首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The strain ofSerratia marcescens QM B1466 produces selectively large amount of chitinolytic enzymes (about 1mg/L medium). Enzymatic hydrolysis of chitin to N-acetyl-β-D-glucosamine (NAG) was performed with a system consisting of two hydrolases (chitinase and chitobiase) produced by optimization of a microbial host consuming chitin particles. For the development of Large-scale biological process for the production of NAG from chitinaceous waste, the selection and optimization of a microbial host, particle size of chitin and pretreatment of chitin source were investigated. Also, the effect of crab/shrimp chitin sources and initial induction time using chitin as a sole carbon source on chitinase/chitobiase production and NAG production were examined. Crab-shell chitin(1.5%) treated by dilute acid and, ball-milled with a nominal diameter less than 250m gave the highest chitinase activity over a 7 days culture. Crude chitinase/chitobiase solution obtained in a 10 L fed-batch fermentation showed a maximum activities of 23.6 U/mL and 5.1 U/mL, respectively with a feeding time of 3 hrs, near pH 8.5 at 30°C.  相似文献   

2.
The present work analyzes the production of endochitinase by Colletotrichum gloeosporioides, a phytopathogenic fungus, using six different carbon sources and two pH values. For quantitative assay of endochitinase activity in solution, the synthetic substrate 4-methylumbelliferyl-β-D-N,N’,N”-triacetylchitotrioside was used. The major productions were obtained at pH 7.0 and 9.0, when colloidal chitin and glucose were used, whereas xylose and lactose were not good carbon sources. When testing different concentrations of colloidal chitin, glucose and glucosamine, colloidal chitin 0.5% was the best substrate, giving values of 2.4 U at the fifth day. When using glucose, best production occurred at 0.3% concentration, after 5 days growth, with values of 1.31 U. Endochitinase production was markedly decreased in high levels of glucose and in all glucosamine concentrations tested. SDS-PAGE co-polymerized with glycol-chitin analysis showed three major activity bands of 200, 100, and 95 kDa, when incubated at 50°C.  相似文献   

3.
In this study, shrimp shell powder, prepared by treating shrimp-processing waste by boiling and crushing, was used as a substrate for isolation of chitinase-producing microorganism. These organisms may have an important economic role in the biological control of rice and other fungal pathogens. Two hundred strains of bacteria with the ability to degrade chitin from shrimp shell waste were isolated from paddy soil, and of these, 40 strains showed chitinase activity in a solid state cultivation. One of the most potent isolates (strain R 176) was identified as Bacillus thuringiensis. Identification was carried out using morphological and biochemical properties along with 16S rRNA sequence analysis. This strain was able to produce high levels of extracellular chitinase in solid media containing shrimp shells as sole carbon source [1.36 U/g initial dry substrate (IDS)], which was 0.36-fold higher than the productivity in a liquid culture with colloidal chitin. The effects of medium composition and physical parameters on chitinase production by this organism were studied. The optimal medium contained shrimp shell mixed with rice straw in 1:1 ratio added with ball-milled chitin 0.5 % (w/v) and ammonium sulfate 0.5 % (w/v). The highest enzyme production (3.86 U/g IDS) by B. thuringiensis R 176 was obtained at pH 7, 37 °C after 14 days growth. With respect to the high amount of chitinase production by this strain in a simple medium, this strain could be a suitable candidate for the production of chitinase from chitinous solid substrates, and further investigations into its structure and characteristics are merited.  相似文献   

4.
Thermococcus chitonophagus produces several, cellular and extracellular chitinolytic enzymes following induction with various types of chitin and chitin oligomers, as well as cellulose. Factors affecting the anaerobic culture of this archaeon, such as optimal temperature, agitation speed and type of chitin, were investigated. A series of chitinases, co-isolated with the major, cell membrane-associated endochitinase (Chi70), and a periplasmic chitobiase (Chi90) were subsequently isolated. In addition, a distinct chitinolytic activity was detected in the culture supernatant and partially purified. This enzyme exhibited an apparent molecular mass of 50 kDa (Chi50) and was optimally active at 80°C and pH 6.0. Chi50 was classified as an exochitinase based on its ability to release chitobiose as the exclusive hydrolysis product of colloidal chitin. A multi-component enzymatic apparatus, consisting of an extracellular exochitinase (Chi50), a periplasmic chitobiase (Chi90) and at least one cell-membrane-anchored endochitinase (Chi70), seems to be sufficient for effective synergistic in vivo degradation of chitin. Induction with chitin stimulates the coordinated expression of a combination of chitinolytic enzymes exhibiting different specificities for polymeric chitin and its degradation products. Among all investigated potential inducers and nutrient substrates, colloidal chitin was the strongest inducer of chitinase synthesis, whereas the highest growth rate was obtained following the addition of yeast extract and/or peptone to the minimal, mineralic culture medium in the absence of chitin. In rich medium, chitin monomer acted as a repressor of total chitinolytic activity, indicating the presence of a negative feedback regulatory mechanism. Despite the undisputable fact that the multi-component chitinolytic system of this archaeon is strongly induced by chitin, it is clear that, even in the absence of any chitinous substrates, there is low-level, basal, constitutive production of chitinolytic enzymes, which can be attributed to the presence of traces of chito-oligosaccharides and other structurally related molecules (in the undefined, rich, non-inducing medium) that act as potential inducers of chitinolytic activity. The low, basal and constitutive levels of chitinase gene expression may be sufficient to initiate chitin degradation and to release soluble oligomers, which, in turn, induce chitinase synthesis.  相似文献   

5.
With the goal of understanding the chitinolytic mechanism of the potential biological control strain Serratia marcescens CFFSUR-B2, genes encoding chitinases ChiA, ChiB and ChiC, chitobiase (Chb) and chitin binding protein (CBP) were cloned, the protein products overexpressed in Escherichia coli as 6His-Sumo fusion proteins and purified by affinity chromatography. Following affinity tag removal, the chitinolytic activity of the recombinant proteins was evaluated individually and in combination using colloidal chitin as substrate. ChiB and ChiC were highly active while ChiA was inactive. Reactions containing both ChiB and ChiC showed significantly increased N-acetylglucosamine trimer and dimer formation, but decreased monomer formation, compared to reactions with either enzyme alone. This suggests that while both ChiB and ChiC have a general affinity for the same substrate, they attack different sites and together degrade chitin more efficiently than either enzyme separately. Chb and CBP in combination with ChiB and ChiC (individually or together) increased their chitinase activity. We report for the first time the potentiating effect of Chb on the activity of the chitinases and the synergistic activity of a mixture of all five proteins (the three chitinases, Chb and CBP). These results contribute to our understanding of the mechanism of action of the chitinases produced by strain CFFSUR-B2 and provide a molecular basis for its high potential as a biocontrol agent against fungal pathogens.  相似文献   

6.
Chitinase-overproducing mutant of Serratia marcescens.   总被引:13,自引:2,他引:11       下载免费PDF全文
Genetic modification of Serratia marcescens QMB1466 was undertaken to isolated mutants which produce increased levels of chitinolytic activity. After mutagenesis with ultraviolet light, ethyl methane sulfonate or N-methyl-N'-nitro-N-nitrosoguanidine, 19,940 colonies were screened for production of enlarged zones of clearing (indicative of chitinase activity) on chitin-containing agar plates. Forty-four chitinase high producers were tested further in shake flask cultures. Mutant IMR-1E1 was isolated which, depending on medium composition, produced two to three times more than the wild type of the other components of the chitinolytic enzyme system--a factor involved in the hydrolysis of crystalline chitin and chitobiase. After induction by chitin, endochitinase and chitobiase activity appeared at similar times for both IMR-1E1 and QMB1466, suggesting possible coordinate control of these enzymes. The results are consistent with IMR-1E1 containing a regulatory mutation which increased production of the components of the chitinolytic enzyme system and/or with IMR-1E1 containing a tandem duplication of the chitinase genes. The high rate of reversion of IMR-1E1 to decreased levels of chitinase production suggests that the overproduction of chitinase by IMR-1E1 is due to a tandem gene duplication.  相似文献   

7.
Culture filtrates of the nematophagous fungi Verticillium chlamydosporium and V. suchlasporium growing on colloidal chitin showed increasing chitinolytic activity and production of two (32- and 43-kDa) main proteins. Maximum activity was found 18-20 days after inoculation, but V. suchlasporium always displayed higher activity. Zymography of such filtrates on carboxymethyl-chitin-Remazol brilliant violet 5R/acrylamide gels showed five bands of substrate degradation for V. suchlasporium and three for V. chlamydosporium. Filtrates with maximum activity were chromatographed on macroporous cross-linked chitin affinity matrix, showing a peak of main (50-60%) activity, which only contained a 43-kDa protein for both fungi. Zymography and colloidal chitin degradation showed that it was a single endochitinase (CHI43) with optimum pH range of 5.2-5.7. The main isoforms had pIs of 7.6 for V. suchlasporium and 7.9 for V. chlamydosporium. Eggs of the nematode Globodera pallida treated with CHI43 and the serine protease P32 from V. suchlasporium alone or in combination showed surface damage in comparison with controls when examined by scanning electron microscopy.  相似文献   

8.
Comparisons were made for phytase production using wheat bran (WB) and oilcakes as substrates in solid-state fermentation (SSF) by Mucor racemosus NRRL 1994. WB was also used as mixed substrate with oil cakes. Sesame oil cake (SOC) served as the best carbon source for phytase synthesis by the fungal strain as it gave the highest enzyme titres (30.6 U/gds). Groundnut oil cake (GOC) also produced a reasonably good quantity of enzyme (24.3 U/gds). Enzyme production on WB was surprisingly much less (almost 3.5 times less in comparison to SOC). Mixing WB with SOC (1:1 ratio) resulted in better phytase activity (32.2 U/gds). Optimization of various process parameters such as incubation time, initial moisture content and inoculum concentration was carried out using the single variable mode optimization technique. Under optimized conditions, the production of phytase reached 44.5 U/gds, which was almost 1.5-fold higher than the highest yield obtained with any individual substrate used in this study and was more than 4-fold higher than that obtained from WB.  相似文献   

9.
Summary In this study flake chitin, crab shell chitin, mushroom stalk, fungal cell wall, wheat bran and rice bran were used as substrate for chitinase production by Enterobacter sp. NRG4 under submerged and solid state fermentation (SSF) conditions. Enterobacter sp. NRG4 produced 72 and 49.7 U/ml of chitinase in presence of cell walls of Candida albicans and Fusarium moniliforme in submerged fermentation. Under SSF, maximum chitinase production was 965 U/g solid substrate with flake chitin and wheat bran (1:3 ratio) at 75% moisture level after 144 h. The purified chitinase inhibited hyphal extension of Fusarium moniliforme, Aspergillus niger, Mucor rouxi and Rhizopus nigricans. The chitinase was effective in release of protoplasts from Trichoderma ressei, Pleurotus florida, Agaricus bisporus and Aspergillus niger. Protoplasts yield was maximum with 60 mg of 24 h old fungal mycelium incubated with 60 U of chitinase and 60 U of cellulase.  相似文献   

10.
The effect of water deficit on flavonoid production and physiological parameters characteristic for oxidative stress were studied in a cell suspension culture of Glycyrrhiza inflata Batal to investigate its drought tolerance. The result indicated that appropriate water deficit enhanced biomass accumulation of 27.1 g L(-1) and flavonoid production of 151.5 mg L(-1), which was about 2-fold and 1.5-fold of the control, respectively. But it decreased the water content. Drought stress led to hydrogen peroxide accumulation more than in the control. Moreover, under drought conditions, malondialdehyde content, the activities of catalase and peroxidase increased to a greater extent than the control, and each reached a maximum value of 91.3 micromol g(-1) dry weight, 85.6 U and 1951 U g(-1) dry weight per min, which was 1.5-, 1.7- and 3.7-fold of the control, respectively. All above showed that appropriate water deficit could activate the antioxidative defense enzymes system to maintain stability in plants subjected to drought stress. On the contrary, the activity of phenylalanine ammonia lyase of the control increased in company with the biosynthesis of flavonoids, which indicated that phenylalanine ammonia lyase might play an important role in the path of the biosynthesis of flavonoids.  相似文献   

11.
The paper reports on the isolation of an extracellular chitinase produced by the alkaliphilic Bacillus mannanilyticus IB-OR17 B1 strain grown in media containing crab shell and bee chitin at a pH of 8–11. The enzyme was 860-fold purified by ultrafiltration and chitin sorption. The molecular weight of the purified chitinase was shown by denaturing electrophoresis to be 56 kDa. The enzyme showed maximum activity at a pH of 7.5–8.0 and 65°C and was stable within a pH range of 3.5–10.5 and temperature range of 75–85°C. With colloidal chitin as substrate, the kinetic characteristics of the chitinase were determined as follows: KM ~ 1.32 mg/mL and Vmax ~ 5.05 μM min–1. N-acetyl-D-glucosamine and its dimer were the main products of enzymatic chitin cleavage, while the trisaccharide was detected just in minor quantities. The chitinase actively hydrolyzed p-nitrophenyl-GlcNAc2 according to the exo-mechanism of substrate hydrolysis characteristic of chitobiosidases.  相似文献   

12.
甲壳素对连作条件下平邑甜茶幼苗生长及土壤环境的影响   总被引:2,自引:0,他引:2  
研究在苹果连作土壤中添加甲壳素对苹果幼苗生长、土壤酶及土壤真菌群落结构的影响,探讨甲壳素缓解苹果连作障碍的可能性,为防控苹果连作障碍提供依据。盆栽条件下,以平邑甜茶幼苗为试材,在苹果连作土壤中分别添加0,0.5,1.0和2.5g/kg的甲壳素,测定了连作土壤中添加不同量的甲壳素后,幼苗生物量、根系保护酶活性、土壤主要酶(蔗糖酶、脲酶、磷酸酶等)活性以及土壤中真菌群落结构的变化。9月份结果表明,与对照相比,1.0 g/kg的甲壳素处理连作土,可显著提高平邑甜茶幼苗株高和干鲜重,分别比对照增加了36.8%、82.1%和100.8%;甲壳素处理能增加幼苗根系保护酶活性,其中1.0 g/kg甲壳素处理SOD、POD和CAT活性最高,其次为0.5 g/kg,而2.5 g/kg甲壳素处理显著抑制了幼苗根系保护酶活性。1.0 g/kg甲壳素处理可提高土壤中细菌/真菌值,并且提高了土壤中蔗糖酶、脲酶、蛋白酶、磷酸酶、过氧化氢酶和多酚氧化酶活性,分别比对照提高了8.6%、40.5%、81.1%、15.3%、18.7%和49.8%,2.5 g/kg甲壳素处理则降低土壤酶活性或者使土壤酶活性与对照相当。根据T-RFLP的图谱中OUT的数量、种类及丰度,分别计算了不同处理土壤的真菌多样性,发现1.0 g/kg甲壳素处理的连作土具有最高的多样性、均匀度和丰富度指数,分别比对照增加了52.2%、8.0%和87.1%。主成分分析(PCA)结果显示,不同剂量甲壳素处理的连作土壤中真菌被PC2分成了两部分,其中0.5 g/kg和1.0 g/kg的甲壳素添加量分布在PC2的负方向上,而CK和2.5g/kg的甲壳素处理分布在PC2的正方向上,这说明添加不同量的甲壳素对连作土壤真菌群落多样性有显著影响,添加量太多或者太少均会造成土壤真菌多样性下降,只有适量的甲壳素可提高真菌群落结构多样性。实验结果表明1.0 g/kg的甲壳素可提高连作平邑甜茶幼苗生物量,改善连作土壤环境,有效缓解平邑甜茶的连作障碍。  相似文献   

13.
Distribution of chitinase and chitobiase in bacillus   总被引:4,自引:0,他引:4  
Sixty strains representing 29 taxospecies ofBacillus were assayed for their ability to hydrolyze colloidal chitin. A qualitative estimation of chitinolysis was made from the clear zone produced around colonies in the conventional agar plate method and chitobiase activity by use of the fluorescence of 4-methylumbelliferyl-N-acetyl--d-glucosaminide.Strains positive in the chitin-agar plate method were assayed for production of reducing sugar in liquid culture. Seventeen of 52 strains representing 10 species ofBacillus were chitinolytic. The most chitinolytic species ofBacillus were:B. chitinosporus, B. pulvifaciens, B. alvei, B. Macerans, andB. licheniformis. Seventy-eight percent ofBacillus isolates from chitinenriched soil (AU Y91B1, AU-X (unidentified), and AU B2–B8) were chitinolytic. Twenty-three strains representing 15 species gave a positive test for chitobiase. Many strains negative for endochitinase gave a strong positive reaction (4+) for chitobiase.  相似文献   

14.
Chitosan is a biopolymer obtained by deacetylation of chitin and has been proven to have various applications in industry and biomedicine. Deacetylation of chitin using the enzyme chitin deacetylase (CDA) is favorable in comparison to the hazardous chemical method involving strong alkali and high temperature. A fungal strain producing CDA was isolated from environmental samples collected from coastal regions of South Kerala, India. It was identified as Aspergillus flavus by morphological characteristics and ITS DNA analysis. Nutritional requirement for maximum production of CDA under submerged condition was optimized using statistical methods including Plackett–Burman and response surface methodology central composite design. A 5.98-fold enhancement in CDA production was attained in shake flasks when the fermentation process parameters were used at their optimum levels. The highest CDA activity was 57.69 ± 1.68 U under optimized bioprocess conditions that included 30 g L?1 glucose, 40 g L?1 yeast extract, 15 g L?1 peptone, and 7 g L?1 MgCl2 at initial media pH of 7 and incubation temperature of 32°C after 48 hr of incubation, while the unoptimized basal medium yielded 9.64 ± 2.04 U.  相似文献   

15.
Chitinolytic activity in the autolysis of Aspergillus nidulans   总被引:3,自引:0,他引:3  
Abstract Chitinolytic activity in filtrates of Aspergillus nidulans cultures was studied at the start of the autolysis (maximum dry weight of mycelium) and during autolysis in 24 different media. During the growth the chitinolytic activity was induced only by the presence of ascorbic acid or colloidal chitin in the medium. During autolysis an increasing chitinolytic activity was observed with the incubation time in all the conditions, and synthesis of a β - N -acetylgucosaminidase and endochitinase was detected. The possible induction of these enzymes during A. nidulans autolysis is established.  相似文献   

16.
The optimization of nutrient levels for chitinase production by Enterobacter sp. NRG4 in solid-state fermentation conditions (SSF) was carried out using response surface methodology (RSM) based on central composite design (CCD). The design was employed by selecting wheat bran-to-flake chitin ratio, moisture level, inoculum size, and incubation time as model factors. The results of first-order factorial design experiments showed that all four independent variables have significant effects on chitinase production. The optimum concentrations for chitinase production were wheat bran-to-flake chitin ratio, 1; moisture level, 80%; inoculum size, 2.6 mL; and incubation time, 168 h. Using this statistical optimization method, chitinase production was found to increase from 616 U · g−1 dry weight of solid substrate to 1475 U · g−1 dry weight of solid substrate.  相似文献   

17.
Mosquito larvae are believed to be capable of digesting chitin, an insoluble polysaccharide of N-acetylglucosamine, for their nutritional benefit. Studies based on physiological and biochemical assays were conducted in order to detect the presence of chitinase activities in the gut of the detritus-feeding Aedes aegypti larvae. Larvae placed for 24 h in suspensions of chitin azure were able to digest the ingested chitin. Semi-denaturing PAGE using glycol chitin and two fluorogenic substrate analogues showed the presence of two distinct chitinase activities: an endochitinase that catalyzed the hydrolysis of chitin and an endochitinase that cleaved the short substrates [4MU(GlcNAc)(3)] and [4MU(GlcNAc)(2)] that hydrolyzed the chitobioside [4MU(GlcNAc)(2)]. The endochitinase had an extremely broad pH-activity against glycol chitin and chitin azure, pH ranging from 4.0 to 10.0. When the substrate [4MU(GlcNAc)(3)] was used, two activities were observed at pH ranges 4.0-6.0 and 8.0-10.0. Chitinase activity against [4MU(GlcNAc)(3)] was detected throughout the gut with the highest specific activity in the hindgut. The pH of the gut contents was determined by observing color changes in gut after feeding the larvae with color indicator dyes. It was observed a correlation between the pH observed in the gut of feeding larvae (pH 10-6.0) and the optimum pH for gut chitinase activities. In this work, we report that gut chitinases may be involved in the digestion of chitin-containing structures and also in the partial degradation of the chitinous peritrophic matrix in the hindgut.  相似文献   

18.
Chitinolytic systems of anaerobic polycentric rumen fungi of genera Orpinomyces and Anaeromyces were investigated in three crude enzyme fractions - extracellular, cytosolic and cell-wall. Endochitinase was found as a dominant enzyme with highest activity in the cytosolic fraction. Endochitinases of both genera were stable at pH 4.5-7.0 with optimum at 6.5. The Orpinomyces endochitinase was stable up to 50 degrees C with an optimum for enzyme activity at 50 degrees C; similarly, Anaeromyces endochitinase was stable up to 40 degrees C with optimum at 40 degrees C. The most suitable substrate for both endochitinases was fungal cell-wall chitin. Enzyme activities were inhibited by Hg(2+) and Mn(2+), and activated by Mg(2+) and Fe(3+). Both endochitinases were inhibited by 10 mmol/L SDS and activated by iodoacetamide.  相似文献   

19.
采用响应面法在摇瓶水平对重组巴斯德毕赤酵母合成内切几丁质酶的培养基组分进行优化,并探讨重组内切几丁质酶降解几丁质的最佳反应条件。首先对培养基中显著影响内切几丁质酶活力的关键组分通过Plackett-Burman试验设计进行筛选;然后通过Box-Behnken试验设计和响应面法确定关键组分的最佳浓度。结果筛选出3个具有显著效应的关键组分为酵母膏、油酸和吐温-80,最佳浓度分别为:2.45%、0.17%和0.62%。优化后的最佳培养基组成为:2.45%酵母膏、2.00%蛋白胨、0.50%酵母氮碱(YNB)、0.50%甲醇、0.17%油酸、0.62%吐温-80和0.40% PTM1。在该培养基中,重组巴斯德毕赤酵母在摇瓶水平(25mL/250mL)发酵生产内切几丁质酶的活力高达92.26U/mL。重组内切几丁质酶催化几丁质降解的最佳反应条件为:粉末几丁质浓度为4%,pH和温度分别为7.0和30℃,反应时间为10h。研究结果为后期在发酵罐中大规模生产内切几丁质酶和几丁寡糖提供了基础。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号