首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Clusterin (CLU) plays numerous roles in mammalian cells after stress. A review of the recent literature strongly suggests potential roles for CLU proteins in low dose ionizing radiation (IR)-inducible adaptive responses, bystander effects, and delayed death and genomic instability. Its most striking and evident feature is the inducibility of the CLU promoter after low, as well as high, doses of IR. Two major forms of CLU, secreted (sCLU) and nuclear (nCLU), possess opposite functions in cellular responses to IR: sCLU is cytoprotective, whereas nCLU (a byproduct of alternative splicing) is a pro-death factor. Recent studies from our laboratory and others demonstrated that down-regulation of sCLU by specific siRNA increased cytotoxic responses to chemotherapy and IR. sCLU was induced after low non-toxic doses of IR (0.02-0.5 Gy) in human cultured cells and in mice in vivo. The low dose inducibility of this survival protein suggests a possible role for sCLU in radiation adaptive responses, characterized by increased cell radioresistance after exposure to low adapting IR doses. Although it is still unclear whether the adaptive response is beneficial or not to cells, survival of damaged cells after IR may lead to genomic instability in the descendants of surviving cells. Recent studies indicate a link between sCLU accumulation and cancer incidence, as well as aging, supporting involvement of the protein in the development of genomic instability. Secreted after IR, sCLU may also alter intracellular communication due to its ability to bind cell surface receptors, such as the TGF-beta receptors (types I and II). This interference with signaling pathways may contribute to IR-induced bystander effects. We hypothesize that activation of the TGF-beta signaling pathway, which often occurs after IR exposure, can in turn activate the CLU promoter. TGF-beta and IR-inducible de novo synthesized sCLU may then bind the TGF-beta receptors and suppress downstream growth arrest signaling. This complicated negative feedback regulation most certainly depends on the cellular microenvironment, but undoubtedly represents a potential link between IR-induced adaptive responses, genomic instability and bystander effects. Further elucidation of clusterin protein functions in IR responses are clearly warranted.  相似文献   

2.
Many cellular responses are quantal; that is, they either take place or they do not. Examples of "either-or" responses include cell replication, differentiation and apoptosis. Surprisingly, induction of suites of genes and coordinated phenotypic changes in cells are also often quantal, where embedded molecular circuitry creates on-off switches. Mechanistic incidence-dose (ID) models need to account for the quantal characteristics of cellular switches that contribute, in turn, to dose thresholds and to the incidence of biological responses in individuals. Interdisciplinary systems biology approaches create mechanistic ID models based on: (i) detailed knowledge of the cellular circuitry controlling signal transduction; (ii) evolving biological modeling tools describing cellular circuits and their perturbations by chemicals and (iii) high throughput, high coverage "omic" screens for examining cell signaling pathways and biological responses. These interdisciplinary approaches should produce novel, quantitative ID models for biological responses and greatly improve the biological basis of safety and risk assessments.  相似文献   

3.

Background

Secretory Apolipoprotein J/Clusterin (sCLU) is a ubiquitously expressed chaperone that has been functionally implicated in several pathological conditions of increased oxidative injury, including aging. Nevertheless, the biological role of sCLU in red blood cells (RBCs) remained largely unknown. In the current study we identified sCLU as a component of human RBCs and we undertook a detailed analysis of its cellular topology. Moreover, we studied the erythrocytic membrane sCLU content during organismal aging, in conditions of increased organismal stress and accelerated RBCs senescence, as well as during physiological in vivo cellular senescence.

Methodology/Principal Findings

By using a combination of molecular, biochemical and high resolution microscopical methods we found that sCLU is a novel structural component of RBCs extra- and intracellular plasma membrane and cytosol. We observed that the RBCs membrane-associated sCLU decreases during organismal aging or exposure to acute stress (e.g. smoking), in patients with congenital hemolytic anemia, as well as during RBCs in vivo senescence. In all cases, sCLU reduction paralleled the expression of typical cellular senescence, redox imbalance and erythrophagocytosis markers which are also indicative of the senescence- and oxidative stress-mediated RBCs membrane vesiculation.

Conclusions/Significance

We propose that sCLU at the mature RBCs is not a silent remnant of the erythroid precursors, but an active component being functionally implicated in the signalling mechanisms of cellular senescence and oxidative stress-responses in both healthy and diseased organism. The reduced sCLU protein levels in the RBCs membrane following cell exposure to various endogenous or exogenous stressors closely correlates to the levels of cellular senescence and redox imbalance markers, suggesting the usefulness of sCLU as a sensitive biomarker of senescence and cellular stress.  相似文献   

4.
5.
Transforming growth factor-beta 1 (TGF-beta 1) regulates the expression of the carcinoembryonic antigen (CEA) gene family in the human colon carcinoma cell line Moser. The mechanisms through which it acts, however, are unknown. In this communication, several lines of evidence are presented to show that the induction of CEA expression and secretion (collectively called CEA responses) by TGF-beta 1 is associated with protein kinase C (PKC) pathway of signal transduction. Treatment of intact cells with the PKC-specific inhibitor calphostin C down-modulated cellular PKC phosphotransferase activity and blocked the induction of the CEA responses by TGF-beta 1. Depletion of PKC by treatment of intact cells with phorbol ester also blocked the action of TGF-beta 1. The induction of the CEA responses by TGF-beta 1 was also blocked by the protein kinase inhibitor 1-(isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H-7), which also inhibited cellular PKC activity. However, TGF-beta 1 did induce the CEA responses in intact cells treated with the calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W-7), the calmodulin-dependent phosphodiesterase inhibitor calmidazolium, the diacylglycerol kinase inhibitor R59 022, and the G-protein inhibitors cholera toxin and pertussis toxin. Treatment of intact cells with TGF-beta 1 induced a rapid and transient increase in PKC phosphotransferase activity. TGF-beta 1, however, was unable to induce PKC enzymatic activity in cells pretreated with calphostin C. Therefore, it is concluded that TGF-beta 1 regulates the CEA responses through a signal transducing pathway associated with PKC.  相似文献   

6.
Recent developments in bacterial cold-shock response   总被引:9,自引:0,他引:9  
  相似文献   

7.
A new mRNA targeting contrast agent consisting of three main functional domains, (i) gadolinium based magnetic resonance reporter part, (ii) antisense peptide nucleic acids targeted to mRNA, and (iii) cholesterol as the delivery vector, was developed and synthesized. The new contrast agent showed efficient cellular uptake and significant contrast enhancement at very low labeling concentrations (0.5 μM). However, after uptake into cells the agent was located predominantly in endosomes like a similar cell penetrating peptide conjugated probe. Our results indicate that this newly developed contrast agent could be used for the labeling of cells for optical as well as magnetic resonance imaging.  相似文献   

8.
Cyanide is a highly toxic agent that inhibits mitochondrial cytochrome-c oxidase, thereby depleting cellular ATP. It contributes to smoke inhalation deaths in fires and could be used as a weapon of mass destruction. Cobalamin (vitamin B12) binds cyanide with a relatively high affinity and is used in Europe to treat smoke inhalation victims. Cobinamide, the penultimate compound in cobalamin biosynthesis, binds cyanide with about 10(10) greater affinity than cobalamin, and we found it was several-fold more effective than cobalamin in (i) reversing cyanide inhibition of oxidative phosphorylation in mammalian cells; (ii) rescuing mammalian cells and Drosophila melanogaster from cyanide toxicity; and (iii) reducing cyanide inhibition of Drosophila Malpighian tubule secretion. Cobinamide could be delivered by oral ingestion, inhalation, or injection to Drosophila, and it was as effective when administered up to 5 mins post-cyanide exposure as when given pre-exposure. We conclude that cobinamide is an effective cyanide detoxifying agent that has potential use as a cyanide antidote, both in smoke inhalation victims and in persons exposed to cyanide used as a weapon of mass destruction.  相似文献   

9.
The ability of Staphylococcus aureus to invade mammalian cells may explain its capacity to colonize mucosa and to persist in tissues after bacteraemia. To date, the underlying molecular mechanisms of cellular invasion by S. aureus are unknown, despite its high prevalence and difficulties in treatment. Here, we show cellular invasion as a novel function for an S. aureus adhesin, previously implicated solely in attachment. S. aureus , but not S. epidermidis , invaded epithelial 293 cells in a temperature- and F-actin-dependent manner. Formaldehyde-fixed and live bacteria were equally invasive, suggesting that no active bacterial process was involved. All clinical S. aureus isolates analysed, but only a subset of laboratory strains, were invasive. Fibronectin-binding proteins (FnBPs) acted as S. aureus invasins, because: (i) FnBP deletion mutants of invasive laboratory strains lost invasiveness; (ii) expression of FnBPs in non-invasive strains conferred invasiveness; and (iii) the soluble isolated fibronectin-binding domain of FnBP (D1–D4) completely blocked invasion. Integrin α5β1 served as host cell receptor, which interacted with staphylococcal FnBPs through cellular or soluble fibronectin. FnBP-deficient mutants lost invasiveness for epithelial cells, endothelial cells and fibroblasts. Thus, fibronectin-dependent bridging between S. aureus FnBPs and host cell integrin α5β1 is a conserved mechanism for S. aureus invasion of human cells. This may prove useful in developing new therapeutic and vaccine strategies for S. aureus infections.  相似文献   

10.
11.
12.
In a recent publication, we have shown that delphinidin, an anthocyanidin induces apoptosis and cell cycle arrest in highly metastatic human prostate cancer (PCa) PC3 cells. Extending these studies, we provide additional evidence that delphinidin induces apoptosis and cell cycle arrest in androgen refractory human PCa 22Rn1 cells and that these effects are concomitant with inhibition of NF-kB. We observed that delphinidin treatment to 22Rn1 cells resulted in a dose-dependent (i) G2/M phase cell cycle arrest, (ii) induction of apoptosis (iii) and inhibition of NF-kB signaling. The induction of apoptosis by delphinidin was mediated via activation of caspases since a general caspase inhibitor Z-VAD-FMK significantly reversed this effect. Delphinidin treatment to cells resulted in a dose-dependent decrease in (i) phosphorylation of IKKgamma (NEMO), (ii) phosphorylation of NF-kB inhibitory protein, (iii) phosphorylation of NF-kB/p65 at Ser536 and NF-kB/p50 at Ser529, (iv) NF-kB/p65 nuclear translocation, and (v) NF-kB DNA binding activity. Taken together, our data show that delphinidin induces apoptosis of both androgen independent and androgen refractory human PCa cells via activation of caspases and in addition, this effect might be due to inhibition of NF-kB signaling. We suggest that delphinidin could be developed as a novel agent against PCa.  相似文献   

13.
Malaria has re-emerged as a global health problem, leading to an increased focus on the cellular and molecular biology of the mosquito Anopheles and the parasite Plasmodium with the goal of identifying novel points of intervention in the parasite life cycle. Anti-parasite defenses mounted by both mammalian hosts and Anopheles can suppress the growth of Plasmodium. Nonetheless, the parasite is able to escape complete elimination in vivo, perhaps by thwarting or co-opting these mechanisms for its own survival, as do numerous other pathogens. Among the defense systems used by the mammalian host against Plasmodium is the synthesis of nitric oxide (NO), catalyzed by an inducible NO synthase (iNOS). Nitric oxide produced by the action of an inducible Anopheles stephensi NO synthase (AsNOS) may be central to the anti-parasitic arsenal of this mosquito. In mammals, iNOS can be modulated by members of the transforming growth factor-beta (TGF-beta) cytokine superfamily. Transforming growth factor-beta is produced as an inactive precursor that is activated following dissociation of certain inhibitory proteins, a process that can be promoted by reaction products of NO as well as by hemin. Ingestion by Anopheles of blood containing Plasmodium initiates parasite development, blood digestion which results in the accumulation of hematin (hemin) in the insect midgut, and induction of both AsNOS and TGF-beta-like (As60A) gene expression in the midgut epithelium. Active mammalian TGF-beta1 can be detected in the A. stephensi midgut up to 48h post-ingestion and latent TGF-beta1 can be activated by midgut components in vitro, a process that is potentiated by NO and that may involve hematin. Further, mammalian TGF-beta1 is perceived as a cytokine by A. stephensi cells in vitro and can alter Plasmodium development in vivo. Bloodfeeding by Anopheles, therefore, results in a juxtaposition of evolutionarily conserved mosquito and mammalian TGF-beta superfamily homologs that may influence transmission dynamics of Plasmodium in endemic regions.  相似文献   

14.
Gangliosides are critical in many functions of mammalian cells but present as a minor lipid component with many molecular species of subtle differences. Conventional strategies for profiling gangliosides suffer from poor reproducibility, low sensitivity, and low-throughput capacity. Prior separation of gangliosides by thin-layer chromatography and/or high-performance liquid chromatography not only was laborious and tedious but also could introduce uneven losses of molecular species. We developed a new strategy of using electrospray ionization-tandem mass spectrometry (ESI-MS/MS) to profile gangliosides with high-throughput potential. This strategy involves three new findings: (i) collision-induced fragmentation of gangliosides gave rise to a common ion of m/z 290, a derivative of N-acetylneuraminic acid; (ii) phospholipids exert a profound suppression of ganglioside detection in ESI-MS/MS to prevent a direct detection in total cellular lipid extracts; and (iii) enrichment of gangliosides in the aqueous phase from total cellular lipid extracts eliminates the damping effect of phospholipids and permits direct precursor scan.  相似文献   

15.
The application of xenotransplantation faces daunting immunological hurdles, some of which might be overcome with the induction of tolerance. Porcine organs transplanted into primates are subject to several types of rejection responses. Hyperacute rejection mediated by naturally occurring xenoreactive antibodies and complement can be overcome without tolerance. Acute vascular rejection and cellular rejection, however, may present important opportunities for immunological tolerance, and humoral rejection might be approached by various mechanisms including (i) clonal deletion, (ii) anergy, (iii) immune deviation, (iv) induction of immunoregulatory or suppressor cells, or (v) veto cells. B-cell tolerance, useful for preventing humoral rejection, might be approached through clonal anergy. It remains to be determined, however, whether tolerance induction is required for xenotransplantation and by which means the various mechanisms of tolerance can be applied in the setting of xenotransplantation. Regardless, the study of tolerance will surely expand understanding of the physiology and pathophysiology of the immune system.  相似文献   

16.
17.
Transforming growth factor beta (TGF-beta) inhibits proliferation and promotes cell migration. In TGF-beta-treated MCF10A mammary epithelial cells overexpressing HER2 and by chromatin immunoprecipitation, we identified novel Smad targets including protein tyrosine phosphatase receptor type kappa (PTPRK). TGF-beta up-regulated PTPRK mRNA and RPTPkappa (receptor type protein tyrosine phosphatase kappa, the protein product encoded by the PTPRK gene) protein in tumor and nontumor mammary cells; HER2 overexpression down-regulated its expression. RNA interference (RNAi) of PTPRK accelerated cell cycle progression, enhanced response to epidermal growth factor (EGF), and abrogated TGF-beta-mediated antimitogenesis. Endogenous RPTPkappa associated with EGF receptor and HER2, resulting in suppression of basal and ErbB ligand-induced proliferation and receptor phosphorylation. In MCF10A/HER2 cells, TGF-beta enhanced cell motility, FAK phosphorylation, F-actin assembly, and focal adhesion formation and inhibited RhoA activity. These responses were abolished when RPTPkappa was eliminated by RNA interference (RNAi). In cells expressing RPTPkappa RNAi, phosphorylation of Src at Tyr527 was increased and (activating) phosphorylation of Src at Tyr416 was reduced. These data suggest that (i) RPTPkappa positively regulates Src; (ii) HER2 signaling and TGF-beta-induced RPTPkappa converge at Src, providing an adequate input for activation of FAK and increased cell motility and adhesion; and (iii) RPTPkappa is required for both the antiproliferative and the promigratory effects of TGF-beta.  相似文献   

18.
Transforming growth factor beta (TGF-beta) increases up to 20-fold the expression of various forms of chondroitin/dermatan sulfate proteoglycan, the major type of sulfated proteoglycan present in the extracellular matrix and culture medium of various human, rodent, and mink cell types including kidney and lung fibroblasts, lung epithelial cells, preadipocytes, and skeletal muscle myoblasts. TGF-beta regulates the level and molecular size of these proteoglycans by acting simultaneously at two levels: it elevates the biosynthetic rate of the 45-kDa proteoglycan core protein in a cycloheximide- and actinomycin D-sensitive manner, and it induces an increase in the molecular mass of the glycosaminoglycan chains. These cellular responses correlate with occupancy of type III TGF-beta receptors by TGF-beta 1 and TGF-beta 2 and are not induced by other growth factors tested. The parameters of this effect of TGF-beta in kidney fibroblasts and myoblasts are ED50 = 5-10 pM TGF-beta 1 or TGF-beta 2, and t 1/2 = 6-8 h. These results identify the chondroitin/dermatan sulfate proteoglycans as a major component of mammalian mesenchymal and epithelial extracellular matrices whose expression and structure are regulated by TGF-beta.  相似文献   

19.
20.
R. J. Howard  J. R. Aist 《Protoplasma》1977,92(3-4):195-210
Summary Effects of treatment with methyl benzimidazole-2-ylcarbamate (MBC) on living hyphal tip cells ofFusarium acuminatum were determined with phase contrast light microscopy. These included (i) displacement of mitochondria from hyphal apices, (ii) disappearance of Spitzenkörpers, (iii) reduction of linear growth rate, and (iv) metaphase arrest of all mitoses: responses i–iii were not a result of effects on mitosis. Since all of these responses theoretically could have resulted from an MBC effect on microtubule structure and/or function, heavy water (D2O) was used to counteract MBC. Treatments of hyphae with MBC + D2O caused quantitative responses, i–iii above, intermediate between those to the separate reagents, and some nuclei of these hyphae were not arrested at mitosis. Moreover, several nuclei fragmented (multimicronucleation) in a manner apparently similar to mammalian nuclei treated with antitubulin agents. Thus, the effects of MBC on apical organization, Spitzenkörper integrity, hyphal growth and mitosis could have been mediated through interference with microtubules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号