data. Here, we present the first hypothesis of phylogenetic relationships among living gar species based on molecular data, through the examination of gene tree heterogeneity and coalescent species tree analyses of a portion of one mitochondrial (COI) and seven nuclear (ENC1, myh6, plagl2, S7 ribosomal protein intron 1, sreb2, tbr1, and zic1) genes. Individual gene trees displayed varying degrees of resolution with regards to species-level relationships, and the gene trees inferred from COI and the S7 intron were the only two that were completely resolved. Coalescent species tree analyses of nuclear genes resulted in a well-resolved and strongly supported phylogenetic tree of living gar species, for which Bayesian posterior node support was further improved by the inclusion of the mitochondrial gene. Species-level relationships among gars inferred from our molecular data set were highly congruent with previously published morphological phylogenies, with the exception of the placement of two species, Lepisosteus osseus and L. platostomus. Re-examination of the character coding used by previous authors provided partial resolution of this topological discordance, resulting in broad concordance in the phylogenies inferred from individual genes, the coalescent species tree analysis, and morphology. The completely resolved phylogeny inferred from the molecular data set with strong Bayesian posterior support at all nodes provided insights into the potential for introgressive hybridization and patterns of allopatric speciation in the evolutionary history of living gars, as well as a solid foundation for future examinations of functional diversification and evolutionary stasis in a "living fossil" lineage.  相似文献   

2.
3.
Notothenioids represent an adaptive radiation of teleost fishes in the frigid and ice-laden waters of the Southern Ocean surrounding Antarctica. Phylogenetic hypotheses for this clade have resulted primarily from analyses of mtDNA gene sequences, and studies utilizing nuclear gene DNA sequence data have focused on particular sub-clades of notothenioid fishes. In this study, we provide the first phylogenetic analysis of notothenioids using both mtDNA and nuclear gene sequences for a comprehensive sampling of all major lineages in the clade. Maximum parsimony and Bayesian analyses of aligned mtDNA genes, an aligned nuclear gene (S7 ribosomal protein intron 1), and combined dataset containing the mtDNA and nuclear genes resulted in phylogenies that contained the previously identified Antarctic and High Antarctic Clades. There were areas of agreement and disagreement between different datasets and methods of phylogenetic analysis, and the phylogenies resulting from the nuclear encoded S7 ribosomal protein intron 1 sequences were considerably less resolved than those inferred from mtDNA gene sequences. However, we anticipate increased resolution of the notothenioid phylogeny from future analyses that sample DNA sequences from several nuclear genes.  相似文献   

4.
Analysis of the AMP-forming ACS gene was performed in 12 species of the Drosophilidae family. Systematically four introns, aligned at the same positions, were detected, but none of them showed a position similar to those known for species outside the Drosophilidae family. The average length of introns varied from 63 to 75 bp but in two species Drosophila takahashii and D. kikkawai the length of the second intron was 343 and 210 bp, respectively. In coding regions, about 80% of the third codon positions were substituted while first and second positions showed, respectively, 14% and 6% substitutions. Interestingly, the divergence observed at the protein level between species was very low. The phylogenetic tree based on the DNA sequences of the exons was mainly in agreement with taxonomic classification and previous molecular phylogenies except for D. ananassae, which appeared more closely related to D. subobscura and D. funebris than to the species of the melanogaster group.  相似文献   

5.
Investigations into the phylogenetics of closely related animal species are dominated by the use of mitochondrial DNA (mtDNA) sequence data. However, the near-ubiquitous use of mtDNA to infer phylogeny among closely related animal lineages is tempered by an increasing number of studies that document high rates of transfer of mtDNA genomes among closely related species through hybridization, leading to substantial discordance between phylogenies inferred from mtDNA and nuclear gene sequences. In addition, the recent development of methods that simultaneously infer a species phylogeny and estimate divergence times, while accounting for incongruence among individual gene trees, has ushered in a new era in the investigation of phylogeny among closely related species. In this study we assess if DNA sequence data sampled from a modest number of nuclear genes can resolve relationships of a species-rich clade of North American freshwater teleost fishes, the darters. We articulate and expand on a recently introduced method to infer a time-calibrated multi-species coalescent phylogeny using the computer program *BEAST. Our analyses result in well-resolved and strongly supported time-calibrated darter species tree. Contrary to the expectation that mtDNA will provide greater phylogenetic resolution than nuclear gene data; the darter species tree inferred exclusively from nuclear genes exhibits a higher frequency of strongly supported nodes than the mtDNA time-calibrated gene tree.  相似文献   

6.
7.
The parrotbills (Paradoxornithidae, meaning "birds of paradox," Aves) are a group of Old World passerines with perplexing taxonomic histories due to substantial morphological and ecological variation at various levels. In this study, phylogenetic relationships of the parrotbills were reconstructed based on sequences of two mitochondrial segments and three nuclear coding regions. Three major clades with characteristic body size and plumage coloration were found in both mtDNA and nuclear gene trees. However, mtDNA phylogeny suggested that the Paradoxornithidae is paraphyletic and relationships among three major parrotbill clades were poorly resolved. On the contrary, apparent and well-supported monophyletic relationships among the three major clades of Paradoxornithidae were revealed by concatenated nuclear dataset. Since paraphyly based on mtDNA data has commonly been found within avian taxa, the conflicting phylogenetic signal between mtDNA and nuclear loci revealed in this study indicates that results obtained from mtDNA dataset alone need to be evaluated with caution. Taxonomic implications of our phylogenetic findings are discussed. These phylogenies also point out areas for future investigation regarding the rapid diversification, morphological evolution and environmental adaptation of various parrotbill species or species complexes.  相似文献   

8.
Molecular evolutionary processes modify DNA over time, creating both newly derived substitutions shared by related descendant lineages (phylogenetic signal) and “false” similarities which confound phylogenetic reconstruction (homoplasy). However, some types of DNA regions, for example those containing tandem duplicate repeats, are preferentially subject to homoplasy-inducing processes such as sporadically occurring concerted evolution and DNA insertion/deletion. This added level of homoplasic “noise” can make DNA regions with repeats less reliable in phylogenetic reconstruction than those without repeats. Most molecular datasets which distinguish among African hominoids support a human-chimpanzee clade; the most notable exception is from the involucrin gene. However, phylogenetic resolution supporting a chimpanzee-gorilla clade is based entirely on involucrin DNA repeat regions. This is problematic because (1) involucrin repeats are difficult to align, and published alignments are contradictory; (2) involucrin repeats are subject to DNA insertion/deletion; (3) gorillas are polymorphic in that some do not have repeats reported to be synapomorphies linking chimpanzees and gorillas. Gene tree/species tree conflicts can occur due to the sorting of ancestrally polymorphic alleles during speciation. Because hominoid females transfer between groups, mitochondrial and nuclear gene flow occur to the same extent, and the probability of conflict between mitochondrial and nuclear gene trees is theoretically low. When hominoid intraspecific mitochondrial variability is taken into account [based on cytochrome oxidase subunit II (COII) gene sequences], humans and chimpanzees are most closely related, showing the same relative degree of separation from gorillas as when single individuals representing species are analyzed. Conflicting molecular phylogenies can be explained in terms of molecular evolutionary processes and sorting of ancient polymorphisms. This perspective can enhance our understanding of hominoid molecular phylogenies. © 1994 Wiley-Liss, Inc.  相似文献   

9.
External morphological characters are the basis of our understanding of diversity and species relationships in many darter clades. The past decade has seen the publication of many studies utilizing mtDNA sequence data to investigate darter phylogenetics, but only recently have nuclear genes been used to investigate darter relationships. Despite a long tradition of use in darter systematics few studies have examined the phylogenetic utility of external morphological characters in estimating relationships among species in darter clades. We present DNA sequence data from the mitochondrial cytochrome b (cytb) gene, the nuclear encoded S7 intron 1, and discretely coded external morphological characters for all 20 species in the darter clade Nothonotus. Bayesian phylogenetic analyses result in phylogenies that are in broad agreement with previous studies. The cytb gene tree is well resolved, while the nuclear S7 gene tree lacks phylogenetic resolution, node support, and is characterized by a lack of reciprocal monophyly for many of the Nothonotus species. The phylogenies resulting from analysis of the morphological dataset lack resolution, but nodes present are found in the cytb and S7 gene trees. The highest resolution and node support is found in the Bayesian combined data phylogeny. Based on our results we propose continued exploration of the phylogenetic utility of external morphological characters in other darter clades. Given the extensive lack of reciprocal monophyly of species observed in the S7 gene tree we predict that nuclear gene sequences may have limited utility in intraspecific phylogeographic studies of Nothonotus darters.  相似文献   

10.
Do phylogenies and branch lengths based on mitochondrial DNA (mtDNA) provide a reasonable approximation to those based on multiple nuclear loci? In the present study, we show widespread discordance between phylogenies based on mtDNA (two genes) and nuclear DNA (nucDNA; six loci) in a phylogenetic analysis of the turtle family Emydidae. We also find an unusual type of discordance involving the unexpected homogeneity of mtDNA sequences across species within genera. Of the 36 clades in the combined nucDNA phylogeny, 24 are contradicted by the mtDNA phylogeny, and six are strongly contested by each data set. Two genera (Graptemys, Pseudemys) show remarkably low mtDNA divergence among species, whereas the combined nuclear data show deep divergences and (for Pseudemys) strongly supported clades. These latter results suggest that the mitochondrial data alone are highly misleading about the rate of speciation in these genera and also about the species status of endangered Graptemys and Pseudemys species. In addition, despite a strongly supported phylogeny from the combined nuclear genes, we find extensive discordance between this tree and individual nuclear gene trees. Overall, the results obtained illustrate the potential dangers of making inferences about phylogeny, speciation, divergence times, and conservation from mtDNA data alone (or even from single nuclear genes), and suggest the benefits of using large numbers of unlinked nuclear loci. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 445–461.  相似文献   

11.
Discussions aimed at resolution of the Tree of Life are most often focused on the interrelationships of major organismal lineages. In this study, we focus on the resolution of some of the most apical branches in the Tree of Life through exploration of the phylogenetic relationships of darters, a species-rich clade of North American freshwater fishes. With a near-complete taxon sampling of close to 250 species, we aim to investigate strategies for efficient multilocus data sampling and the estimation of divergence times using relaxed-clock methods when a clade lacks a fossil record. Our phylogenetic data set comprises a single mitochondrial DNA (mtDNA) gene and two nuclear genes sampled from 245 of the 248 darter species. This dense sampling allows us to determine if a modest amount of nuclear DNA sequence data can resolve relationships among closely related animal species. Darters lack a fossil record to provide age calibration priors in relaxed-clock analyses. Therefore, we use a near-complete species-sampled phylogeny of the perciform clade Centrarchidae, which has a rich fossil record, to assess two distinct strategies of external calibration in relaxed-clock divergence time estimates of darters: using ages inferred from the fossil record and molecular evolutionary rate estimates. Comparison of Bayesian phylogenies inferred from mtDNA and nuclear genes reveals that heterospecific mtDNA is present in approximately 12.5% of all darter species. We identify three patterns of mtDNA introgression in darters: proximal mtDNA transfer, which involves the transfer of mtDNA among extant and sympatric darter species, indeterminate introgression, which involves the transfer of mtDNA from a lineage that cannot be confidently identified because the introgressed haplotypes are not clearly referable to mtDNA haplotypes in any recognized species, and deep introgression, which is characterized by species diversification within a recipient clade subsequent to the transfer of heterospecific mtDNA. The results of our analyses indicate that DNA sequences sampled from single-copy nuclear genes can provide appreciable phylogenetic resolution for closely related animal species. A well-resolved near-complete species-sampled phylogeny of darters was estimated with Bayesian methods using a concatenated mtDNA and nuclear gene data set with all identified heterospecific mtDNA haplotypes treated as missing data. The relaxed-clock analyses resulted in very similar posterior age estimates across the three sampled genes and methods of calibration and therefore offer a viable strategy for estimating divergence times for clades that lack a fossil record. In addition, an informative rank-free clade-based classification of darters that preserves the rich history of nomenclature in the group and provides formal taxonomic communication of darter clades was constructed using the mtDNA and nuclear gene phylogeny. On the whole, the appeal of mtDNA for phylogeny inference among closely related animal species is diminished by the observations of extensive mtDNA introgression and by finding appreciable phylogenetic signal in a modest sampling of nuclear genes in our phylogenetic analyses of darters.  相似文献   

12.
A major challenge for understanding the evolutionary genetics of mass-spawning corals is to explain the maintenance of discrete morphospecies in view of high rates of interspecific fertilization in vitro and nonmonophyletic patterns in molecular phylogenies. In this study, we focused on Acropora cytherea and A. hyacinthus, which have one of the highest potentials for interspecific fertilization. Using sequences of a nuclear intron, we performed phylogenetic and nested clade analyses (NCA). Both species were polyphyletic in molecular phylogenies, but the NCA indicated that they constitute statistically distinguishable lineages. Phylogenetic analysis using an intergenic region of the mitochondrial DNA (mtDNA), was inconclusive because of low levels of variability in this marker. The position of these two species differed between the nuclear DNA (nDNA) and mtDNA phylogenies and was also at odds with a cladistic analysis based on morphology. We conclude that despite the potential for high levels of hybridization and introgression, A. cytherea and A. hyacinthus constitute statistically distinguishable lineages and their taxonomic status is consistent with the cohesion species concept.  相似文献   

13.
The Grapsidae are a thoracotreme crab family with 40 species in eight genera (in their strict definition), and possess a number of morphological and molecular synapomorphies. Previous phylogenetic studies based on mitochondrial DNA markers established the monophyly of this family, but suggested possible paraphyly or polyphyly of some of the constituent genera. To test the validity of previous hypotheses, the present study reconstructed a molecular phylogeny of the grapsid crabs based on five molecular markers, including mitochondrial DNA markers and the first use of nuclear protein‐coding markers to address this issue. Monophyly of Grapsidae was confirmed, with the exception of the position of the monotypic genus Leptograpsodes. The polyphyly of the genus Pachygrapsus is consistent with previous molecular phylogenies, as members from this genus are dispersed throughout our gene tree. Grapsus and Planes were shown to be paraphyletic, with species of Pachygrapsus nested within them. Our study found incongruences between the currently adopted classification of the family, and hence taxonomic revisions will be needed. We hereby demonstrate the use of nuclear protein‐coding markers for high confidence reconstruction of decapod phylogenies, resolving most of the early splits that mitochondrial DNA markers alone are unable to tackle. © 2015 The Linnean Society of London  相似文献   

14.
Phylogenetic analyses of closely related species should use information from multiple, independent genes with relatively high rates of sequence evolution. To investigate species for which there are few prior sequence data for single-copy nuclear (scnDNA) genes, primers for gene amplification can be designed to highly conserved regions of exons in order to amplify both coding (exons) and noncoding (introns) sequences. We have explored this approach in a phylogenetic analysis of six species of pinnipeds that, together with terrestrial carnivore outgroups, encompass divergence times < or = 40-50 Mya. We sequenced one intron from each of the aldolase A (ALD-A), aldolase C (ALD-C), and histone H2AF genes; one exon from the major-histocompatibility-complex DQA gene; a H2AF processed pseudogene (psi H2AF); and, for comparison with the nuclear genes, the 5' portion of the mitochondrial DNA (mtDNA) control region. The pinniped psi H2AF genes were found to be of limited use because they were paralogous with the gene in the outgroup. The rate of silent substitution in scnDNA (primarily introns) was 5-10-fold lower than that for mtDNA control region I, and scnDNA sequence divergence increased linearly with time < or = 40-50 Mya. Alleles at three polymorphic scnDNA loci (ALD-A, H2AF, and DQA) in the southern elephant seal were paraphyletic with respect to the allele from the closely related northern elephant seal, while the more numerous mtDNA alleles were monophyletic. This we attribute to the consequences of a higher mutation rate rather than to a lower effective population size of mtDNA compared with scnDNA. Within the short (i.e., < 500-bp) sequences of individual scnDNA sequences, phylogenetically informative variation was insufficient to obtain robust phylogenies. However, the combined scnDNA sequences produced a well-supported phylogeny congruent with that derived from mtDNA. This analysis illustrates the high resolution of mtDNA sequences compared with a similar length of scnDNA sequence, but it also demonstrates the utility of combining information from multiple short scnDNA sequences obtained using broadly applicable primers.   相似文献   

15.
NADP-dependent isocitrate dehydrogenase is a low-copy nuclear gene family. We have sequenced two regions from an idh gene (idhB) near the 3' terminal end. The first fragment encodes 4 exons and 3 introns and is between approximately 600 and 950 bp in length. The second fragment includes three additional exons and introns and is between approximately 1200 and 1500 bp in length. The phylogenetic utility of the two sequence regions was evaluated in Polemoniaceae with a focus on Saltugilia, an incipient species complex that lacks phylogenetic resolution among these same taxa based on nuclear ribosomal ITS and chloroplast trnL. Multiple sequences from several individuals, multiple individuals from several populations, and multiple populations from all Saltugilia species were sampled to evaluate the taxonomic level at which idhB was useful as a phylogenetic marker in this clade. Phylogenies based on idhB sequences were compared with topological resolution and clade composition in ITS and trnL phylogenies. Phylogenies based on idhB and idhB in combination with ITS and trnL are better resolved than any other phylogenies for Saltugilia published to date, and character evolution within Saltugilia is explored.  相似文献   

16.
Genetic markers from the nuclear, chloroplast, and mitochondrial genomes were developed to distinguish unambiguously among four larch species [Larix laricina (Du Roi) K. Koch, Larix decidua (Mill.), Larix kaempferi (Lamb.) Sarg., and Larix sibirica (Ledeb.)] used in intensive forestry in eastern North America. Nine random amplified polymorphic DNA (RAPD) fragments had good diagnostic value, and 3 out of 12 nuclear genes were found to harbor fixed interspecific polymorphisms implicating a total of 17 single nucleotide polymorphisms (SNPs) and 2 indels. The sequencing of five mtDNA introns (cox1-intron1, matR-intron1, nad1-intron b/c, nad3-intron1, and nad5-intron1) and four cpDNA regions (matK, trnL-intron, trnTtrnL and trnL–trnF intergenic spacers) resulted in the identification of 14 sites with fixed interspecific differences among the four species. Including the ten Larix species, one polymorphic site per 47 nucleotide sites sampled was observed for nuclear genes, one per 283 sites for cpDNA, and one per 374 sites for mtDNA. The phylogeny of the genus could be estimated from variation among the ten species detected in two cpDNA intergenic regions and four mtDNA introns. There was congruence between cpDNA and mtDNA phylogenies with three large groups delineated: the North American, North Eurasian, and South Asian taxa. The position of L. sibirica differed between organelle genomes. It was regrouped with South Asian species on the cpDNA tree, but with its North Eurasian congenerics on the mtDNA tree. To simplify the detection of diagnostic DNA sequence polymorphisms among the four main Larix species, cleaved amplified polymorphic sequence (CAPS) assays were developed from the polymorphisms identified in the various genomes. Seventeen primer–enzyme combinations were tested, and six were selected for their high level of informativeness. These new species-specific diagnostic markers should be useful for the certification of larch breeding materials and hybrid stocks used in intensive forestry in the northern hemisphere.  相似文献   

17.
Hu JM  Fu HC  Lin CH  Su HJ  Yeh HH 《Journal of virology》2007,81(4):1746-1761
The nanovirus Banana bunchy top virus (BBTV) has six standard components in its genome and occasionally contains components encoding additional Rep (replication initiation protein) genes. Phylogenetic network analysis of coding sequences of DNA 1 and 3 confirmed the two major groups of BBTV, a Pacific and an Asian group, but show evidence of web-like phylogenies for some genes. Phylogenetic analysis of 102 major common regions (CR-Ms) from all six components showed a possible concerted evolution within the Pacific group, which is likely due to recombination in this region. The CR-M of additional Rep genes is close to that of DNA 1 and 2. Comparison of tree topologies constructed with DNA 1 and DNA 3 coding sequences of 14 BBTV isolates showed distinct phylogenetic histories based on Kishino-Hasegawa and Shimodaira-Hasegawa tests. The results of principal component analysis of amino acid and codon usages indicate that DNA 1 and 3 have a codon bias different from that of all other genes of nanoviruses, including all currently known additional Rep genes of BBTV, which suggests a possible ancient genome reassortment event between distinctive nanoviruses.  相似文献   

18.
Recent computational advances provide novel opportunities to infer species trees based on multiple independent loci. Thus, single gene trees no longer need suffice as proxies for species phylogenies. Several methods have been developed to deal with the challenges posed by incomplete and stochastic lineage sorting. In this study, we employed four Bayesian methods to infer the phylogeny of a clade of 11 recently diverged oriole species within the genus Icterus. We obtained well-resolved and mostly congruent phylogenies using a set of seven unlinked nuclear intron loci and sampling multiple individuals per species. Most notably, Bayesian concordance analysis generally agreed well with concatenation; the two methods agreed fully on eight of nine nodes. The coalescent-based method BEAST further supported six of these eight nodes. The fourth method used, BEST, failed to converge despite exhaustive efforts to optimize the tree search. Overall, the results obtained by new species tree methods and concatenation generally corroborate our findings from previous analyses and data sets. However, we found striking disagreement between mitochondrial and nuclear DNA involving relationships within the northern oriole group. Our results highlight the danger of reliance on mtDNA alone for phylogenetic inference. We demonstrate that in spite of low variability and incomplete lineage sorting, multiple nuclear loci can produce largely congruent phylogenies based on multiple species tree methods, even for very closely-related species.  相似文献   

19.
The genus Cicindela (Coleoptera: Cicindelidae) is a species-rich cosmopolitan group of tiger beetles useful for comparing clade diversification worldwide. Knowledge about relationships of major groups is important for this analysis but basal nodes in Cicindela have been difficult to resolve with standard mtDNA markers. Here we developed the Mp20 gene, a single-copy nuclear marker coding for a muscle-associated protein in insects, for phylogenetic analysis of basal groups of Cicindela. Nearly full-length sequences were obtained for 51 cicindelids, including major taxonomic groups from all continents. Sequences of Mp20 were between 1.2 and 1.7 kb and spanning three introns. Phylogenetic signal of exon and intron sequences was compared with that from four gene regions of mtDNA (COI, COIII, Cytb, 16S rRNA; 2.4 kb total). Because introns differed in length, sequence alignment was conducted using various procedures of phenetic and parsimony-based character coding of indels to assess their phylogenetic information content, but major nodes were recovered consistently. Mp20 sequences contributed two thirds of the total support of the combined analysis, with most signal from the introns. We found major clades of Cicindela to be geographically largely coincident with continental regions, confined to Australasia, the Holarctic, the Indian subcontinent, Africa, and South and Central America. Clock estimates using various maximum-likelihood (ML) branch length calculations resulted in roughly similar divergence times whether Mp20 exon, introns, or mtDNA were used, and they were not greatly affected by different procedures for coding and optimizing indel characters. Based on existing clock calibrations in Cicindela, basal splits of continental lineages occurred in the mid-Miocene, placing the radiation of basal groups of Cicindela to a period when their open-vegetation habitats expanded globally.  相似文献   

20.
Ceanothus comprises ~55 morphologically and ecologically diverse species of woody perennials endemic to North America. Interpretations of the natural history of Ceanothus have served as a general model of evolution for woody perennials with simple entomophilous pollination systems, but these interpretations lacked explicit phylogenetic context. We used cladistic analysis of sequences of the chloroplast-encoded matK and the internal transcribed spacers (ITS) and 5.8S coding region of nuclear ribosomal DNA (nrDNA) to reconstruct the phylogeny of Ceanothus. The nuclear and organellar phylogenies exhibited very low levels of both topological and character congruence. Subgenera Ceanothus and Cerastes are monophyletic sister taxa in both phylogenies, but both data sets suffer from a lack of resolution below the level of subgenus. Lack of taxonomic congruence between the two data sets may be a result of introgression and/or lineage sorting. The ITS tree was accepted as the better estimate of a species phylogeny for Ceanothus, on the assumption that nuclear markers are less prone to introgression. Three of five polytypic species in the ITS data set were paraphyletic, and four of six polytypic species in the matK data set were paraphyletic. This study demonstrates the degree to which matched independent data sets can produce conflicting summaries of evolutionary history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号