首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein–protein interaction networks are currently visualized by software generated interaction webs based upon static experimental data. Current state is limited to static, mostly non-compartmental network and non time resolved protein interactions. A satisfactory mathematical foundation for particle interactions within a viscous liquid state (situation within the cytoplasm) does not exist nor do current computer programs enable building dynamic interaction networks for time resolved interactions. Building mathematical foundation for intracellular protein interactions can be achieved in two increments (a) trigger and capture the dynamic molecular changes for a select subset of proteins using several model systems and high throughput time resolved proteomics and, (b) use this information to build the mathematical foundation and computational algorithm for a compartmentalized and dynamic protein interaction network. Such a foundation is expected to provide benefit in at least two spheres: (a) understanding physiology enabling explanation of phenomenon such as incomplete penetrance in genetic disorders and (b) enabling several fold increase in biopharmaceutical production using impure starting materials.  相似文献   

2.
Global quantitative analysis of genetic interactions is a powerful approach for deciphering the roles of genes and mapping functional relationships among pathways. Using colony size as a proxy for fitness, we developed a method for measuring fitness-based genetic interactions from high-density arrays of yeast double mutants generated by synthetic genetic array (SGA) analysis. We identified several experimental sources of systematic variation and developed normalization strategies to obtain accurate single- and double-mutant fitness measurements, which rival the accuracy of other high-resolution studies. We applied the SGA score to examine the relationship between physical and genetic interaction networks, and we found that positive genetic interactions connect across functionally distinct protein complexes revealing a network of genetic suppression among loss-of-function alleles.  相似文献   

3.
To take full advantage of high-throughput genetic and physical interaction mapping projects, the raw interactions must first be assembled into models of cell structure and function. PanGIA (for physical and genetic interaction alignment) is a plug-in for the bioinformatics platform Cytoscape, designed to integrate physical and genetic interactions into hierarchical module maps. PanGIA identifies 'modules' as sets of proteins whose physical and genetic interaction data matches that of known protein complexes. Higher-order functional cooperativity and redundancy is identified by enrichment for genetic interactions across modules. This protocol begins with importing interaction networks into Cytoscape, followed by filtering and basic network visualization. Next, PanGIA is used to infer a set of modules and their functional inter-relationships. This module map is visualized in a number of intuitive ways, and modules are tested for functional enrichment and overlap with known complexes. The full protocol can be completed between 10 and 30 min, depending on the size of the data set being analyzed.  相似文献   

4.
5.
Association mapping currently relies on the identification of genetic markers. Several technologies have been adopted for genetic marker analysis, with single nucleotide polymorphisms (SNPs) being the most popular where a reasonable quantity of genome sequence data are available. We describe several tools we have developed for the discovery, annotation, and visualization of molecular markers for association mapping. These include autoSNPdb for SNP discovery from assembled sequence data; TAGdb for the identification of gene specific paired read Illumina GAII data; CMap3D for the comparison of mapped genetic and physical markers; and BAC and Gene Annotator for the online annotation of genes and genomic sequences.  相似文献   

6.
Taylor IW  Wrana JL 《Proteomics》2012,12(10):1706-1716
The physical interaction of proteins is subject to intense investigation that has revealed that proteins are assembled into large densely connected networks. In this review, we will examine how signaling pathways can be combined to form higher order protein interaction networks. By using network graph theory, these interaction networks can be further analyzed for global organization, which has revealed unique aspects of the relationships between protein networks and complex biological phenotypes. Moreover, several studies have shown that the structure and dynamics of protein networks are disturbed in complex diseases such as cancer progression. These relationships suggest a novel paradigm for treatment of complex multigenic disease where the protein interaction network is the target of therapy more so than individual molecules within the network.  相似文献   

7.
Protein and genetic interaction maps can reveal the overall physical and functional landscape of a biological system. To date, these interaction maps have typically been generated under a single condition, even though biological systems undergo differential change that is dependent on environment, tissue type, disease state, development or speciation. Several recent interaction mapping studies have demonstrated the power of differential analysis for elucidating fundamental biological responses, revealing that the architecture of an interactome can be massively re‐wired during a cellular or adaptive response. Here, we review the technological developments and experimental designs that have enabled differential network mapping at very large scales and highlight biological insight that has been derived from this type of analysis. We argue that differential network mapping, which allows for the interrogation of previously unexplored interaction spaces, will become a standard mode of network analysis in the future, just as differential gene expression and protein phosphorylation studies are already pervasive in genomic and proteomic analysis.  相似文献   

8.
Ma X  Tarone AM  Li W 《PloS one》2008,3(4):e1922

Background

Synthetic lethal genetic interaction analysis has been successfully applied to predicting the functions of genes and their pathway identities. In the context of synthetic lethal interaction data alone, the global similarity of synthetic lethal interaction patterns between two genes is used to predict gene function. With physical interaction data, such as protein-protein interactions, the enrichment of physical interactions within subsets of genes and the enrichment of synthetic lethal interactions between those subsets of genes are used as an indication of compensatory pathways.

Result

In this paper, we propose a method of mapping genetically compensatory pathways from synthetic lethal interactions. Our method is designed to discover pairs of gene-sets in which synthetic lethal interactions are depleted among the genes in an individual set and where such gene-set pairs are connected by many synthetic lethal interactions. By its nature, our method could select compensatory pathway pairs that buffer the deleterious effect of the failure of either one, without the need of physical interaction data. By focusing on compensatory pathway pairs where genes in each individual pathway have a highly homogenous cellular function, we show that many cellular functions have genetically compensatory properties.

Conclusion

We conclude that synthetic lethal interaction data are a powerful source to map genetically compensatory pathways, especially in systems lacking physical interaction information, and that the cellular function network contains abundant compensatory properties.  相似文献   

9.
10.
We have developed a method that predicts Protein-Protein Interactions (PPIs) based on the similarity of the context in which proteins appear in literature. This method outperforms previously developed PPI prediction algorithms that rely on the conjunction of two protein names in MEDLINE abstracts. We show significant increases in coverage (76% versus 32%) and sensitivity (66% versus 41% at a specificity of 95%) for the prediction of PPIs currently archived in 6 PPI databases. A retrospective analysis shows that PPIs can efficiently be predicted before they enter PPI databases and before their interaction is explicitly described in the literature. The practical value of the method for discovery of novel PPIs is illustrated by the experimental confirmation of the inferred physical interaction between CAPN3 and PARVB, which was based on frequent co-occurrence of both proteins with concepts like Z-disc, dysferlin, and alpha-actinin. The relationships between proteins predicted by our method are broader than PPIs, and include proteins in the same complex or pathway. Dependent on the type of relationships deemed useful, the precision of our method can be as high as 90%. The full set of predicted interactions is available in a downloadable matrix and through the webtool Nermal, which lists the most likely interaction partners for a given protein. Our framework can be used for prioritizing potential interaction partners, hitherto undiscovered, for follow-up studies and to aid the generation of accurate protein interaction maps.  相似文献   

11.
Elevated risk of disease transmission is considered a major cost of sociality, although empirical evidence supporting this idea remains scant. Variation in spatial cohesion and the occurrence of social interactions may have profound implications for patterns of interindividual parasite transmission. We used a social network approach to shed light on the importance of different aspects of group-living (i.e. within-group associations versus physical contact) on patterns of parasitism in a neotropical primate, the brown spider monkey (Ateles hybridus), which exhibits a high degree of fission–fusion subgrouping. We used daily subgroup composition records to create a ‘proximity’ network, and built a separate ‘contact’ network using social interactions involving physical contact. In the proximity network, connectivity between individuals was homogeneous, whereas the contact network highlighted high between-individual variation in the extent to which animals had physical contact with others, which correlated with an individual''s age and sex. The gastrointestinal parasite species richness of highly connected individuals was greater than that of less connected individuals in the contact network, but not in the proximity network. Our findings suggest that among brown spider monkeys, physical contact impacts the spread of several common parasites and supports the idea that pathogen transmission is one cost associated with social contact.  相似文献   

12.

Background

The study of biological interaction networks is a central theme of systems biology. Here, we investigate the relationships between two distinct types of interaction networks: the metabolic pathway map and the protein-protein interaction network (PIN). It has long been established that successive enzymatic steps are often catalyzed by physically interacting proteins forming permanent or transient multi-enzymes complexes. Inspecting high-throughput PIN data, it was shown recently that, indeed, enzymes involved in successive reactions are generally more likely to interact than other protein pairs. In our study, we expanded this line of research to include comparisons of the underlying respective network topologies as well as to investigate whether the spatial organization of enzyme interactions correlates with metabolic efficiency.

Results

Analyzing yeast data, we detected long-range correlations between shortest paths between proteins in both network types suggesting a mutual correspondence of both network architectures. We discovered that the organizing principles of physical interactions between metabolic enzymes differ from the general PIN of all proteins. While physical interactions between proteins are generally dissortative, enzyme interactions were observed to be assortative. Thus, enzymes frequently interact with other enzymes of similar rather than different degree. Enzymes carrying high flux loads are more likely to physically interact than enzymes with lower metabolic throughput. In particular, enzymes associated with catabolic pathways as well as enzymes involved in the biosynthesis of complex molecules were found to exhibit high degrees of physical clustering. Single proteins were identified that connect major components of the cellular metabolism and may thus be essential for the structural integrity of several biosynthetic systems.

Conclusion

Our results reveal topological equivalences between the protein interaction network and the metabolic pathway network. Evolved protein interactions may contribute significantly towards increasing the efficiency of metabolic processes by permitting higher metabolic fluxes. Thus, our results shed further light on the unifying principles shaping the evolution of both the functional (metabolic) as well as the physical interaction network.  相似文献   

13.
Protein-protein interactions (PPIs) are of central importance for many areas of biological research. Several complementary high-throughput technologies have been developed to study PPIs. The wealth of information that emerged from these technologies led to the first maps of the protein interactomes of several model organisms. Many changes can occur in protein complexes as a result of genetic and biochemical perturbations. In the absence of a suitable assay, such changes are difficult to identify, and thus have been poorly characterized. In this study, we present a novel genetic approach (termed “reverse PCA”) that allows the identification of genes whose products are required for the physical interaction between two given proteins. Our assay starts with a yeast strain in which the interaction between two proteins of interest can be detected by resistance to the drug, methotrexate, in the context of the protein-fragment complementation assay (PCA). Using synthetic genetic array (SGA) technology, we can systematically screen mutant libraries of the yeast Saccharomyces cerevisiae to identify those mutations that disrupt the physical interaction of interest. We were able to successfully validate this novel approach by identifying mutants that dissociate the conserved interaction between Cia2 and Mms19, two proteins involved in Iron-Sulfur protein biogenesis and genome stability. This method will facilitate the study of protein structure-function relationships, and may help in elucidating the mechanisms that regulate PPIs.  相似文献   

14.
Analysis of genetic interaction networks often involves identifying genes with similar profiles, which is typically indicative of a common function. While several profile similarity measures have been applied in this context, they have never been systematically benchmarked. We compared a diverse set of correlation measures, including measures commonly used by the genetic interaction community as well as several other candidate measures, by assessing their utility in extracting functional information from genetic interaction data. We find that the dot product, one of the simplest vector operations, outperforms most other measures over a large range of gene pairs. More generally, linear similarity measures such as the dot product, Pearson correlation or cosine similarity perform better than set overlap measures such as Jaccard coefficient. Similarity measures that involve L2-normalization of the profiles tend to perform better for the top-most similar pairs but perform less favorably when a larger set of gene pairs is considered or when the genetic interaction data is thresholded. Such measures are also less robust to the presence of noise and batch effects in the genetic interaction data. Overall, the dot product measure performs consistently among the best measures under a variety of different conditions and genetic interaction datasets.  相似文献   

15.
16.

Background  

In recent years, a considerable amount of research effort has been directed to the analysis of biological networks with the availability of genome-scale networks of genes and/or proteins of an increasing number of organisms. A protein-protein interaction (PPI) network is a particular biological network which represents physical interactions between pairs of proteins of an organism. Major research on PPI networks has focused on understanding the topological organization of PPI networks, evolution of PPI networks and identification of conserved subnetworks across different species, discovery of modules of interaction, use of PPI networks for functional annotation of uncharacterized proteins, and improvement of the accuracy of currently available networks.  相似文献   

17.
18.
Braun P 《Proteomics》2012,12(10):1499-1518
Protein interactions mediate essentially all biological processes and analysis of protein-protein interactions using both large-scale and small-scale approaches has contributed fundamental insights to the understanding of biological systems. In recent years, interactome network maps have emerged as an important tool for analyzing and interpreting genetic data of complex phenotypes. Complementary experimental approaches to test for binary, direct interactions, and for membership in protein complexes are used to explore the interactome. The two approaches are not redundant but yield orthogonal perspectives onto the complex network of physical interactions by which proteins mediate biological processes. In recent years, several publications have demonstrated that interactions from high-throughput experiments can be equally reliable as the high quality subset of interactions identified in small-scale studies. Critical for this insight was the introduction of standardized experimental benchmarking of interaction and validation assays using reference sets. The data obtained in these benchmarking experiments have resulted in greater appreciation of the limitations and the complementary strengths of different assays. Moreover, benchmarking is a central element of a conceptual framework to estimate interactome sizes and thereby measure progress toward near complete network maps. These estimates have revealed that current large-scale data sets, although often of high quality, cover only a small fraction of a given interactome. Here, I review the findings of assay benchmarking and discuss implications for quality control, and for strategies toward obtaining a near-complete map of the interactome of an organism.  相似文献   

19.
Poyatos JF 《PloS one》2011,6(2):e14598
Genetic interactions are being quantitatively characterized in a comprehensive way in several model organisms. These data are then globally represented in terms of genetic networks. How are interaction strengths distributed in these networks? And what type of functional organization of the underlying genomic systems is revealed by such distribution patterns? Here, I found that weak interactions are important for the structure of genetic buffering between signaling pathways in Caenorhabditis elegans, and that the strength of the association between two genes correlates with the number of common interactors they exhibit. I also determined that this network includes genetic cascades balancing weak and strong links, and that its hubs act as particularly strong genetic modifiers; both patterns also identified in Saccharomyces cerevisae networks. In yeast, I further showed a relation, although weak, between interaction strengths and some phenotypic/evolutionary features of the corresponding target genes. Overall, this work demonstrates a non-random organization of interaction strengths in genetic networks, a feature common to other complex networks, and that could reflect in this context how genetic variation is eventually influencing the phenotype.  相似文献   

20.
A genetic analysis of partial mitochondrial 5’ cytochrome c oxidase I gene (DNA barcode) sequences of 473 specimens assigned to 52 morphological species (including four known, but not formally named, species) of the gobiid genus Trimma revealed the presence of 94 genetic lineages. Each lineage was separated by > 2% sequence divergence. Thus there were an additional 42 haplogroups recognizable as provisional candidate species given that a value of > 2% difference is typical of different species of fishes. Such a high degree of apparently different cryptic species is, in our experience, virtually unprecedented among vertebrates. These results have precipitated further morphological research in a few cases, which has uncovered subtle differences independently corroborating the genetic results. However, such efforts are limited by the dearth of traditional systematists available to undertake the necessary time-consuming, and highly detailed, morphological research. In some cases, the genetic results we present are consistent with, and confirm, minor taxonomic distinctions based on morphology and/or colour pattern. In other instances, what had been recognized as a single species consists of several genetic lineages - up to eight in, for example, what we have identified based on morphology as Trimma okinawae. The increase from 52 to 94 potential species in our sampling raises the predicted total number of species in this genus from about 110 to nearly 200 (versus the 73 valid described species currently recognized).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号