首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Escherichia coli Tat apparatus is a membrane-bound protein translocase that serves to export folded proteins synthesized with N-terminal twin-arginine signal peptides. The essential TatC component of the Tat translocase is an integral membrane protein probably containing six transmembrane helices. Sequence analysis identified conserved TatC amino acid residues, and the role of these side-chains was assessed by single alanine substitution. This approach identified three classes of TatC mutants. Class I mutants included F94A, E103A and D211A, which were completely devoid of Tat-dependent protein export activity and thus represented residues essential for TatC function. Cross-complementation experiments with class I mutants showed that co-expression of D211A with either F94A or E103A regenerated an active Tat apparatus. These data suggest that different class I mutants may be blocked at different steps in protein transport and point to the co-existence of at least two TatC molecules within each Tat translocon. Class II mutations identified residues important, but not essential, for Tat activity, the most severely affected being L99A and Y126A. Class III mutants showed no significant defects in protein export. All but three of the essential and important residues are predicted to cluster around the cytoplasmic N-tail and first cytoplasmic loop regions of the TatC protein.  相似文献   

2.
In Escherichia coli, a subset of periplasmic proteins is exported via the twin-arginine translocation (Tat) pathway. In the present study, we have purified the Tat complex from E. coli, and we show that it contains only TatA, TatB, and TatC. Within the purified complex, TatB and TatC are present in a strict 1:1 ratio, suggesting a functional association. This has been confirmed by expression of a translational fusion between TatB and TatC. This Tat(BC) chimera supports efficient Tat-dependent export, indicating that TatB and TatC act as a unit in both structural and functional terms. The purified Tat complex contains varying levels of TatA, suggesting a gradual loss during isolation and a looser association. The molecular mass of the complex is approximately 600 kDa, demonstrating the presence of multiple copies of TatA, B, and C. Co-immunoprecipitation experiments show that TatC is required for the interaction of TatA with TatB, suggesting that TatA may interact with the complex via binding to TatC.  相似文献   

3.
The twin-arginine translocase (Tat) pathway is involved in the targeting and translocation of fully folded proteins to the inner membrane and periplasm of bacteria. Proteins that use this pathway contain a characteristic twin-arginine signal sequence, which interacts with the receptor complex formed by the TatBC subunits. Recently, the DmsD protein was discovered, which binds to the twin-arginine signal sequences of the anaerobic respiratory enzymes dimethylsulfoxide reductase (DmsABC) and trimethylamine N-oxide (TMAO) reductase. In this work, the targeting of DmsD within Escherichia coli was investigated. Using cell fractionation and Western blot analysis, DmsD is found to be associated with the inner membrane of wild-type E. coli and a dmsABC mutant E. coli under anaerobic conditions. In contrast, DmsD is predominantly found in the cytoplasmic fraction of a Delta tatABCDE strain, which suggests that DmsD interacts with the membrane-associated Tat complex. Under aerobic conditions DmsD was also found primarily in the cytoplasmic fraction of wild-type E. coli, suggesting that physiological conditions have a significant effect upon the targeting of DmsD to the inner membrane. Size exclusion chromatography data and membrane washing studies indicate that DmsD is interacting tightly with an integral membrane protein and not with the lipid component of the E. coli inner membrane. Additional investigation into the nature of this interaction revealed that the TatB and TatC subunits of the translocase are important for the interaction of DmsD with the E. coli inner membrane.  相似文献   

4.
The twin-arginine translocation (Tat) system can translocate folded proteins across biological membranes. Among the known Tat-system components in Escherichia coli, TatC is the only protein with multiple trans-membrane domains. TatC is important for translocon interactions with Tat substrates. The knowledge of its membrane topology is therefore crucial for the understanding of substrate binding and translocon function. Recently, based on active PhoA reporter fusions to the second predicted cytoplasmic loop of TatC, a topology with four trans-membrane domains has been suggested, calling in silico predictions of six trans-membrane domains into question. Here we report studies with translational fusions of TatC to the topological marker enzymes PhoA and LacZ which provide strong evidence for a six-trans-membrane domain topology. The stop transfer capacity of the fourth trans-membrane domain was found to be strongly influenced by the succeeding cytoplasmic domain. The presence of linker sequences at PhoA-fusion sites of the cytoplasmic domain induced PhoA leakage. In the case of one tested fusion (S185-PhoA), the stop-transfer efficiency was already low due to the negative charge in the center of the fourth trans-membrane domain (E170). The results point to the importance of cytoplasmic loops for the stabilization of stop-transfer sequences and revoke evidence for only four trans-membrane domains of TatC.  相似文献   

5.
The Tat (twin arginine translocation) system transports folded proteins across the bacterial cytoplasmic membrane and the thylakoid membrane of plant chloroplasts. The integral membrane proteins TatA, TatB, and TatC are essential components of the Tat pathway. TatA forms high order oligomers and is thought to constitute the protein-translocating unit of the Tat system. Cysteine scanning mutagenesis was used to systematically investigate the functional importance of residues in the essential N-terminal transmembrane and amphipathic helices of Escherichia coli TatA. Cysteine substitutions of most residues in the amphipathic helix, including all the residues on the hydrophobic face of the helix, severely compromise Tat function. Glutamine 8 was identified as the only residue in the transmembrane helix that is critical for TatA function. The cysteine variants in the transmembrane helix were used in disulfide mapping experiments to probe the oligomeric arrangement of TatA protomers within the larger TatA complex. Residues in the center of the transmembrane helix (including residues 10-16) show a distinct pattern of cross-linking indicating that this region of the protein forms well defined interactions with other protomers. At least two interacting faces were detected. The results of our TatA studies are compared with analogous data for the homologous, but functionally distinct, TatB protein. This comparison reveals that it is only in TatA that the amphipathic helix is sensitive to amino acid substitutions. The TatA amphipathic helix may play a role in forming and controlling the path of substrate movement across the membrane.  相似文献   

6.
Current models for the action of the twin-arginine translocation (Tat) system propose that substrates bind initially to the TatBC subunits, after which a separate TatA complex is recruited to form an active translocon. Here, we have studied the roles of individual subunits in the assembly and stability of the core TatBC-containing substrate-binding complex. Previous studies have shown that TatB and TatC are active when fused together; we show here that deletion of the entire TatB transmembrane span from this Tat(BC) fusion inactivates the Tat system but does not affect assembly of the core complex. In this mutated complex, TatA is present but more loosely bound, indicating a role for TatB in the correct binding of TatA. In the absence of TatA, the truncated TatBC fusion protein still assembles into a complex of the correct magnitude, demonstrating that the transmembrane spans of TatC are the only determinants within the membrane bilayer that specify assembly of this complex. Further studies on both the Tat(BC) construct and the wild-type TatBC subunits show that the TatBC complex is unstable in the absence of TatA, and we show that TatA stabilises the TatB subunit specifically within this complex. The results demonstrate a dual role and location for TatA: in the functioning/maintenance of the core complex, and as a separate homo-oligomeric complex.  相似文献   

7.
The cytoplasmic membrane protein TatB is an essential component of the Escherichia coli twin-arginine (Tat) protein translocation pathway. Together with the TatC component it forms a complex that functions as a membrane receptor for substrate proteins. Structural predictions suggest that TatB is anchored to the membrane via an N-terminal transmembrane alpha-helix that precedes an amphipathic alpha-helical section of the protein. From truncation analysis it is known that both these regions of the protein are essential for function. Here we construct 31 unique cysteine substitutions in the first 42 residues of TatB. Each of the substitutions results in a TatB protein that is competent to support Tat-dependent protein translocation. Oxidant-induced disulfide cross-linking shows that both the N-terminal and amphipathic helices form contacts with at least one other TatB protomer. For the transmembrane helix these contacts are localized to one face of the helix. Molecular modeling and molecular dynamics simulations provide insight into the possible structural basis of the transmembrane helix interactions. Using variants with double cysteine substitutions in the transmembrane helix, we were able to detect cross-links between up to five TatB molecules. Protein purification showed that species containing at least four cross-linked TatB molecules are found in correctly assembled TatBC complexes. Our results suggest that the transmembrane helices of TatB protomers are in the center rather than the periphery of the TatBC complex.  相似文献   

8.
The twin-arginine translocation (Tat) machinery present in bacterial and thylakoidal membranes is able to transport fully folded proteins. Consistent with previous in vivo data, we show that the model Tat substrate TorA-PhoA is translocated by the TatABC translocase of Escherichia coli inner membrane vesicles, only if the PhoA moiety was allowed to fold by disulfide bond formation. Although even unfolded TorA-PhoA was found to physically associate with the Tat translocase of the vesicles, site-specific cross-linking revealed a perturbed interaction of the signal sequence of unfolded TorA-PhoA with the TatBC receptor site. Some of the folded TorA-PhoA precursor accumulated in a partially protease-protected membrane environment, from where it could be translocated into the lumen of the vesicles upon re-installation of an H+-gradient. Translocation arrest occurred in immediate vicinity to TatA. Consistent with a neighborhood to TatA, TorA-PhoA remained protease-resistant in the presence of detergents that are known to preserve the oligomeric structures of TatA. Moreover, entry of TorA-PhoA to the protease-protected environment strictly required the presence of TatA. Collectively, our results are consistent with some degree of quality control by TatBC and a recruitment of TatA to a folded substrate that has functionally engaged the twin-arginine translocase.  相似文献   

9.
The twin-arginine translocase (Tat) system is used by many bacteria to translocate folded proteins across the cytoplasmic membrane. The TatA subunit is the predicted pore-forming subunit and has been shown to form a homo-oligomeric complex. Through accessibility experiments using the thiol-reactive reagents 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid and Nalpha-(3-maleimidylproprionyl)biocytin toward site-specific cysteine mutants in TatA, we show that the N-terminus of TatA is located in the cytoplasm rather than the previously assumed periplasm. We also confirm previous observations that the C-terminus has a dual topology. By treatment with the membrane uncoupler carbonyl cyanide-m-chlorophenyl hydrazone, we show that the topological state of the C-terminus is dependent on the membrane potential. These results suggest two architectures of TatA in the membrane: one with a single transmembrane helix and the other with two transmembrane helices. Molecular models of both topologies were used to develop and cartoon a homo-oligomeric complex as a channel with a diameter of approximately 50 A and suggest that the double transmembrane helix topology might be the building block for the translocation channel. Additionally, in vivo cross-linking experiments of Gly2Cys and Thr22Cys mutants showed that Gly2, at the beginning of transmembrane helix-1, is in close proximity with Gly2 of a neighboring TatA, as Cys2 cross-linked immediately upon the addition of copper phenanthroline. On the other hand, Cys22, at the other end of the transmembrane helix, took at least 10 min to cross-link, suggesting that a possible movement or reorientation is required to bring this residue into proximity with a neighboring TatA subunit.  相似文献   

10.
11.
The twin-arginine translocation (Tat) machinery of the Escherichia coli inner membrane is dedicated to the export of proteins harboring a conserved SRRxFLK motif in their signal sequence. TatA, TatB, and TatC are the functionally essential constituents of the Tat machinery, but their precise function is unknown. Using site-specific crosslinking, we have analyzed interactions of the twin-arginine precursor preSufI with the Tat proteins upon targeting to inner membrane vesicles. TatA association is observed only in the presence of a transmembrane H(+) gradient. TatB is found in contact with the entire signal sequence and adjacent parts of mature SufI. Interaction of TatC with preSufI is, however, restricted to a discrete area around the consensus motif. The results reveal a hierarchy in targeting of a Tat substrate such that for the primary interaction, TatC is both necessary and sufficient while a subsequent association with TatB likely mediates transfer from TatC to the actual Tat pore.  相似文献   

12.
Using a functional lactose permease mutant devoid of Cys residues (C-less permease), each amino-acid residue in putative transmembrane helices IX and X and the short intervening loop was systematically replaced with Cys (from Asn-290 to Lys-335). Thirty-four of 46 mutants accumulate lactose to high levels (70-100% or more of C-less), and an additional 7 mutants exhibit lower but highly significant lactose accumulation. As expected (see Kaback, H.R., 1992, Int. Rev. Cytol. 137A, 97-125), Cys substitution for Arg-302, His-322, or Glu-325 results in inactive permease molecules. Although Cys replacement for Lys-319 or Phe-334 also inactivates lactose accumulation, Lys-319 is not essential for active lactose transport (Sahin-Tóth, M., Dunten, R.L., Gonzalez, A., & Kaback, H.R., 1992, Proc. Natl. Acad. Sci. USA 89, 10547-10551), and replacement of Phe-334 with leucine yields permease with considerable activity. All single-Cys mutants except Gly-296 --> Cys are present in the membrane in amounts comparable to C-less permease, as judged by immunological techniques. In contrast, mutant Gly-296 --> Cys is hardly detectable when expressed at a relatively low rate from the lac promoter/operator but present in the membrane in stable form when expressed at a high rate from T7 promoter. Finally, studies with N-ethylmaleimide (NEM) show that only a few mutants are inactivated significantly. Remarkably, the rate of inactivation of Val-315 --> Cys permease is enhanced at least 10-fold in the presence of beta-galactopyranosyl 1-thio-beta-D-galactopyranoside (TDG) or an H+ electrochemical gradient (delta mu-H+). The results demonstrate that only three residues in this region of the permease -Arg-302, His-322, and Glu-325-are essential for active lactose transport. Furthermore, the enhanced reactivity of the Val-315 --> Cys mutant toward NEM in the presence of TDG or delta mu-H+ probably reflects a conformational alteration induced by either substrate binding or delta mu-H+.  相似文献   

13.
Using a functional lactose permease mutant devoid of Cys residues (C-less permease), each amino acid residue in the hydrophilic N-terminus and the first putative transmembrane helix was systematically replaced with Cys (from Tyr-2 to Trp-33). Twenty-three of 32 mutants exhibit high lactose accumulation (70-100% or more of C-less), and an additional 8 mutants accumulate to lower but highly significant levels. Surprisingly, Cys replacement for Gly-24 or Tyr-26 yields fully active permease molecules, and permease with Cys in place of Pro-28 also exhibits significant transport activity, although previous mutagenesis studies on these residues suggested that they may be required for lactose transport. As expected, Cys replacement for Pro-31 completely inactivates, in agreement with previous findings indicating that "helix-breaking" propensity at this position is necessary for full activity (Consler TG, Tsolas O, Kaback HR, 1991, Biochemistry 30:1291-1297). Twenty-nine mutants are present in the membrane in amounts comparable to C-less permease, whereas membrane levels of mutants Tyr-3-->Cys and Phe-12-->Cys are slightly reduced, as judged by immunological techniques. Dramatically, mutant Phe-9-->Cys is hardly detectable when expressed from the lac promoter/operator at a relatively low rate, but is present in the membrane in a stable form when expressed at a high rate from the T7 promoter. Finally, studies with N-ethylmalemide show that 6 Cys-replacement mutants that cluster at the C-terminal end of putative helix I are inactivated significantly.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The Escherichia coli Tat system serves to export folded proteins harbouring an N-terminal twin-arginine signal peptide across the cytoplasmic membrane. In this report we have studied the functions of conserved residues within the structurally related TatA and TatB proteins. Our results demonstrate that there are two regions within each protein of high sequence conservation that are critical for efficient Tat translocase function. The first region is the interdomain hinge between the transmembrane and the amphipathic alpha-helices of TatA and TatB proteins. The second region is within the amphipathic helices of TatA and TatB. In particular an invariant phenylalanine residue within TatA proteins is essential for activity, whereas a string of glutamic acid residues on the same face of the amphipathic helix of TatB is important for function.  相似文献   

15.
The twin arginine protein transport (Tat) system transports folded proteins across the cytoplasmic membranes of prokaryotes and the thylakoid membranes of plant chloroplasts. In Escherichia coli, the TatB and TatC components form a multivalent receptor complex that binds Tat substrates. Here, we have used a genetic fusion approach to construct covalent TatC oligomers in order to probe the organisation of TatC. A fused dimer of TatC supported Tat transport activity and was fully stable in vivo. Inactivating point mutations in one or other of the TatC units in the fused TatC dimer did not inactivate TatC function, indicating that only one TatC protomer in the TatC fused dimer needs to be active. Larger covalent fusions of TatC also supported Tat transport activity but were degraded in vivo to release smaller TatC forms. Taken together, these results strongly suggest that TatC forms a functional dimer, and support the idea that there is an even number of TatC protomers in the TatBC complex.  相似文献   

16.
Gouffi K  Santini CL  Wu LF 《FEBS letters》2002,522(1-3):65-70
Misfolding of the prion protein yields amyloidogenic isoforms, and it shows exacerbating neuronal damage in neurodegenerative disorders including prion diseases. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) potently stimulate neuritogenesis and survival of neuronal cells in the central nervous system. Here, we tested these neuropeptides on neurotoxicity in PC12 cells induced by the prion protein fragment 106-126 [PrP (106-126)]. Concomitant application of neuropeptide with PrP(106-126) (5x10(-5) M) inhibited the delayed death of neuron-like PC12 cells. In particular, PACAP27 inhibited the neurotoxicity of PrP(106-126) at low concentrations (>10(-15) M), characterized by the deactivation of PrP(106-126)-stimulated caspase-3. The neuroprotective effect of PACAP27 was antagonized by the selective PKA inhibitor, H89, or the MAP kinase inhibitor, U0126. These results suggest that PACAP27 attenuates PrP(106-126)-induced delayed neurotoxicity in PC12 cells by activating both PKA and MAP kinases mediated by PAC1 receptor.  相似文献   

17.
McrA is one of three functions that restrict modified foreign DNA in Escherichia coli K-12, affecting both methylated and hydroxymethylated substrates. We present here the first systematic analysis of the functional organization of McrA by using the GPS-LS insertion scanning system. We collected in-frame insertions of five amino acids at 46 independent locations and C-terminal truncations at 20 independent locations in the McrA protein. Each mutant was assayed for in vivo restriction of both methylated and hydroxymethylated bacteriophage (M.HpaII-modified lambda and T4gt, respectively) and for induction of the E. coli SOS response in the presence of M.HpaII methylation, indicative of DNA damage. Our findings suggest the presence of an N-terminal DNA-binding domain and a C-terminal catalytic nuclease domain connected by a linker region largely tolerant of amino acid insertions. DNA damage inflicted by a functional C-terminal domain is required for restriction of phage T4gt. Disruption of the N-terminal domain abolishes restriction of both substrates. Surprisingly, truncation mutations that spare the N-terminal domain do not mediate DNA damage, as measured by SOS induction, but nevertheless partially restrict M.HpaII-modified lambda in vivo. We suggest a common explanation for this "restriction without damage" and a similar observation seen in vivo with McrB, a component of another of the modified-DNA restriction functions. Briefly, we propose that unproductive site-specific binding of the protein to a vulnerable position in the lambda genome disrupts the phage development program at an early stage. We also identified a single mutant, carrying an insertion in the N-terminal domain, which could fully restrict lambda but did not restrict T4gt at all. This mutant may have a selective impairment in substrate recognition, distinguishing methylated from hydroxymethylated substrates. The study shows that the technically easy insertion scanning method can provide a rich source of functional information when coupled with effective phenotype tests.  相似文献   

18.
19.
The twin-arginine translocation (Tat) system targets cofactor-containing proteins across the Escherichia coli cytoplasmic membrane via distinct signal peptides bearing a twin-arginine motif. In this study, we have analysed the mechanism and capabilities of the E. coli Tat system using green fluorescent protein (GFP) fused to the twin-arginine signal peptide of TMAO reductase (TorA). Fractionation studies and fluorescence measurements demonstrate that GFP is exported to the periplasm where it is fully active. Export is almost totally blocked in tat deletion mutants, indicating that the observed export in wild-type cells occurs predominantly, if not exclusively, by the Tat pathway. Imaging studies reveal a halo of fluorescence in wild-type cells corresponding to the exported periplasmic form; the GFP is distributed uniformly throughout the cytoplasm in a tat mutant. Because previous work has shown GFP to be incapable of folding in the periplasm, we propose that GFP is exported in a fully folded, active state. These data also show for the first time that heterologous proteins can be exported in an active form by the Tat pathway.  相似文献   

20.
The twin arginine translocation (Tat) pathway transports folded proteins across the cytoplasmic membrane of bacteria. Tat signal peptides contain a consensus motif (S/T-R-R-X-F-L-K) that is thought to play a crucial role in substrate recognition by the Tat translocase. Replacement of the phenylalanine at the +2 consensus position in the signal peptide of a Tat-specific reporter protein (TorA-MalE) by aspartate blocked export of the corresponding TorA(D(+2))-MalE precursor, indicating that this mutation prevents a productive binding of the TorA(D(+2)) signal peptide to the Tat translocase. Mutations were identified in the extreme amino-terminal regions of TatB and TatC that synergistically suppressed the export defect of TorA(D(+2))-MalE when present in pairwise or triple combinations. The observed synergistic suppression activities were even more pronounced in the restoration of membrane translocation of another export-defective precursor, TorA(KQ)-MalE, in which the conserved twin arginine residues had been replaced by lysine-glutamine. Collectively, these findings indicate that the extreme amino-terminal regions of TatB and TatC cooperate tightly during recognition and productive binding of Tat-dependent precursor proteins and, furthermore, that TatB and TatC are both involved in the formation of a specific signal peptide binding site that reaches out as far as the end of the TatB transmembrane segment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号