首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Local information processing in the growth cone is essential for correct wiring of the nervous system. As an axon navigates through the developing nervous system, the growth cone responds to extrinsic guidance cues by coordinating axon outgrowth with growth cone steering. It has become increasingly clear that axon extension requires proper actin polymerization dynamics, whereas growth cone steering involves local protein synthesis. However, molecular components integrating these two processes have not been identified. Here, we show that Down syndrome critical region 1 protein (DSCR1) controls axon outgrowth by modulating growth cone actin dynamics through regulation of cofilin activity (phospho/dephospho-cofilin). Additionally, DSCR1 mediates brain-derived neurotrophic factor–induced local protein synthesis and growth cone turning. Our study identifies DSCR1 as a key protein that couples axon growth and pathfinding by dually regulating actin dynamics and local protein synthesis.  相似文献   

2.
Iwasaki A 《Cell》2007,128(3):435-436
Dendritic cells induce the activation of CD8 and CD4 T cells by presenting antigenic peptides on MHC class I and class II molecules, respectively. In a recent Science paper, Dudziak et al. (2007) reveal that these tasks are handled by distinct populations of dendritic cells in vivo.  相似文献   

3.
4.
Aggregation of conformation-abnormal peptides probably plays a key role in the pathogenesis of many neurodegenerative diseases. DSCR1 Down syndrome (DS) critical region 1, was identified from a chromosomal region (21q22.1-q22.2) for the clinical manifestations of DS when an extra-copy is present. We report that expression of DSCR1 in several cell types, including primary neurons, causes microtubule-dependent aggresome-like inclusion body formation. Disease-associated huntingtin (Q148) and ataxin-3 (Q84) co-localize with DSCR1 aggregates. Neurons bearing DSCR1 aggregates show reduced synaptophysin staining in processes. DSCR1 residues 31-90 constitute an aggregation-prone domain that is predicted to form a hydrophobic patch on the protein surface when residues 1-30 are removed. This study identifies a novel function of DSCR1 that may underlie DS neuropathology.  相似文献   

5.
Netrin-1 acts as a chemoattractant molecule to guide commissural neurons (CN) toward the floor plate by interacting with the receptor deleted in colorectal cancer (DCC). The molecular mechanisms underlying Netrin-1-DCC signaling are still poorly characterized. Here, we show that DCC is phosphorylated in vivo on tyrosine residues in response to Netrin-1 stimulation of CN and that the Src family kinase inhibitors PP2 and SU6656 block both Netrin-1-dependent phosphorylation of DCC and axon outgrowth. PP2 also blocks the reorientation of Xenopus laevis retinal ganglion cells that occurs in response to Netrin-1, which suggests an essential role of the Src kinases in Netrin-1-dependent orientation. Fyn, but not Src, is able to phosphorylate the intracellular domain of DCC in vitro, and we demonstrate that Y1418 is crucial for DCC axon outgrowth function. Both DCC phosphorylation and Netrin-1-induced axon outgrowth are impaired in Fyn(-/-) CN and spinal cord explants. We propose that DCC is regulated by tyrosine phosphorylation and that Fyn is essential for the response of axons to Netrin-1.  相似文献   

6.
The epigenetic maintenance of gene expression patterns is essential for developing and maintaining the diverse types of cell that cooperate to form the larger organism. Recent data suggest that proteins of the Polycomb group (PcG) use a combination of posttranslational modifications and structural changes to the underlying chromatin structure to maintain silenced epigenetic states. We are now beginning to understand the mechanisms by which the PcG proteins are able to silence genes and to maintain this silencing over many cell divisions.  相似文献   

7.
利用Fm oc固相多肽合成的方法合成DSCR1羧基端一个多肽片段(55-70AA),经HPLC纯化后偶联到匙孔槭血蓝蛋白,免疫新西兰雄兔后采血检测、纯化、经W estern b lotting、免疫沉淀证实得到的抗体为抗DSCR1的特异抗体。该抗体即能检测人源DSCR1蛋白,又能检测小鼠的DSCR1蛋白。运用获得的DSCR1多克隆抗体进行功能研究,发现DSCR1广泛存在泛素化,参与泛素化-蛋白酶体途径。  相似文献   

8.
Down syndrome critical region 1 (DSCR1) is recognized as an endogenous calcineurin inhibitor. DSCR1 is induced in endothelial cells and may play an important role in inflammation and angiogenesis. To address a novel function of DSCR1, we searched interacting partners of DSCR1. We performed pull-down analysis using DSCR1 as a bait and identified Raf-1 as a binding partner. The association of Raf-1 was confirmed by co-immunoprecipitation in GM7373 cells expressing green fluorescence protein tagged DSCR1. We determined two Raf-1 binding regions in DSCR1; one in the N-terminus and the other in the C-terminus regions. We further demonstrated that calpain cleaved DSCR1 and generated fragments with different binding affinity to Raf-1 or calcineurin. These results constitute the first demonstration of Raf-1 as a binding partner of DSCR1, and suggest a novel role of DSCR1.  相似文献   

9.
DNA polymerase delta (Pol delta) and DNA polymerase epsilon (Pol epsilon) are both required for efficient replication of the nuclear genome, yet the division of labor between these enzymes has remained unclear for many years. Here we investigate the contribution of Pol delta to replication of the leading and lagging strand templates in Saccharomyces cerevisiae using a mutant Pol delta allele (pol3-L612M) whose error rate is higher for one mismatch (e.g., T x dGTP) than for its complement (A x dCTP). We find that strand-specific mutation rates strongly depend on the orientation of a reporter gene relative to an adjacent replication origin, in a manner implying that >90% of Pol delta replication is performed using the lagging strand template. When combined with recent evidence implicating Pol epsilon in leading strand replication, these data support a model of the replication fork wherein the leading and lagging strand templates are primarily copied by Pol epsilon and Pol delta, respectively.  相似文献   

10.

Background  

Down syndrome is the most frequent genetic disorder in humans. Rare cases involving partial trisomy of chromosome 21 allowed a small chromosomal region common to all carriers, called Down Syndrome Critical Region (DSCR), to be determined. The DSCR1 gene was identified in this region and is expressed preferentially in the brain, heart and skeletal muscle. Recent studies have shown that DSCR1 belongs to a family of proteins that binds and inhibits calcineurin, a serine-threonine phosphatase. The work reported on herein consisted of a study of the subcellular location of DSCR1 and DSCR1-mutated forms by fusion with a green fluorescent protein, using various cell lines, including human.  相似文献   

11.
We addressed the mechanical basis for how embryonic chick dorsal root ganglion growth cones turn on a uniform substrate of laminin-1. Turning is significantly correlated with lamellipodial area but not with filopodial length. We assessed the lamellipodial contribution to turning by asymmetric micro-CALI of myosin isoforms that causes localized lamellipodial expansion (myosin 1c) or filopodial retraction (myosin V). Episodes of asymmetric micro-CALI of myosin 1c (or myosin 1c and V together) caused significant turning of the growth cone. In contrast, repeated micro-CALI of myosin V or irradiation without added antibody did not turn growth cones. These findings argue that lamellipodia and not filopodia are necessary for growth cone turning. To model the role of myosin 1c on growth cone turning, we fitted the measured trajectories from asymmetric micro-CALI of myosin 1c-treated and untreated growth cones to the persistent random walk model. The first parameter in this equation, root-mean-square speed, is indistinguishable between the two data sets whereas the second parameter, the persistence of motion, is significantly increased (2.5-fold) as a result of asymmetric inactivation of myosin 1c by micro-CALI. This analysis demonstrates that growth cone turning results from an increase in the persistence of directional motion rather than a change in speed. Taken together, our results suggest that myosin 1c is a molecular correlate for directional persistence underlying growth cone motility.  相似文献   

12.
CREB activates proteasomal degradation of DSCR1/RCAN1   总被引:1,自引:0,他引:1  
Seo SR  Chung KC 《FEBS letters》2008,582(13):1889-1893
  相似文献   

13.
野牡丹异型雄蕊的功能分化   总被引:5,自引:0,他引:5  
野牡丹科植物具有形态、大小和颜色显著不同的两种异型雄蕊。关于其异型雄蕊是否具有功能分化还一直存在争论。本文以野牡丹科植物野牡丹(Melastoma malabathricum)为实验材料, 比较了两种异型雄蕊在传粉过程中的功能作用。结果表明, 两种异型雄蕊在形态、花粉量和人工控制实验条件下的结籽数, 以及主要传粉昆虫木蜂(Xylocopa sp.)访花时的行为等方面都有显著差异, 说明两种雄蕊在传粉过程中存在一定的功能分化: 外轮紫色雄蕊中的花粉为后代提供雄配子, 而内轮黄色雄蕊中的花粉则为传粉昆虫提供食物。但两种雄蕊在花粉活性、花粉组织化学成分和结实率方面差异均不显著, 表明两者在生理上并没有分化。实验结果还表明, 除花前套袋不结实外, 自交、异交和自然对照都具有较高的结实率, 说明野牡丹不存在无融合生殖和主动自交及自交不亲和现象, 为兼性异交。  相似文献   

14.
The endoplasmic reticulum (ER) is the site of maturation for secretory and membrane proteins in eukaryotic cells. The lumen of the mammalian ER contains >20 members of the protein disulfide isomerase (PDI) superfamily, which ensure formation of the correct set of intramolecular and intermolecular disulfide bonds as crucial, rate-limiting reactions of the protein folding process. Components of the PDI superfamily may also facilitate dislocation of misfolded polypeptides across the ER membrane for ER-associated degradation (ERAD). The reasons for the high redundancy of PDI family members and the substrate features required for preferential engagement of one or the other are poorly understood. Here we show that TMX1, one of the few transmembrane members of the family, forms functional complexes with the ER lectin calnexin and preferentially intervenes during maturation of cysteine-containing, membrane-associated proteins while ignoring the same cysteine-containing ectodomains if not anchored at the ER membrane. As such, TMX1 is the first example of a topology-specific client protein redox catalyst in living cells.  相似文献   

15.

Background and Purpose

The Down syndrome candidate region 1 (DSCR1) gene is located on human chromosome 21 and its protein is over-expressed in brains of Down syndrome individuals. DSCR1 can modulate the activity of calcineurin, a phosphatase abundant in the brain, but its influence on stroke outcome is not clear. We compared stroke outcome in wildtype (WT) and transgenic (DSCR1-TG) mice which over-express isoform 1 of human DSCR1.

Methods

Transient cerebral ischemia was produced by occlusion of the middle cerebral artery for 0.5 h. After 23.5 h reperfusion, we assessed neurological impairment, brain infarct and edema volume, leukocyte infiltration and markers of inflammation. Intrinsic resistance to apoptosis following glucose deprivation was also assessed in primary cultures of WT and DSCR1-TG neurons.

Results

In contrast to WT, DSCR1-TG mice had an improved neurological deficit score, greater grip strength, attenuated infarct volume and brain swelling, and lacked hippocampal lesions after stroke. Expression of mouse DSCR1-1, but not DSCR1-4, mRNA and protein was increased by ischemia in both WT and DSCR1-TG. Brain calcineurin activity was increased to a similar degree after ischemia in each genotype. DSCR1-TG mice had fewer infiltrating neutrophils and activated microglia compared with WT, in association with an attenuated upregulation of several pro-inflammatory genes. Neurons from DSCR1-TG mice were more resistant than WT neurons to apoptotic cell death following 24 h of glucose deprivation.

Conclusions

Over-expression of DSCR1 in mice improves outcome following stroke. Mechanisms underlying this protection may involve calcineurin-independent, anti-inflammatory and anti-apoptotic effects mediated by DSCR1 in neurons.  相似文献   

16.
DSCR1/ RCAN1 is a chromosome 21 gene found to be overexpressed in the brains of Down syndrome (DS) and postulated as a good candidate to contribute to mental disability. However, even though Rcan1 knockout mice have pronounced spatial learning and memory deficits, the possible deleterious effects of its overexpression in DS are not well understood. We have generated a transgenic mouse model overexpressing DSCR1/RCAN1 in the brain and analyzed the effect of RCAN1 overexpression on cognitive function. TgRCAN1 mice present a marked disruption of the learning process in a visuo-spatial learning task. However, no significant differences were observed in the performance of the memory phase of the test (removal session) nor in a step-down passive avoidance task, thus suggesting that once learning has been established, the animals are able to consolidate the information in the longer term.  相似文献   

17.
Ephs regulate growth cone repulsion, a process controlled by the actin cytoskeleton. The guanine nucleotide exchange factor (GEF) ephexin1 interacts with EphA4 and has been suggested to mediate the effect of EphA on the activity of Rho GTPases, key regulators of the cytoskeleton and axon guidance. Using cultured ephexin1-/- mouse neurons and RNA interference in the chick, we report that ephexin1 is required for normal axon outgrowth and ephrin-dependent axon repulsion. Ephexin1 becomes tyrosine phosphorylated in response to EphA signaling in neurons, and this phosphorylation event is required for growth cone collapse. Tyrosine phosphorylation of ephexin1 enhances ephexin1's GEF activity toward RhoA while not altering its activity toward Rac1 or Cdc42, thus changing the balance of GTPase activities. These findings reveal that ephexin1 plays a role in axon guidance and is regulated by a switch mechanism that is specifically tailored to control Eph-mediated growth cone collapse.  相似文献   

18.
19.
Nerve growth cones are motile, exploring organelles at the tip of a growing neurite. The growth cone is a highly specialized structure, equipped with a complex machinery for reversible membrane expansion and rapid cytoskeletal reorganization, a machinery required for growth cone motility and neurite elongation. It also contains perception systems that enable the growth cone to respond to external signals, thereby steering the trailing neurite to the correct target. Soluble and substrate bound guidance molecules in the environment modulate growth cone behavior either through direct interaction or classical receptor activation coupled to second messengers. A prominent phosphoprotein of the growth cone is B-50. We propose a role for this growth-associated protein kinase C substrate in signal transduction processes in the growth cone.  相似文献   

20.
Neural crest cells, the migratory precursors of numerous cell types including the vertebrate peripheral nervous system, arise in the dorsal neural tube and follow prescribed routes into the embryonic periphery. While the timing and location of neural crest migratory pathways has been well documented in the trunk, a comprehensive collection of signals that guides neural crest migration along these paths has only recently been established. In this review, we outline the molecular cascade of events during trunk neural crest development. After describing the sequential routes taken by trunk neural crest cells, we consider the guidance cues that pattern these neural crest trajectories. We pay particular attention to segmental neural crest development and the steps and signals that generate a metameric peripheral nervous system, attempting to reconcile conflicting observations in chick and mouse. Finally, we compare cranial and trunk neural crest development in order to highlight common themes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号