首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Monoamine oxidase (MAO) in crude mitochondrial preparations from rat brain was solubilized, and different MAO-active fractions were separated by agarose columns and by Sephadex electrophoresis. Any combination of these techniques yielded at least three fractions possessing MAO activity as measured by assays using radioactive serotonin and benzylamine as substrates. The molecular weight of one of the MAO forms was found to be approximately 400,000 daltons while another was at least 1.5 × 106 daltons. The crude mitochondria1 MAO was inhibited by [14C]-labelled pargyline and then solubilized and the radioactivity of the soluble and particulate MAO was compared to the enzyme activity found in the soluble and particulate fractions. Our studies suggest that appreciable MAO activity is lost upon solubilization and that the conformation of MAO may be altered.  相似文献   

2.
Although spermatozoa possess a very active carnitine acetyltransferase, there is no satisfactory explanation for such a high activity. In order to help elucidate possible roles for carnitine acetyltransferase in spermatozoa, we examined the intracellular location and properties of carnitine acetyltransferase from ejaculated ram spermatozoa. The spermatozoa were disrupted by hypotonic treatment with 10 mm phosphate buffer (pH 7.4), followed by mild sonication. The resulting homogenate was separated by sucrose step-gradient centrifugation into soluble, plasma membrane, acrosomal membrane, and mitochondrial fractions. These fractions were characterized by electron microscopy and marker enzyme assays. The particulate fractions were made soluble by treatment with 0.1% deoxycholate and then were assayed for carnitine acetyltransferase activity. Carnitine acetyltransferase activity was found exclusively in the mitochondrial fraction with a specific activity of 0.151 μmol CoASH · min?1 · mg?1. The apparent Km values for acetyl-CoA and l-carnitine were 1.1 × 10?5 and 1.3 × 10?4m respectively.  相似文献   

3.
Abstract: Incorporation of [14T]leucine into trichloracetic acid-precipitable material and tubulin-enriched fractions, and total tubulin levels as determined by colchicine-binding activity and retention on DE81 filter discs, were measured in various regions of the chick brain following training on a one-trial passive avoidance task, suppression of pecking at a chromed bead as a consequence of the aversive taste of methylanthranilate. Radioactive pulse time was 0.5 h. The only brain region in which changes were found was the anterior forebrain roof, the same area in which biochemical changes in response to exposure of the birds to an imprinting stimulus have been observed previously. In the anterior forebrain roof the changes observed as a consequence of training were detectable at 0.5 and 24 h after the 10-s training experience but not 48 h subsequently. One-half hour after training, there were increases of the order of 20 or 30% in [14T]leucine incorporation into particulate and postmitochondrial TCA-precipitable material and a tubulin-enriched fraction purified as above. There were comparable increases in the total amount of colchicine-binding activity. By 48 h, none of these increases were detectable. Subcellular fractionation of the particulate fraction showed that most of the increase of incorporation into the tubulin-enriched fraction and in colchicine-binding activity was present in the soluble content of the synaptosomes; there were no increases in either measure in the synaptic membrane fraction. The possible role of changed levels and turnover of tubulin in the plastic responses of the brain to learning experiences is discussed.  相似文献   

4.
A particulate fraction of adult rat brain (sucrose buoyant density 1.24 gm/ml) catalyzed the incorporation of [3H]dTTP into an acid-insoluble product in an endogenously templated reaction sensitive to ribonuclease pretreatment. Upon fractionation, this activity was identified in the cerebellum, pons, frontal lobes and base. The DNA polymerase present in these brain fractions exhibited a strong preference for the synthetic template dT12–18·poly rA rather than dT12–18·poly dA; dT10 was completely inactive. Purification and equilibrium Cs2SO4 gradient centrifugation of the [3H]DNA product-endogenous template complex suggested that RNA was serving as primer for endogenous DNA synthesis.  相似文献   

5.
MICROTUBULE PROTEIN DURING CILIOGENESIS IN THE MOUSE OVIDUCT   总被引:3,自引:3,他引:0       下载免费PDF全文
A colchicine-binding assay and quantitative sodium dodecyl sulfate gel electrophoresis have been used to determine the changes which occur in microtubule protein (tubulin) concentrations in the particulate and soluble fractions of mouse oviduct homogenates during that period of development when centriole formation and cilium formation are at a maximum. When mouse oviducts, at various ages after birth, are homogenized in Tris-sucrose buffer, tubulin concentration is partitioned between the soluble (70%) and particulate (30%) fractions. During the period of most active organelle formation (3–12 days), there is a marked increase in colchicine-binding specific activity, in both the soluble and particulate fractions. Microtubule protein concentration increases from 16 to 24% in the soluble fraction, declining to 14% in the adult. In the particulate fractions, microtubule protein concentration increases from 16 to 27%, leveling off at 16% in the adult. We have concluded from these observations and from electron microscopy that colchicine-binding activity in the particulate fractions is related to the presence of centriole precursors in the pellets of homogenized oviducts from newborn mice. These data further suggest that centriole precursor structures are conveniently packaged aggregates of microtubule protein actively synthesized between 3 and 5 days, and maintained at a maximum during the most active period of organelle assembly.  相似文献   

6.
Previous work has shown that the total hepatic tubulin pool and the hepatic microtubule-derived tubulin pool do not have identical [3H]colchicine binding properties. Rapid loss of colchicine-binding activity was noted in the microtubule-derived fractions of liver tubulin. Furthermore, quantitative determination of the total and polymerized tubulin in the liver by the [3H]colchicine-binding assay was hampered by rapid and unequal loss of binding sites under assay conditions. The organic acids, glutamate and glucose 1-phosphate, have been shown to stabilize calf brain tubulin against loss of colchicine-binding sites. Therefore, these compounds were tested as possible protecting agents against loss of colchicine binding activity of liver tubulin. It was found that these agents stabilized liver tubulin under [3H]colchicine-binding conditions. Additional experiments showed that these agents also prevented the rapid loss of colchicine-binding activity that occurred when purified brain tubulin was exposed to liver supernates. These results suggest that the inclusion of the organic acids, glutamate and glucose 1-phosphate, may modify the time decay properties of liver tubulin in solution. Further, these data suggest that these protecting agents may be of analytical value in [3H]colchicine-binding assay systems for liver tubulin.  相似文献   

7.
—The detailed subcellular distribution and some properties of acetyl-CoA hydrolase were studied in the rat brain. The brain homogenate (S1) hydrolysed acetyl-CoA at a rate of approx 2·3 nmol/min/mg of protein at 37°C. The total activity of acetyl-CoA hydrolase was distributed in the following order: soluble > mitochondrial > microsomal, synaptosomal > myelin fraction. The order of the specific activity of the enzyme was: soluble, microsomal > mitochondrial > synaptosomal > myelin fraction. The synaptic vesicle fraction (D) had relatively high specific activity among the intraterminal particulate fractions, having two or three times higher specific activity than that of the synaptic cytoplasmic membrane fraction (F or G). Attempts to de-occlude acetyl-CoA hydrolase in the particulate fraction showed that only the enzyme activity in the myelin fraction was increased markedly by the treatment with ether or Triton X-100. Lineweaver-Burk plots gave straight lines for each subcellular fraction and apparent Km values for acetyl-CoA were between 0·1 and 0·2 mM. Neither diisopropyl fluorophosphate nor physostigmine at the concentration of 0·1 mm inhibited the enzyme activity.  相似文献   

8.
Increasing concentrations of dopamine fail to give a biphasic response to (Na+ + K+)-ATPase activity in various subcellular fractions of rat brain preincubated with monoamine oxidase inhibitors, viz. 1·10?4 M clorgyline and 1·10?4 M deprenyl. The product of the monoamine-oxidase-catalysed reaction with dopamine as substrate is 3-methoxy-4-hydroxyphenylacetaldehyde. An analogue of this product is 3-methoxy-4-hydroxybenzaldehyde. This analogue, when incubated with the subcellular fractions which had been preincubated with monoamine oxidase inhibitors and dopamine, gave a more pronounced biphasic response to (Na+ + K+)-ATPase activity than that observed in the fractions incubated with dopamine alone.  相似文献   

9.
The colchicine-binding activity of rat superior cervical ganglia was examined. Ganglia were cooled and re-warmed in the presence of either Cu2+ or of metabolic inhibitors. Electronmicroscopy showed that these treatments depolymerized the neurotubules. This depolymerization of neurotubules did not affect the colchicine-binding activity of ganglion homogenates but caused a two-fold increase in colchicine-binding by whole ganglia. This suggests that colchicine binds only to depolymerized neurotubule subunits and that colchicine-binding by whole ganglia can be used as a measure of polymerization of the neurotubule protein.The major part of the colchicine-binding activity of ganglion homogenates was found in the soluble fraction and was unstable. In the absence of divalent cations, 10−4 M vinblastine stabilised the soluble colchicine-binding activity.  相似文献   

10.
The net rate of proximo-distal transport of tyrosine hydroxylase, dopamine β-hydroxylase, DOPA decarboxylase and choline acetyltransferase was determined by measuring the accumulation of these enzymes proximal to a ligature of the rat sciatic nerve. The rate of accumulation was constant for at least 12 h. For the enzymes involved in the biosynthesis of norepinephrine the rate of transport was correlated to their subcellular distribution and a close correlation between these two parameters was found. Dopamine β-hydroxylase, an enzyme mainly localized in the particulate fraction of the sciatic nerve, showed the fastest rate of transport (1·94 mm/h) whereas DOPA decarboxylase, exclusively located in the high-speed supernatant fluid, gave the slowest (0·63 mm/h) rate of transport. Tyrosine hydroxylase, predominantly located in the non-particulate fraction of the sciatic nerve was transported much slower (0·75 mm/h) than dopamine β-hydroxylase but still significantly (P < 0.005) faster than DOPA decarboxylase. The subcellular distribution of dopamine β-hydroxylase in ganglia did not differ significantly (0·45 > P > 0·40) from that in the sciatic nerve, but in nerve endings a greater proportion of dopamine β-hydroxylase was localized in particulate fractions. Tyrosine hydroxylase and DOPA decarboxylase were found exclusively in the non-particulate fractions of ganglia. In the nerve endings of the effector organs a small but consistent portion of tyrosine hydroxylase was found in particulate fractions, whereas DOPA decarboxylase was exclusively localized in the high-speed supernatant fluid.  相似文献   

11.
We have examined iodothyronine deiodination in subcellular fractions of cerebral cortex obtained from hypothyroid rats. Enzymatic activities were measured at 37°C in the presence of 20 mM dithiothreitol with 125I-labeled T4 and 125I-labeled rT3 as substrate for 5′-deiodination and 131I-labeled T3 as the substrate for the 5-deiodinase. Reaction products were separated by descending paper and/or ion-exchange chromatography. Cerebral cortex subcellular fractions were also characterized by marker enzyme analysis and electron microscopy. Under optimal reaction conditions more than 80% of the 5′-deiodinase was recovered after fractionation. Both 5′-deiodinase and (Na+ +K+-ATPase showed similar subcellular distributions and were enriched approx. 3-fold in the easily sedimenting membrane fraction and nerve terminal plasma membranes. Crude microsomal membranes (6·106g·min pellet) also showed 2-fold enrichment of these enzymes. Nuclei and isolated mitochondria were devoid of deiodinating activity. T4 and T3 5-deiodinating activity was absent in the easily sedimenting membranes and present but not enriched in particulate fractions containing microsomal membranes. These data suggest that iodothyronine 5′-deiodinase is associated with plasma membrane fractions in the cerebral cortex.  相似文献   

12.
—(1) The activity of the Na-K ATPase in the particulate fraction of the chick embryo brain has been assayed at different stages of development with the objective of finding whether or not changes in the activity of this enzyme bear any relation to the maturation of spontaneous and evoked electrical activity of the growing chick brain. (2) The specific activity of the enzyme is low on day 6 and it rises rapidly between days 10 and 12, at which time it attains a plateau and remains essentially unchanged from day 12 until day 20. Experimental evidence rules out the possible presence of an inhibitor of the enzyme in 8-day-old brain homogenates, suggesting that these developmental changes in the activity of the enzyme may represent new synthesis of enzyme rather than its activation. The period between days 10 and 12 does not represent a unique stage of general protein synthesis. (3) The chick brain particulate enzyme has an optimum activity at pH 7·4 and at 37°. It is optimally activated by a Na+ concentration of 100mm and K+ concentration of 20 mm . The enzyme is inhibited by ouabain and Ca2+. (4) The results have been discussed.  相似文献   

13.
The kinetics of binding of 1-naphthylacetic acid to particulate fractions from tobacco-pith callus were studied. This binding site does not bind auxin at 0° C. Binding experiments performed at 25° C demonstrated an apparent K a of approx. 6.5·106 M-1. A filtration method was developed in order to study non-equilibrium kinetics of this binding. Dissociation of the complex of auxin and binding site indicates the presence of at least two binding components with dissociation rate constants (k off) of 6.1·10-3 min-1 and 6.0·10-2 min-1. This binding behaviour was not independent, indicating that the binding of auxin to the particulate fractions was more complex than binding of one hormone molecule to one binding site. This complexity was further confirmed by experiments in which the initial velocity of complex formation was measured. A model was worked out into which our data fit without contradictions. It involves the binding of four hormone molecules to one receptor molecule.  相似文献   

14.
Tubulin has been purified from human blood and tonsil lymphocytes. Using gel filtration, the molecular weight of human lymphocyte tubulin was estimated to be 119 000. The proteins was shown to consist of two subunits, with molecular weights of 61 000 and 58 000 comparable to the α and β polypeptides of human brain tubulin. A partial identity reaction was observed between lymphocyte tubulin and human tubulin when tested by double immunodiffusion against a rabbit anti-human brain tubulin antibody. In the presence of GTP, the purified protein polymerized to form microtubules. Tubulin was localized to the cell's juxtacentriolar region by immunofluorescence and electron microscopy. When assayed by a colchicine-binding assay corrected for time decay, the binding affinity was 1.50 ± 0.86 · 106M?1 and a level in normal lymphocytes of 1.21 · 10?2 ± 0.79 g/g of soluble protein was determined. Since chronic lymphocytic leukemia lymphocytes have an anomalous capping behavior as well as an unusual susceptibility to colchicine toxicity, the properties and levels of tubulin were determined in these cells. Similar values were obtained for the level, decay rate, molecular weight, and Ka for colchicine as for normal lymphocytes. Chronic lymphocytic leukemia lymphocyte tubulin polymerized in a normal fashion. It thus appears that a decrease in the quantity or function of tubulin does not account for these anomalies in the chronic lymphocytic leukemia lymphocyte.  相似文献   

15.
Abstract— –Enzymic transformation of [4-14C]dehydroepiandrosterone or [4-14C]dehydro-epiandrosterone sulphate to androstenediol or its sulphate occurred when incubated with a microsomal preparation of rat brain or a whole rat blood homogenate. The brain enzyme which appeared to cause this transformation had a pH optimum at 60, was NADPH2-dependent, and had an apparent Km of 4·6 × 10?6m . When the subcellular fractions of rat brain were compared for transformation, microsomes had the highest specific activity, followed by the cytosol. The crude nuclear and mitochondrial fractions had no significant activity. The level of enzymic activity in the brain microsomes increased from that for rats sacrificed at 7 days of postnatal age to a maximum for rats sacrificed at 1 month of age; then the activity appeared to level off in rats older than 1 month. Microsomes obtained from the cerebellum had the highest specific activity in comparison to that obtained from the cerebral cortex, the diencephalon, and the brain stem. The incubated preparations of rat brain also converted dehydroepiandrosterone sulphate to androstenediol sulphate without hydrolysis. The enzyme in rat blood which was similar to that in the brain was also partially characterized. The blood enzyme had a pH optimum at 6–5, was nearly exclusively present in erythrocytes, was also NADPH2-dependent, and had an apparent Km of 2·7 × 10?4m . The developmental pattern of the blood enzyme specific activity was similar to that of the rat brain enzyme. Upon haemolysis, most activity was recovered in the haemolysate.  相似文献   

16.
—The intracellular disposition of the convulsant agent, methionine sulphoximine (MSO), administered as methyl-labelled [3H]MSO, was examined in rat brain. Intraperitoneal (i.p.) and intrathecal (i.th.) routes were compared. The effect of simultaneous administration of methionine on the uptake, the regional distribution and the intracellular disposition of [3H]MSO was also assessed: (1) The peak uptake of i.p. [3H]MSO was at 2 h and amounted to about 1 per cent of the dose; the peak uptake of i.th. [3H]MSO was at 30 min post-injection and amounted to 40 per cent of the administered dose. The uptake was effectively reduced when methionine was simultaneously administered. (2) The regional distribution of [3H]MSO as a function of time after injection revealed a rather uniform penetration of the entire brain by the drug. A maximum of 43 per cent of the tissue radioactivity was found in the cerebellum 2 h after i.p. injection, while 49 per cent accumulated in the extracortical portion of the brain 3·5 h after i.th. administration. Methionine did not affect the regional distribution of [3H]MSO. (3) Differential centrifugation of samples of cortex and cerebellum revealed an association of [3H]MSO with intracellular particulate fractions. Since closely similar proportions of MSO occurred in the crude mitochondrial and the microsomal fractions, these fractions were analysed further: (a) [3H]MSO was bound to nerve endings sedimenting at the 1·0 m–1·2 m-sucrose interface; this binding was not abolished by prior increase of the endogenous cerebral methionine pool; and (b) [3H]MSO was released by subjecting the nerve endings to osmotic shock. However, the striking finding was that [3H]MSO could not be released from the nerve endings of the cerebellum from animals pre-treated with methionine. (4) An association of [3H]MSO was observed with the membranes of the endoplasmic reticulum and specifically with its agranular component. (5)The results implicate the cerebellum as the primary target for MSO, in confirmation of the original observations of Lodin (1958).  相似文献   

17.
N-Tyr-MIF-1 (Tyr-Pro-Leu-Gly·NH2), an immunoreactive neuropeptide exhibiting saturable high affinity binding in rat brain was found to be converted into MIF-1 (Pro-Leu-Gly·NH2) by a specific brain aminopeptidase present in rat brain homogenates or cytosol, but with low activity associated with synaptosomal plasma membranes and microsomes. Conversion occurred at a rate of 16 μmol per g w/wt per h and was unaffected by puromycin but inhibited by bestatin (I50, 5 × 10?5 M). Aminopeptidases purified from cytosolic fractions of rat brain (arylamidase), mouse brain (Mn2+-activated aminopeptidase) or porcine kidney (leucine aminopeptidase) were inactive towards N-Tyr-MIF-1 but degraded MIF-1 with release of Leu-Gly·NH2 as detected by RP-HPLC procedures. Morphiceptin (Tyr-Pro-Phe-Pro·NH2), a μ opioid agonist, also acted as a substrate for the N-Tyr-MIF-1 converting enzyme with cleavage of the Tyr-Pro bond. These tetrapeptides, but not MIF-1 or its N-blocked analogs, were degraded in vitro by a metalloendopeptidase purified from kidney membranes. Since dipeptide products were not detected for crude extracts, a significant role for brain metalloendopeptidase on turnover can be excluded. Thus the results point to the presence of a specific (X-Pro-degrading) aminopeptidase in brain cytosol as an enzyme responsible for converting N-Tyr-MIF-1 and inactivating morphiceptin.  相似文献   

18.
Bovine thyroid tissue exhibited cAMP-dependent and Ca2+-dependent protien kinase activities as well as a basal (cAMP- and Ca2+-independent) one, and phosphoprotein phosphatase activity. Although the former two protein kiniase activities were not clearly demonstrated using endogenous protein as substrate, they were clearly shown in soluble, particulate and plasma membrane fractions using exogenous histones as substrate. The highest specific activities were in the plasma membrane. The apparent Km values of cAMP and Ca2+ for the membrane-bound protein kinase were 5·10?8 M and 8.3·10?4M (in the presence of 1 mM EGTA), respectively. The apparent Km values of Mg2+ were 7·10?4 M (without cAMP and Ca2+, 5·10?4 M (with cAMP) and 1.3·10?3 M (with Ca2+), and those ATP were 3.5·10?5 M (with or without cAMP) and 8.5·10?5 M (with Ca2+). The Ca2+-dependent protein kinase could be dissociated from the membrane by EGTA-washing. The enzyme activity so released was further activated by added phospholipid (phosphatidylserine/1,3-diolein), but not by calmodulin. Phosphoprotein phosphatase activity was also clearly demonstrated in all of the fractions using 32P-labeled mixed histones as substrate. The activity was not modified by either cAMP or Ca2+, but was sitmulated by a rather broad range (5–25 mM) of Mg2+ and Mn2+. NaCl and substrate concentrations also influenced the activity. Pyrophosphate, ATP, inorganic phosphate and NaF inhibited the activity in a dose-dependent manner. Trifluoperazine, chlorpromazine, dibucaine and Triton X-100 (above 0.05%, w/v) specifically inhibited the Ca2+-dependent protein kinase in plasma membranes. Repetitive phosphorylation of intrinsic and extrinsic proteins by the membrane-bound enzyme activities clearly showed an important co-ordination of them at the step of protein phosphorylation. These findings suggest that these enzyme activities in plasma membranes may contribute to regulation of thyroid function in response to external stimuli.  相似文献   

19.
Photosynthetic fructose-1,6-diphosphatase (FDPase) fractions I and II, earlier purified from spinach leaves, show a similar amino acid composition, with the exception of a higher glutamic acid content in the latter. In both fractions glutamic and aspartic acids are the main amino acids. pH activity profiles of fractions I and II are similar, with optima at 8·65–8·70, both showing a high specificity for fructose- 1,6-diphosphate. These two fractions are Mg2+-dependent for activity, with an Optimum Mg2+ concentration of 10 mM in standard conditions, which shifts to 5 mM when the MG2+/EDTA ratio is increased to 10; Mn2+ and Co2+ are slightly active. EDTA enhances FDPase activity slightly, with an optimum at 0·4–0·8 mM. Cysteine has no activating effect, and acts as an inhibitor above 10 mM. Both I and II have an optimum substrate concentration of 4 mM, and the substrate inhibits at concns above this value. Kinetic velocity curves are sigmoidal, with the concave zone located in the range of physiological substrate concns. (Hill coefficient 1·75 for both). This suggests a strong regulatory role of fructose-1,6-diphosphate. Km values are 1·4 × 10−3 M (fraction I) and 1·1 × 10−3 M (fraction II). The highest activity rate occurs at 60°, in accordance with the high thermostability of both fractions; the activation energies are 14·3 kcal/mol (fraction I) and 13·0 kcal/mol (fraction II).  相似文献   

20.
The effects of trialkyltin compounds on the colchicine-binding activity and the in vitro polymerisation of rat brain tubulin have been investigated. Trialkyltins at concentrations between 10 and 100 μM inhibited the colchicine-binding activity of purified tubulin preparations derived from rat brain. Viscometric studies have shown that the same concentrations of trialkyltins also inhibited the in vitro polymerisation of tubulin. Both the effects were found to be concentration dependent. However, trialkyltins did not interfere with the in vitro preassembled microtubules. The reasons which are believed to explain the inhibitory effects of these compounds are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号