首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Extant panarthropods (euarthropods, onychophorans and tardigrades) are hallmarked by stunning morphological and taxonomic diversity, but their central nervous systems (CNS) are relatively conserved. The timing of divergences of the ground pattern CNS organization of the major panarthropod clades has been poorly constrained because of a scarcity of data from their early fossil record. Although the CNS has been documented in three-dimensional detail in insects from Cenozoic ambers, it is widely assumed that these tissues are too prone to decay to withstand other styles of fossilization or geologically older preservation. However, Cambrian Burgess Shale-type compressions have emerged as sources of fossilized brains and nerve cords. CNS in these Cambrian fossils are preserved as carbon films or as iron oxides/hydroxides after pyrite in association with carbon. Experiments with carcasses compacted in fine-grained sediment depict preservation of neural tissue for a more prolonged temporal window than anticipated by decay experiments in other media. CNS and compound eye characters in exceptionally preserved Cambrian fossils predict divergences of the mandibulate and chelicerate ground patterns by Cambrian Stage 3 (ca 518 Ma), a dating that is compatible with molecular estimates for these splits.  相似文献   

2.
Exceptional fossil specimens with preserved soft parts from the Maotianshan Shale (ca 520 Myr ago) and the Burgess Shale (505 Myr ago) biotas indicate that the worldwide distributed bivalved arthropod Isoxys was probably a non-benthic visual predator. New lines of evidence come from the functional morphology of its powerful prehensile frontal appendages that, combined with large spherical eyes, are thought to have played a key role in the recognition and capture of swimming or epibenthic prey. The swimming and steering of this arthropod was achieved by the beating of multiple setose exopods and a flap-like telson. The appendage morphology of Isoxys indicates possible phylogenetical relationships with the megacheirans, a widespread group of assumed predator arthropods characterized by a pre-oral ‘great appendage’. Evidence from functional morphology and taphonomy suggests that Isoxys was able to migrate through the water column and was possibly exploiting hyperbenthic niches for food. Although certainly not unique, the case of Isoxys supports the idea that off-bottom animal interactions such as predation, associated with complex feeding strategies and behaviours (e.g. vertical migration and hunting) were established by the Early Cambrian. It also suggests that a prototype of a pelagic food chain had already started to build-up at least in the lower levels of the water column.  相似文献   

3.
Abstract: We redescribe the morphology of Yohoia tenuis (Chelicerata sensu lato) from the Cambrian Burgess Shale Lagerstätte. The morphology of the most anterior, prominent, so‐called great appendage changes throughout ontogeny. While its principal morphology remains unaltered, the length ratios of certain parts of the great appendage change significantly. Furthermore, it possesses a special jack‐knifing mechanism, i.e. an elbow joint: the articulation between the distal one of the two peduncle elements and the most proximal of the four spine‐bearing claw elements. This morphology might have enabled the animal to hunt like a modern spearer‐type mantis shrimp, an analogy enhanced by the similarly large and protruding eyes. For comparison, details of specimens of selected other great‐appendage arthropods from the Lower Cambrian Chengjiang Lagerstätte have been investigated using fluorescence microscopy. This revealed that the morphology of the great appendage of Y. tenuis is much like that of the Chengjiang species Fortiforceps foliosa and Jianfengia multisegmentalis. The morphology of the great appendage of the latter is even more similar to the morphology developed in early developmental stages of Y. tenuis, while the morphology of the great appendage of F. foliosa is more similar to that of later developmental stages of Y. tenuis. The arrangement of the elbow joint supports the view that the great appendage evolved into the chelicera of Chelicerata sensu stricto, as similar joints are found in various ingroup taxa such as Xiphosura, Opiliones or Palpigradi. With this, it also supports the interpretation of the great appendage to be homologous with the first appendage of other arthropods.  相似文献   

4.
Possible ctenophoran affinities of the Precambrian "sea-pen" Rangea   总被引:3,自引:0,他引:3  
Dzik J 《Journal of morphology》2002,252(3):315-334
The Namibian Kuibis Quartzite fossils of Rangea are preserved three-dimensionally owing to incomplete collapse of the soft tissues under the load of instantaneously deposited sand. The process of fossilization did not reproduce the original external morphology of the organism but rather the inner surface of collapsed organs, presumably a system of sacs connected by a medial canal. The body of Rangea had tetraradial symmetry, a body plan shared also by the White Sea Russian fossil Bomakellia and possibly some other Precambrian frond-like fossils. They all had a complex internal anatomy, smooth surface of the body, and radial membranes, making their alleged colonial nature unlikely. Despite a different style of preservation, the Middle Cambrian Burgess Shale frond-like Thaumaptilon shows several anatomical similarities to Rangea. The body plan of the Burgess Shale ctenophore Fasciculus, with its numerous, pinnately arranged comb organs, is in many respects transitional between Thaumaptilon and the Early Cambrian ctenophore Maotianoascus from the Chengjiang fauna of South China. It is proposed that the irregularly distributed dark spots on the fusiform units of the petaloid of Thaumaptilon represent a kind of macrocilia and that the units are homologous with the ctenophoran comb organs. These superficial structures were underlain by the complex serial organs, well represented in the fossils of Rangea. The Precambrian "sea-pens" were thus probably sedentary ancestors of the ctenophores.  相似文献   

5.
Echmatocrinus from the Middle Cambrian Burgess Shale of British Columbia was originally described as the earliest crinoid(?) known from the fossil record. Recently, Conway Morris and Ausich & Babcock have questioned whether Echmatocrinus is in fact an echinoderm, comparing it instead to cnidarians with a polyp-like body and pinnate tentacles, and other authors are beginning to use this reinterpretation. We studied the well-preserved holotype of Echmatocrinus brachiatus, two paratypes, and 18 new specimens recovered from different levels in the Burgess Shale sequence at three localities. All are preserved as pyrite films in dark shale with relatively little relief, suggesting a lightly skeletized body. Complete specimens have a long, slightly tapering, large-plated attachment stalk, a conical cup or calyx with numerous small to medium-sized irregular plates, and 7–10 short arms with heavier plating and (in the holotype) soft appendages alternating from opposite sides of several arms. Several morphologic features indicate that Echmatocrinus is an echinoderm and has crinoid affinities: (1) Sutured plates, shown by darker depressed sutures, slightly raised plate centers, and oriented plate ornament, cover all major parts of the body; (2) reticulate surface ornament in the pyrite film on the plates of all specimens matches the ornament in the Burgess Shale edrioasteroid Walcottidiscus, an undoubted echinoderm, but not the pyritized surfaces of other metazoans in the fauna; (3) this distinctive ornament may represent the surface expression of microporous stereom; (4) possible ligament or muscle pads are present between the arm ossicles to fold and unfurl the more heavily plated arms. Within the echinoderms, only crinoids commonly have a calyx attached by a stalk or stem to the substrate and bear erect, moveable, uniserial arms for feeding. Although Echmatocrinus shows some resemblance to octocorals in overall body shape as an attached suspension feeder, almost all the details are different, indicating that Echmatocrinus is most likely unrelated to this group. All complete specimens of Echmatocrinus are attached to hard substrates, either another fossil or skeletal debris. The new specimens indicate that Echmatocrinus was twice as common (about 0.02%) in the Burgess Shale fauna as previously recorded and represents one of the earliest attached, medium-level, skeletized, suspension feeders or microcarnivores in the fossil record.  相似文献   

6.
7.
Pettersson Stolk, S., Holmer, L. E. and Caron, J ‐B. 2010. First record of the brachiopod Lingulella waptaensis with pedicle from the Middle Cambrian Burgess Shale. —Acta Zoologica (Stockholm) 91 : 150–162 The organophosphatic shells of linguloid brachiopods are a common component of normal Cambrian–Ordovician shelly assemblages. Preservation of linguloid soft‐part anatomy, however, is extremely rare, and restricted to a few species in Lower Cambrian Konservat Lagerstätten. Such remarkable occurrences provide unique insights into the biology and ecology of early linguloids that are not available from the study of shells alone. Based on its shells, Lingulella waptaensis Walcott, was originally described in 1924 from the Middle Cambrian Burgess Shale but despite the widespread occurrence of soft‐part preservation associated with fossils from the same levels, no preserved soft parts have been reported. Lingulella waptaensis is restudied herein based on 396 specimens collected by Royal Ontario Museum field parties from the Greater Phyllopod Bed (Walcott Quarry Shale Member, British Columbia). The new specimens, including three with exceptional preservation of the pedicle, were collected in situ in discrete obrution beds. Census counts show that L. waptaensis is rare but recurrent in the Greater Phyllopod Bed, suggesting that this species might have been generalist. The wrinkled pedicle protruded posteriorly between the valves, was composed of a central coelomic space, and was slender and flexible enough to be tightly folded, suggesting a thin chitinous cuticle and underlying muscular layers. The nearly circular shell and the long, slender and highly flexible pedicle suggest that L. waptaensis lived epifaunally, probably attached to the substrate. Vertical cross‐sections of the shells show that L. waptaensis possessed a virgose secondary layer, which has previously only been known from Devonian to Recent members of the Family Lingulidae.  相似文献   

8.
9.
Banffia constricta is an enigmatic Burgess Shale animal originally described by Charles Walcott in 1911 as an annelid, and more recently as a stem‐group deuterostome. Interpreted, on the basis of anatomy, to have been bottom‐feeders, there are few other data from which to draw interpretations of Banffia's life habit. A slab of Burgess Shale with a dense aggregation of B. constricta may indicate a gregarious habit for the animal, as taphonomic and stratigraphical data indicate an in situ origin for the assemblage. Clustering of individuals, high density of the individuals and non‐random within‐cluster orientation support the hypothesis that detritus‐feeding B. constricta congregated to feed on a local, rich food source. Presumed opportunistic feeding aggregations have been documented in at least one other Burgess Shale taxon and have been described for other fossil benthic marine invertebrates. Extant benthic marine invertebrates such as holothurians and echinoids exhibit mass feeding behaviour and may serve as modern analogs for the behaviour represented by the B. constricta assemblage.  相似文献   

10.
It is hypothesized that iron from biological tissues, liberated during decay, may have played a role in inhibiting loss of anatomical information during fossilization of extinct organisms. Most tissues in the animal kingdom contain iron in different forms. A widely distributed iron-bearing molecule is ferritin, a globular protein that contains iron crystallites in the form of ferrihydrite minerals. Iron concentrations in ferritin are high and ferrihydrites are extremely reactive. When ancient animals are decaying on the sea floor under anoxic environmental conditions, ferrihydrites may initialize the selective replication of some tissues in pyrite FeS2. This model explains why some labile tissues are preserved, while other more resistant structures decay and are absent in many fossils. A major implication of this hypothesis is that structures described as brains in Cambrian arthropods are not fossilization artifacts, but are instead a source of information on anatomical evolution at the dawn of complex animal life.  相似文献   

11.
The first arthropod trackways are described from the Middle Cambrian Burgess Shale Formation of Canada. Trace fossils, including trackways, provide a rich source of biological and ecological information, including direct evidence of behaviour not commonly available from body fossils alone. The discovery of large arthropod trackways is unique for Burgess Shale-type deposits. Trackway dimensions and the requisite number of limbs are matched with the body plan of a tegopeltid arthropod. Tegopelte, one of the rarest Burgess Shale animals, is over twice the size of all other benthic arthropods known from this locality, and only its sister taxon, Saperion, from the Lower Cambrian Chengjiang biota of China, approaches a similar size. Biomechanical trackway analysis demonstrates that tegopeltids were capable of rapidly skimming across the seafloor and, in conjunction with the identification of gut diverticulae in Tegopelte, supports previous hypotheses on the locomotory capabilities and carnivorous mode of life of such arthropods. The trackways occur in the oldest part (Kicking Horse Shale Member) of the Burgess Shale Formation, which is also known for its scarce assemblage of soft-bodied organisms, and indicate at least intermittent oxygenated bottom waters and low sedimentation rates.  相似文献   

12.
《Zoologischer Anzeiger》2014,253(2):164-178
Sidneyia inexpectans Walcott, 1911 from the Cambrian Series 3 Burgess Shale of British Columbia is largely accepted as a representative of the artiopodans, an assemblage of Paleozoic arthropod taxa, including trilobites and their immediate relatives. Its appendage morphology was never fully understood, but the exopod seemed to differ from that of other artiopodans, except for the shared presence of lamellae. The head was considered to comprise only the ocular and antennular segments, these being covered entirely on the ventral side by a large doublure. This short head was often taken as an evidence for variability of head segment counts in Cambrian arthropods, and to falsify the hypothesis of a head with three postantennular segments in the euarthropod ground pattern. Restudy of a substantial amount of material of S. inexpectans shows that previous interpretations of a short head were based on taphonomically deformed specimens, where the head was either partly folded, or entirely flipped under the thorax, resulting in the dorsal shield being mistaken for an extensive doublure. Rather than an extensive doublure, there is a broad hypostome, and the head comprises ocular, antennular, and at least two postantennular appendage bearing segments. The appendage morphology is shown to be consistent with artiopodan affinities. The exopod is of the bilobate flap-like type with lamellae inserting on the proximal portion, earlier proposed as a potential autapomorphy of Artiopoda. Reinforcement of artiopodan affinities for S. inexpectans and reinterpretation of its head reconciles this species with current understanding of arthropod phylogeny and head segmentation.  相似文献   

13.
Magadictyon haikouensis (Luo and Hu, 1999) from the Early Cambrian Chengjiang Lagerstätte, an incomplete specimen of a large lobopod with strong appendages, has been regarded as related to the lobopods Microdictyon and Onychodictyon. Newly discovered complete specimens of Magadictyon cf. haikouensis (found by the Early Life Institute field team) show that the taxon, in addition to its strong appendages with appendicules, also had a head bearing similar caecum‐like structures to those of the arthropod Naraoia and Chelicerate, ‘Peytoia’‐like mouthparts and frontal appendages. Because of their similarity, the caecum‐like structures of Magadictyon cf. haikouensis are considered to be homologous with those of stem‐group arthropods. The ‘Peytoia’‐like mouthparts and the frontal appendages are similar to those of the AOPK (Anomalocaris–Opabinia–Pambdelurion–Kerygmachela) group. In addition, the appendages with appendicules show that Magadictyon cf. haikouensis is closely related to Onychodictyon. Therefore, Magadictyon cf. haikouensis is regarded here as a rare transitional form between lobopods and arthropods. Besides, together with other lobopods, the morphology of Magadictyon cf. haikouensis demonstrates that the Cambrian lobopods appear to have been diverse and not particularly closely related to one another, and do not seem to represent a monophyletic clade.  相似文献   

14.
The anatomy of the bivalved arthropod Isoxys (Early and Middle Cambrian) is reconstructed, based on new evidence from soft parts and exoskeletal design and on a critical review of previous work. Isoxys had a long segmented body flanked with a pair of short antennules, followed by a series of 14 biramous appendages provided with long paddle-like exopods concealed under a widely open bivalved carapace folded dorsally and bearing long cardinal spines. The close resemblance between Isoxys and Recent pelagic crustaceans (halocyprid ostracods, larval stages of malacostracans) indicates that Isoxys was probably an active epipelagic swimmer (evidence from soft parts, carapace design and distributional pattern). Some species (e.g. I. auritus and I. paradoxus from the Maotianshan Shale biota; Early Cambrian) may have lived in the vicinity of the bottom either permanently or temporarily, whereas others may have had ecological preferences for more open-marine settings. The spinosity of Isoxys had a possible role in predatorial deterrence rather than in buoyancy control or in retarding sinking within the water column. The presence of Isoxys in the Maotianshan Shale of S. China indicates that arthropods had already colonized midwater niches by the Early Cambrian. The midwater communities of the Maotianshan Shale comprised numerous other invertebrates, such as abundant medusiform eldonids, vetulicolids, chordates and possibly early vertebrates. This contradicts the opinion that pelagic communities remained poorly developed until late Cambrian/Ordovician times and that the occupation of the midwater niches largely post-dates the initial diversification of the benthic faunas.  相似文献   

15.
The early Cambrian Indian Springs biota of western Nevada, USA, exhibits Burgess Shale‐type (BST) preservation of a diverse array of animal phyla, including the earliest definitive echinoderms. It therefore provides an important window on animal life during the Cambrian radiation. The objective of this study was to analyse the trace metal palaeoredox geochemistry and bioturbation levels of this BST deposit in order to characterize the palaeoenvironmental conditions in which these animals lived and their remains preserved. A total of 28 rock samples were collected from outcrops at three previously reported intervals of exceptional preservation at the Indian Springs locality, as well as from one interval not exhibiting such preservation. An additional 20 random samples were collected from talus for comparison. In the laboratory, the samples were analysed for trace metal palaeoredox indices (V/Cr and V/(V + Ni) ratios). Bioturbation levels were assessed through X‐radiography and petrographic thin sections using the ichnofabric index (ii) method. Additional samples from coeval strata of the Poleta Formation in the White‐Inyo Mountains, CA, that lack BST preservation were also analysed with the same methodology. Results indicate that oxic bottom water conditions dominated during deposition of these strata, despite consistently low bioturbation levels. This pattern holds for intervals with BST preservation and those without. Although ephemeral incursions of low‐oxygen waters may have taken place, there is no evidence for persistent oxygen restriction in these palaeoenvironments. The low levels of bioturbation indicate limited mixed layer development and a redox boundary near the sediment–water interface, likely allowing post‐burial BST preservation to occur even in this setting dominated by oxic bottom waters. Palaeoecological reconstructions and taphonomic hypotheses relating to the Indian Springs Lagerstätte must consider the palaeoredox conditions revealed in this study. With the dispensing of anoxic bottom waters as a requirement for BST preservation, other models proposing a role for clay minerals, the presence of hypersaline brines and the actions of Fe‐reducing bacteria as mechanisms for exceptional preservation warrant renewed consideration.  相似文献   

16.
Abstract:  Vetulicolians have variously been considered to be unusual arthropods, stem-group deuterostomes or relatives of the tunicates. They are known from a number of Cambrian Lagerstätten, and are particularly diverse in the Chengjiang biota of Yunnan Province, China. We recognize two classes, Vetulicolida and Banffozoa, which together form a monophyletic group. Within the Chinese collections we also identify two new species and recognize one new genus: Vetulicola monile sp. nov. and Bullivetula variola gen. et sp. nov. The evidence from new and previously described specimens is used to undertake a phylogenetic analysis and to evaluate a range of hypotheses for the affinities of vetulicolians. Given the difficulties of interpreting features in enigmatic fossils and the apparently contradictory set of characters possessed by vetulicolians, it is not possible on current evidence to reach an unequivocal conclusion regarding the phylogenetic position of the group. One possibility is that they are a sister group of arthropods that lost limbs but gained gill structures analogous to those of deuterostomes, but several features remain unexplained by this model. If they are protostomes, a more generally parsimonious position is close to the kinorhynchs. An alternative is that they are deuterostomes, although a placement at the base of the clade is not supported by the evidence. If they are deuterostomes, it is more likely that they are close to the tunicates.  相似文献   

17.
A slab of Burgess Shale (Middle Cambrian), displaying an incomplete exoskeleton of the large arthropod Sidneyia inexpectans and encompassed by nine specimens of the priapulid worm Ottoia prolifica, is interpreted as a death assemblage, with the worms once living off or feeding around a carcass or freshly moulted instar of Sidneyia. Death is thought to have been caused by an obrution event that preserved the organisms in situ.  相似文献   

18.
19.
Lobopodians, a paraphyletic group of rare but morphologically diverse Palaeozoic vermiform animals bearing metameric appendages, are key to the origin of extant panarthropods. First discovered in 1983 on Mount Stephen (Yoho National Park, British Columbia), the Cambrian (Wuliuan) Burgess Shale lobopodian nicknamed ‘Collins’ monster’ is formally described as Collinsovermis monstruosus gen. et sp. nov. A formal systematic treatment of the comparable and poorly known lobopodian Acinocricus stichus from Utah is also provided. The body of Collinsovermis is plump and compact but shows the diagnostic suspension-feeding characters of luolishaniid lobopodians. It possesses 14 contiguous pairs of lobopods, lacking space between them. The 6 anterior pairs are elongate, adorned with about 20 pairs of long and slightly curved ventral spinules arranged in a chevron-like pattern. These appendages terminate in a pair of thin claws and their dorsal surfaces are covered in minute spines or setae. The 8 posterior lobopod pairs, which attach to a truncated body termination, are stout and smooth, each terminated by a single strong recurved claw. Each somite bears a pair of dorsal spines; somites 4 and posteriad bear an additional median spine. The spines on somites 1–3 are much shorter than the spines on the remaining somites. The head is short, bears a terminal mouth and a pair of antenniform outgrowths, and is covered by an oblong sclerite. Collinsovermis, plus Collinsium and Acinocricus, are found to comprise a sub-group of stout luolishaniid lobopodians with remarkably long spinules on the front lobopods, interpreted here as a clade (Teratopodidae fam. nov.) This clade is distinct from both the comparatively slenderer Luolishania and a sub-group composed of Facivermis and Ovatiovermis lacking body sclerites. Luolishaniids were mostly sessile forerunners of arthropods that had coupled efficient suspension-feeding devices and, as in Collinsovermis, strong defensive or deterrent features.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号