首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the presence of Mlc in a thermophilic bacterium. Mlc is known as a global regulator of sugar metabolism in gram-negative enteric bacteria that is controlled by sequestration to a glucose-transporting EII(Glc) of the phosphotransferase system (PTS). Since thermophilic bacteria do not possess PTS, Mlc in Thermus thermophilus must be differently controlled. DNA sequence alignments between Mlc from T. thermophilus (Mlc(Tth)) and Mlc from E. coli (Mlc(Eco)) revealed that Mlc(Tth) conserved five residues of the glucose-binding motif of glucokinases. Here we show that Mlc(Tth) is not a glucokinase but is indeed able to bind glucose (K(D) = 20 microM), unlike Mlc(Eco). We found that mlc of T. thermophilus is the first gene within an operon encoding an ABC transporter for glucose and mannose, including a glucose/mannose-binding protein and two permeases. malK1, encoding the cognate ATP-hydrolyzing subunit, is located elsewhere on the chromosome. The system transports glucose at 70 degrees C with a K(m) of 0.15 microM and a V(max) of 4.22 nmol per min per ml at an optical density (OD) of 1. Mlc(Tth) negatively regulates itself and the entire glucose/mannose ABC transport system operon but not malK1, with glucose acting as an inducer. MalK1 is shared with the ABC transporter for trehalose, maltose, sucrose, and palatinose (TMSP). Mutants lacking malK1 do not transport either glucose or maltose. The TMSP transporter is also able to transport glucose with a K(m) of 1.4 microM and a V(max) of 7.6 nmol per min per ml at an OD of 1, but it does not transport mannose.  相似文献   

2.
We report that a phosphoenolpyruvate-dependent phosphotransferase system, MalT, is the principal maltose transporter for Streptococcus mutans. MalT also contributes to maltotriose uptake. Since maltose and maltodextrins are products of starch degradation found in saliva, the ability to take up and ferment these carbohydrates may contribute to dental caries.  相似文献   

3.
Adenosine triphosphate (ATP) transporter from rat liver rough endoplasmic reticulum (RER) was solubilized and reconstituted into phosphatidylcholine liposomes. The RER proteoliposomes, resulting from optimizing some reconstitution parameters, had an apparent K(m) value of 1.5 microM and a V(max) of 286 pmol min(-1) (mg protein)(-1) and showed higher affinity for ATP and a lower V(max) value than intact RER (K(m) of 6.5 microM and V(max) of 1 nmol). ATP transport was time- and temperature-dependent, inhibited by 4, 4'-diisothiocyanostilbene-2,2'-disulfonic acid, which is known as an inhibitor of anion transporters including ATP transporter, but was not affected by atractyloside, a specific inhibitor of mitochondrial ADP/ATP carrier. The internal and external effects of various nucleotides on the ATP transport were examined. ATP transport was cis-inhibited strongly by ADP and weakly by AMP. ADP-preloaded RER proteoliposomes showed a specific increase of ATP transport activity while AMP-preloaded RER proteoliposomes did not show the enhanced overshoot peak in the ATP uptake plot. These results demonstrate the ADP/ATP antiport mechanism of ATP transport in rat liver RER.  相似文献   

4.
5.
6.
7.
The His(6)-tagged N- and C-terminal nucleotide binding (ATP Binding Cassette, ABC) domains of the human multidrug resistance associated protein, MRP1, were expressed in bacteria in fusion to the bacterial maltose binding protein and a two-step affinity purification was utilized. Binding of a fluorescent ATP-analogue occurred with micromolar dissociation constants, MgATP was able to inhibit the ATP-analogue binding with 70 and 200 micromolar apparent inhibition constants, while AMP was nearly ineffective. Both MRP1 nucleotide binding domains showed ATPase activities (V(max) values between 5-10 nmoles/mg protein/min), which is fifty to hundred times lower than that of parent transporter. The K(M) value of the ATP hydrolysis by the nucleotide binding domains were 1.5 mM and 1.8 mM, which is similar to the K(M) value of the native or the purified and reconstituted transporter, N-ethylmaleinimide and A1F(4) inhibited the ATPase activity of both nucleotide binding domains.  相似文献   

8.
Choline enters brain by saturable transport at the blood-brain barrier (BBB). In separate studies, both sodium-dependent and passive choline transport systems of differing affinity have been reported at brain capillary endothelial cells. In the present study, we re-examined brain choline uptake using the in situ rat brain perfusion technique. Saturable brain choline uptake from perfusion fluid was best described by a model with a single transporter (V:(max) = 2.4-3.1 nmol/min/g; K(m) = 39-42 microM) with an apparent affinity (1/Km)) for choline five to ten-fold greater than previously reported in vivo, but less than neuronal 'high-affinity' brain choline transport (K(m) = 1-5 microM). BBB choline uptake from a sodium-free perfusion fluid using sucrose for osmotic balance was 50% greater than in the presence of sodium suggesting that sodium is not required for transport. Hemicholinium-3 inhibited brain choline uptake with a K(i) (57 +/- 11 microM) greater than that at the neuronal choline system. In summary, BBB choline transport occurs with greater affinity than previously reported, but does not match the properties of the neuronal choline transporter. The V:(max) of this system is appreciable and may provide a mechanism for delivering cationic drugs to brain.  相似文献   

9.
We describe a multifunctional inositol polyphosphate kinase/phosphotransferase from Solanum tuberosum, StITPKalpha (GenBank accession number: EF362784), hereafter called StITPK1. StITPK1 displays inositol 3,4,5,6-tetrakisphosphate 1-kinase activity: K(m) = 27 microM, and V(max) = 19 nmol min(-1) mg(-1). The enzyme displays inositol 1,3,4,5,6-pentakisphosphate 1-phosphatase activity in the absence of a nucleotide acceptor and inositol 1,3,4,5,6-pentakisphosphate-ADP phosphotransferase activity in the presence of physiological concentrations of ADP. Additionally, StITPK1 shows inositol phosphate-inositol phosphate phosphotransferase activity. Homology modelling provides a structural rationale of the catalytic abilities of StITPK1. Inter-substrate transfer of phosphate groups between inositol phosphates is an evolutionarily conserved function of enzymes of this class.  相似文献   

10.
The thermoacidophilic gram-positive bacterium Alicyclobacillus acidocaldarius grows at 60 degrees C and pH 2-3. The organism can utilize maltose and maltodextrins as energy source that are taken up by an ATP-binding cassette (ABC) import system. Genes encoding a maltose binding protein, MalE, and two membrane-integral subunits, MalF and MalG, are clustered on the chromosome but a malK gene translating into a cognate ATPase subunit is lacking. Here we report the cloning of malK from genomic DNA by using the msiK gene of Streptomyces lividans as a probe. Purified MalK exhibited a spontaneous ATPase activity with a Vmax of 0.13 micromol Pi/min/mg and a Km of 330 microM that was optimal at the growth temperature of the organism. Coexpression of malK, malF and malG in Escherichia coli resulted in the formation of a complex that could be coeluted from an affinity matrix after solubilization of membranes with dodecylmaltoside. Proteoliposomes prepared from the MalFGK complex and preformed phospholipid vesicles of A. acidocaldarius displayed a low intrinsic ATPase activity that was stimulated sevenfold by maltose-loaded MalE, thereby indicating coupling of ATP hydrolysis to substrate translocation. These results provide evidence for MalK being the physiological ATPase subunit of the A. acidocaldarius maltose transporter. Moreover, to our knowledge, this is the first report on the functional reconstitution of an ABC transport system from a thermophilic microorganism.  相似文献   

11.
During the molecular analysis of a plasmid-coded sucrose metabolic pathway of enteric bacteria, a gene, scrY, was found whose product, ScrY, had all the properties of a bacterial porin (Schmid et al., 1988). Loss of this protein (Mr 58 kDa), localized in the outer membrane, led, as shown here, to an increase in the apparent Km for sucrose transport in whole cells from 10 microM in wild-type cells to 300 microM in mutant cells. This contrasts with the Km for sucrose phosphorylation as measured in membrane vesicles from mutant and wild-type cells, which remained unchanged at about 10 microM, and reflects the activity of the sucrose-specific Enzymell of the phosphoenolpyruvate-dependent carbohydrate:phosphotransferase system (PTS) responsible for uptake through the inner membrane. Furthermore, the presence of ScrY restored growth on maltodextrins in cells devoid of LamB, thus complementing the lack of this maltoporin. The amino acid sequence deduced from the DNA sequence was determined for the plasmid-coded and the ScrY porin coded in the chromosome of Klebsiella pneumoniae. Both show high identity (86%) to each other, and to the channel domain of LamB, further corroborating the conclusion that they constitute porins.  相似文献   

12.
Adenosine (Ado), a smooth muscle vasodilator and modulator of cardiac function, is taken up by many cell types via a saturable transporter, blockable by dipyridamole. To quantitate the influences of endothelial cells in governing the blood-tissue exchange of Ado and its concentration in the interstitial fluid, one must define the permeability-surface area products (PS) for Ado via passive transport through interendothelial gaps [PS(g)(Ado)] and across the endothelial cell luminal membrane (PS(ecl)) in their normal in vivo setting. With the use of the multiple-indicator dilution (MID) technique in Krebs-Ringer perfused, isolated guinea pig hearts (preserving endothelial myocyte geometry) and by separating Ado metabolites by HPLC, we found permeability-surface area products for an extracellular solute, sucrose, via passive transport through interendothelial gaps [PS(g)(Suc)] to be 1.9 +/- 0.6 ml. g(-1). min(-1) (n = 16 MID curves in 4 hearts) and took PS(g)(Ado) to be 1. 2 times PS(g)(Suc). MID curves were obtained with background nontracer Ado concentrations up to 800 micrometer, partially saturating the transporter and reducing its effective PS(ecl) for Ado. The estimated maximum value for PS(ecl) in the absence of background adenosine was 1.1 +/- 0.1 ml. g(-1). min(-1) [maximum rate of transporter conformational change to move the substrate from one side of the membrane to the other (maximal velocity; V(max)) times surface area of 125 +/- 11 nmol. g(-1). min(-1)], and the Michaelis-Menten constant (K(m)) was 114 +/- 12 microM, where +/- indicates 95% confidence limits. Physiologically, only high Ado release with hypoxia or ischemia will partially saturate the transporter.  相似文献   

13.
Reduced carbon produced in mature leaves is distributed throughout plants in the form of sucrose. Sucrose transporter proteins (SUT) play a crucial role in transporting sucrose. We isolated a cDNA encoding a sucrose transporter, GmSUT1, which is expressed in the developing cotyledons of soybean (Glycine max). [14C]sucrose uptake assays demonstrate that GmSUT1 has a K(m) of 5.6mM and a V(max) of 5.8 nmol sucrose min(-1)(mg cells)(-1), which are similar to those of the low-affinity-high-capacity sucrose transporter family. GmSUT1 protein accumulates gradually during cotyledon development, correlating with increasing sucrose levels in the maturing cotyledons. Collectively, these data suggest that GmSUT1 plays an active role in the movement of sucrose into the developing seeds.  相似文献   

14.
Toluene-treated cells of Streptococcus bovis JB1 phosphorylated cellobiose, glucose, maltose, and sucrose by the phosphoenolpyruvate-dependent phosphotransferase system. Glucose phosphorylation was constitutive, while all three disaccharide systems were inducible. Competition experiments indicated that separate phosphotransferase systems (enzymes II) existed for glucose, maltose, and sucrose. [14C]maltose transport was inhibited by excess (10 mM) glucose and to a lesser extent by sucrose (90 and 46%, respectively). [14C]glucose and [14C]sucrose transports were not inhibited by an excess of maltose. Since [14C]maltose phosphorylation in triethanolamine buffer was increased 160-fold as the concentration of Pi was increased from 0 to 100 mM, a maltose phosphorylase (Km for Pi, 9.5 mM) was present, and this activity was inducible. Maltose was also hydrolyzed by an inducible maltase. Glucose 1-phosphate arising from the maltose phosphorylase was metabolized by a constitutive phosphoglucomutase that was specific for alpha-glucose 1-phosphate (Km, 0.8 mM). Only sucrose-grown cells possessed sucrose hydrolase activity (Km, 3.1 mM), and this activity was much lower than the sucrose phosphotransferase system and sucrose-phosphate hydrolase activities.  相似文献   

15.
Toluene-treated cells of Streptococcus bovis JB1 phosphorylated cellobiose, glucose, maltose, and sucrose by the phosphoenolpyruvate-dependent phosphotransferase system. Glucose phosphorylation was constitutive, while all three disaccharide systems were inducible. Competition experiments indicated that separate phosphotransferase systems (enzymes II) existed for glucose, maltose, and sucrose. [14C]maltose transport was inhibited by excess (10 mM) glucose and to a lesser extent by sucrose (90 and 46%, respectively). [14C]glucose and [14C]sucrose transports were not inhibited by an excess of maltose. Since [14C]maltose phosphorylation in triethanolamine buffer was increased 160-fold as the concentration of Pi was increased from 0 to 100 mM, a maltose phosphorylase (Km for Pi, 9.5 mM) was present, and this activity was inducible. Maltose was also hydrolyzed by an inducible maltase. Glucose 1-phosphate arising from the maltose phosphorylase was metabolized by a constitutive phosphoglucomutase that was specific for alpha-glucose 1-phosphate (Km, 0.8 mM). Only sucrose-grown cells possessed sucrose hydrolase activity (Km, 3.1 mM), and this activity was much lower than the sucrose phosphotransferase system and sucrose-phosphate hydrolase activities.  相似文献   

16.
17.
18.
19.
20.
Serotonin uptake and metabolism was studied in ependymal primary cultures. Serotonin uptake was facilitated by two different systems, one of which was the neuronal serotonin transporter SERT, exhibiting a Vmax value of 3.8+/-0.1 pmol x min(-1) x (mg protein)(-1) and an apparent Michaelis-Menten constant of 0.41+/-0.03 microM. The main product of metabolism was 5-hydroxyindole acetic acid, which resulted from the action of monoamine oxidase A. This enzyme showed a maximal rate of 0.85+/-0.02 nmol x min(-1) x (mg protein)(-1) and a Michaelis-Menten constant of 78+/-5 microM. Ependymal cells were able to dispose of extracellular serotonin with initial rates of approximately 600 pmol x min(-1) x (mg protein)(-1) and of 4 pmol x min(-1) x (mg protein)(-1) when challenged with 500 microM and 1 microM extracellular serotonin, respectively. Ependymal cells are concluded to facilitate the "sink" action of the CSF by removing waste compounds upon passing of the fluid from the parenchymal extracellular space into the ventricular system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号