首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long‐term decline and depression of density in cyclic small rodents is a recent widespread phenomenon. These observed changes at the population level might have cascading effects at the ecosystem level. Here, we assessed relationships between changing boreal landscapes and biodiversity changes of small mammal communities. We also inferred potential effects of observed community changes for increased transmission risk of Puumala virus (PUUV) spread, causing the zoonotic disease nephropatica epidemica in humans. Analyses were based on long‐term (1971–2013) monitoring data of shrews and voles representing 58 time series in northern Sweden. We calculated richness, diversity, and evenness at alpha, beta, and gamma level, partitioned beta diversity into turnover (species replacement) and nestedness (species addition/removal), used similarity percentages (SIMPER) analysis to assess community structure, and calculated the cumulated number of PUUV‐infected bank voles and average PUUV prevalence (percentage of infected bank voles) per vole cycle. Alpha, beta, and gamma richness and diversity of voles, but not shrews, showed long‐term trends that varied spatially. The observed patterns were associated with an increase in community contribution of bank vole (Myodes glareolus), a decrease of gray‐sided vole (M. rufocanus) and field vole (Microtus agrestis) and a hump‐shaped variation in contribution of common shrew (Sorex araneus). Long‐term biodiversity changes were largely related to changes in forest landscape structure. Number of PUUV‐infected bank voles in spring was negatively related to beta and gamma diversity, and positively related to turnover of shrews (replaced by voles) and to community contribution of bank voles. The latter was also positively related to average PUUV prevalence in spring. We showed that long‐term changes in the boreal landscape contributed to explain the decrease in biodiversity and the change in structure of small mammal communities. In addition, our results suggest decrease in small mammal diversity to have knock‐on effects on dynamics of infectious diseases among small mammals with potential implications for disease transmission to humans.  相似文献   

2.
Environmental factors play an important role in the seasonal adaptation of body mass and thermogenesis in wild small mammals. In this study, we performed a factorial experiment (temperature x photoperiod) in which Brandt's voles and Mongolian gerbils were acclimated to different photoperiods (long photoperiod, 16L : 8D; short photoperiod, 8L : 16D) and temperatures (warm, 23 degrees C; cold, 5 degrees C) to test the hypothesis that photoperiod, temperature, or both together can trigger seasonal changes in serum leptin level, body mass, thermogenesis, and energy intake. Our data demonstrate that Brandt's voles showed a remarkable decrease in body mass in both the cold and a short photoperiod. However, no significant changes in body mass were found for gerbils exposed to similar conditions. The short photoperiod induced a decrease in serum leptin levels for both voles and gerbils that might contribute to an increase in energy intake. Furthermore, the short photoperiod induced an increase of uncoupling protein 1 (UCP1) content for both voles and gerbils, and cold can further enhance the increase in voles. No interactions between photoperiod and temperature were detected for the two species. Brandt's voles can decrease their body mass through changes in energy intake and expenditure, while Mongolian gerbils can keep body mass relatively stable by balancing energy metabolism under winterlike conditions. Leptin was potentially involved in the regulation of body mass and thermogenic capacity for the two species.  相似文献   

3.
Seasonal changes in an animal's morphology, physiology, and behavior are considered to be an adaptive strategy for survival and reproductive success. In the present study, we examined body weight and several behavioral, physiological, hormonal, and biochemical markers in seasonally acclimatized Brandt's voles (Microtus brandti) to test our hypothesis that Brandt's voles can decrease energy intake associated with decrease in body weight, body fat content, serum leptin level, and increasing thermogenesis in winter conditions. We found that the body weight of Brandt's voles was lowest in winter (December to February) and highest in spring and early summer (May to June). This seasonal variation in body weight was associated with changes in other markers examined. For example, the winter decrease in body weight was accompanied by increased energy intake and enhanced nonshivering thermogenesis (NST) as well as by decreased body fat mass and reduced levels of circulating leptin. Further, circulating levels of leptin were positively correlated with body weight and body fat mass, and negatively correlated with energy intake and uncoupling protein 1 contents. Together, these data do not support our hypothesis and suggest that leptin may be involved in this process and serve as a starvation signal in Brandt's voles.  相似文献   

4.
Social behavior of small mammals living under natural conditions often is inferred from live-trapping data, particularly from incidents in which two or more individuals are captured together in a trap. We examined whether multiple-capture data from a long-term study of prairie voles (Microtus ochrogaster) and meadow voles (Microtus pennsylvanicus) were consistent with well-known species differences in social behavior (whereas prairie voles are highly social and display monogamy, meadow voles are less social and promiscuous). When possible, we also examined multiple captures of two nontarget species, northern short-tailed shrews (Blarina brevicauda) and western harvest mice (Reithrodontomys megalotis). Percent of total captures that were multiple captures and percent of total adult captures that were male–female captures were highest for prairie voles and lowest for meadow voles; values for harvest mice and shrews were in between those of the vole species, but more similar to values for meadow voles. Repeat captures of the same male–female pair occurred most commonly in prairie voles, and multiple captures of this species typically involved individuals from the same social group. Multiple captures of adults and juveniles were more common in prairie voles than meadow voles, except for captures of at least one adult male and at least one juvenile, which did not differ between the two vole species. Multiple capture data for prairie voles and meadow voles were largely consistent with established species differences in social behavior, suggesting that such data can provide an accurate indication of social and mating systems of small mammals.  相似文献   

5.
Changes in individual quality during a 3-year population cycle of voles   总被引:4,自引:0,他引:4  
In small mammal populations with multiannual oscillations in density, the occurrence of large individuals in the peak phase (the "Chitty effect") is a typical feature, but mechanisms behind this phenomenon have remained unclear. We analysed long-term data sets collected in western Finland between 1984 and 1992 to: (1) find out how the body size and body condition of voles (Microtus agrestis, M. rossiaemeridionalis, Clethrionomys glareolus) and shrews (Sorex araneus) was associated with the 3-year population cycle of voles, and (2) relate the quality (body condition) of the individuals to changes in the biotic environment in order to detect how the different hypotheses about the mechanisms behind the Chitty effect can explain the observed variation. In the 3-year cycle studied, the mean body size and quality were strongly related to density oscillations in voles but not in sympatric shrews. Voles were lean in the decline phase but very stocky in the summer of the peak phase. This pattern appeared to be mainly caused by changes in body condition or body shape rather than mere size (body length). The quality of voles appeared to be delayed density dependent, especially in autumn when the dominant time lag was 12 months. Previous vole density was strongly related to changes in the environment (activity of specialist predators, production of hay until early summer). We suggest that the previous density of voles mainly affects the quality of voles indirectly through changes in the biotic environment, and that the proximate cause behind the Chitty effect is the combined effect of changes in predation pressure and availability of food.  相似文献   

6.
In widespread species, northern taiga voles, most significant differences in the intensity of energy metabolism (M), maximum (Mmax) and reserve (Mres) metabolism were observed at winter temperatures (-5-20 degrees C): Clethrionomys rutilus greater than C. rufocanus greater than Microtus oeconomus; differences in seasonal increase of Mmax and Mres exhibit an inverse proportion. Seasonal changes in M and Mmax in autochthonous tundra rodents indicate that Lemmus sibiricus belongs to a more eurybiont species as compared to Dicrostonyx torquatus. The main characteristic feature of seasonal adaptation of M in lemmings, as compared to voles, is the evident decrease of M value in winter which is accompanied by a more significant increase of Mmax and Mres. Operative pattern and high seasonal mobility of chemical thermoregulation in lemmings are suggested which account for adaptation of these animals mainly to short-term extreme effects of low temperatures.  相似文献   

7.
Although competition and predation are considered to be among the most important biotic processes influencing the distribution and abundance of species in space and time, the relative and interactive roles of these processes in communities comprised of cyclically fluctuating populations of small mammals are not well known. We examined these processes in and among populations of field voles, sibling voles, bank voles and common shrews in western Finland, using spatially replicated trapping data collected four times a year during two vole cycles (1987–1990 and 1997–1999). Populations of the four species exhibited relatively strong interspecific temporal synchrony in their multiannual fluctuations. During peak phases, we observed slight deviations from close temporal synchrony: field vole densities peaked at least two months earlier than those of either sibling voles or bank voles, while densities of common shrews peaked even earlier. The growth rates of all four coexisting small mammal species were best explained by their own current densities. The growth rate of bank vole populations was negatively related to increasing densities of field voles in the increase phase of the vole cycle. Apart from this, no negative effects of interspecific density, direct or delayed, were observed among the vole species. The growth rates of common shrew populations were negatively related to increasing total rodent (including water voles and harvest mice) densities in the peak phase of the vole cycle. Sibling voles appeared not to be competitively superior to field voles on a population level, as neither of these Microtus voles increased disproportionately in abundance as total rodent density increased. We suggest that interspecific competition among the vole species may occur, but only briefly, during the autumn of peak years, when the total available amount of rodent habitat becomes markedly reduced following agricultural practices. Our results nonetheless indicate that interspecific competition is not a strong determinant of the structure of communities comprised of species exhibiting cyclic dynamics. We suggest that external factors, namely predation and shortage of food, limit densities of vole populations below levels where interspecific competition occurs. Common shrews, however, appear to suffer from asymmetric space competition with rodents at peak densities of voles; this may be viewed as a synchronizing effect.  相似文献   

8.
Comprehensive analyses of long-term (1977-2003) small-mammal abundance data from western Finland showed that populations of Microtus voles (field voles M. agrestis and sibling voles M. rossiaemeridionalis) voles, bank (Clethrionomys glareolus) and common shrews (Sorex araneus) fluctuated synchronously in 3 year population cycles. Time-series analyses indicated that interspecific synchrony is influenced strongly by density-dependent processes. Synchrony among Microtus and bank voles appeared additionally to be influenced by density-independent processes. To test whether interspecific synchronization through density-dependent processes is caused by predation, we experimentally reduced the densities of the main predators of small mammals in four large agricultural areas, and compared small mammal abundances in these to those in four control areas (2.5-3 km(2)) through a 3 year small-mammal population cycle. Predator reduction increased densities of the main prey species, Microtus voles, in all phases of the population cycle, while bank voles, the most important alternative prey of predators, responded positively only in the low and the increase phase. Manipulation also increased the autumn densities of water voles (Arvicola terrestris) in the increase phase of the cycle. No treatment effects were detected for common shrews or mice. Our results are in accordance with the alternative prey hypothesis, by which predators successively reduce the densities of both main and alternative prey species after the peak phase of small-mammal population cycles, thus inducing a synchronous low phase.  相似文献   

9.
Seasonal changes in lipid droplet size and lipid peroxidation in the brown adipose tissue (BAT) of wild bank voles were examined. In addition, a role of photoperiod in these changes was studied; bank voles were held from the birth under long photoperiod (LP) for 12 weeks, and then half of them was transferred to short photoperiod (SP) for 6 weeks and another one remained under LP. In the wild bank voles the absolute BAT weight was seasonally constant, while the significant differences in the lipid droplet size were observed. The smallest lipid droplets (mean, 11 μm2) were seen in winter; they increased by 30 % in spring and reached the highest size (24 μm2) in summer. Lipid peroxidation in the BAT did not differ significantly between the seasons, although high intraseason variation of this process was noted. The laboratory experiment revealed that the size of lipid droplets was determined by photoperiod; SP induced 13-fold decrease, and continuous exposure to LP brought about a further 2.5-fold increase in the size of lipid droplets. Conversely, a significant decrease in lipid peroxidation was seen in LP bank voles in comparison with the SP animals. The data indicate that short photoperiod is responsible for the small size of lipid droplets in the BAT of bank voles during winter, which may be a necessary requirement for high thermogenic capacity of the tissue. Photoperiod appears also to affect lipid peroxidation in the BAT of these animals.  相似文献   

10.
Cyclic changes in population growth rate are caused by changes in survival and/or reproductive rate. To find out whether cyclic changes in reproduction are an important part of the mechanism causing cyclic fluctuations in small mammal populations, we studied changes in the population structure and reproduction of field voles ( Microtus agrestis ), sibling voles ( M. rossiaemeridionalis ), bank voles ( Clethrionomys glareolus ), and common shrews ( Sorex araneus ) in western Finland during 1984–1992, in an area with 3-yr vole cycles. We also modelled the population growth of voles using parameter values from this study. The animals studied were collected by snap trapping in April, May, June, August, September, and, during 1986–1990, also in October. We found several phase-related differences in the population structure (age structure, sex ratio, proportion of mature individuals) and reproduction (litter size, length of the breeding season) of voles. In non-cyclic common shrews, the only significant phase-related difference was a lower proportion of overwintered individuals in the increase phase. According to the analyses and the vole model, phase-related changes in litter size had only a minor impact on population growth rate. The same was true for winter breeding in the increase phase. The length and intensity of the summer breeding season had an effect on yearly population growth but this impact was relatively weak compared to the effect of cyclic changes in survival. The population increase rates of Microtus were delayed dependent on density (8–12-month time lag). Our results indicate that cyclic changes in reproduction are not an important part of the mechanism driving cyclic fluctuations in vole populations. Low survival of young individuals appeared to play an important role in the shift from the peak to the decline phase in late summer and early autumn.  相似文献   

11.
The population ecology of small mammals in hedgerows in arable farmland in eastern England is described. Features of hedgerows of importance to individual species are examined. Some 97% of the total 3042 mammals captured were wood mouse Apodemus sylvaticus , yellow-necked mouse Apodemus flavicollis , bank vole Clethrionomys glareolus and common shrew Sorex araneus . Small numbers of harvest mice Micromys minutus , field voles Microtus agrestis , pygmy shrews Sorex minutus and water shrews Neomys fodiens were also caught. Wood mouse, the most numerous species, showed a typical pattern of large numbers in autumn and winter, followed by a simultaneous decline over all hedges in early spring. Population changes were less clear in yellow-necked mouse and bank vole but the yellow-necked mouse was more scarce in the second year of study. Common shrews were most numerous in summer and declined rapidly in autumn. Hedgerow coppicing had a marked effect on yellow-necked mouse numbers but not on wood mouse. In an extensive survey of mammal numbers in relation to hedgerow features, ground cover was found to be the single largest factor influencing size of bank vole populations. Hedgerow condition (lack of gaps) was important to yellow-necked mice, which thrived only in well-established hedgerows. Wood mice appeared little influenced by the characteristics of the hedge. Common shrews were more abundant in hedgerows with adjacent permanent water.  相似文献   

12.
1. Two species of voles were fed high fibre (barnyard grass) and low fibre (alfalfa) diets to test the integrated processing response (IPR) hypothesis. This hypothesis states that many herbivores are able to maintain their required intake of digestible nutrients and energy on diets with very different fibre content because of compensatory changes in intake of food, size of gastro-intestinal (GI) tract, passage rates of fibre and absorptive capacity of the GI tract.
2. As predicted by the IPR hypothesis, each species of vole maintained a similar intake of digestible dry matter on the two different diets. Both species also had greater intake, larger GI size, shorter mean retention times and greater GI mass (an indicator of epithelial mass and absorptive capacity) when fed grass than when fed alfalfa.
3. The two species differed in that meadow voles, the more active species, had greater total intake and obtained a greater amount of digestible dry matter from either diet than did prairie voles. Meadow voles also consume more grass in the field than do prairie voles, and they digested grass better than did prairie voles. Prairie voles, which consume more dicots in the field, digested alfalfa better than did meadow voles.
4. Meadow voles had longer GI tracts, particularly small intestines, than did prairie voles, which may be linked to their greater ability to digest grass. However, meadow voles did not have larger caeca than prairie voles, even though caecal size increased on grass diets for both species. The GI size of prairie voles fed grass increased more than did the GI size of meadow voles, and this may have enabled prairie voles to utilize a grass diet, though they prefer to eat dicots. Greater selection of leaves, which have less fibre than stems, and longer mean retention times of food may account for better digestion of alfalfa by prairie voles.  相似文献   

13.
In the shrewsSorex araneus Linnaeus, 1758 andS. minutus Linnaeus, 1766 a short period of fast post-natal development in the nest is followed by a longer summer period of developmental stasis and then by autumn regression. The aim of this paper has been to test whether this period of developmental stability also is accompanied by inhibited development of the eye lens — the most continuously growing organ of the mammalian body. If it is not, then can this be used as an age indicator in studies on shrews, and can it serve in distinguishing seasonal cohorts of young born in consecutive summer months? This aspect was examined on material comprising dead shrews collected from live traps and pitfalls set for rodent research in the marshy habitat of a river valley in Bia?owie?a Forest, Poland, in 1997–1999. In fact, the eye lens in shrews was shown to increase in size continuously; therefore it may be used as a reliable age indicator. Body mass of weaned young shrews also continued to increase slowly with age until autumn. On the basis of the distribution of individuals in successive lens-mass classes, three age groups (cohorts) of young could be distinguished each season in theS. araneus population, and two inS. minutus. In the former species, consistent patterns to the relative abundance of the three seasonal cohorts were observed. The consequences of time of birth on individual fitness inSorex shrews are discussed.  相似文献   

14.
Riparian zones in agricultural landscapes provide linear non-crop habitats for a variety of plant and mammal species, and hence are an important component of biodiversity. To date, variable responses of abundance, species richness, and species diversity of small mammals have been recorded in riparian and upland habitats. To address this variability, we provide a detailed analysis of seasonal changes in abundance and diversity of terrestrial small-mammal communities over a 7-year period within an agricultural landscape in south-central British Columbia, Canada. We tested the hypotheses (H) that abundance, species richness, and species diversity of communities of small mammals (H1), and demographic parameters of reproduction, recruitment, and survival of the major species: deer mouse (Peromyscus maniculatus) and montane vole (Microtus montanus) (H2), would be higher in riparian than upland habitats. Mean total abundance of small mammals was higher in summer and winter, and species richness higher in summer, in riparian than hedgerow habitats. Winter population data supported the total and species abundance patterns for small mammals, but species richness was similar, and diversity lower, in riparian than hedgerow sites during winter periods. Deer mice were the dominant species in terms of abundance and reproductive output for pregnancies and recruitment, but not survival, in riparian sites. Montane voles were similar in abundance and demographic parameters in the two habitats. House mice (Mus musculus) preferred hedgerows and wandering shrews (Sorex vagrans) riparian sites. Demographic parameters for deer mice and montane voles indicated that both riparian and hedgerow sites were “source” rather than “sink” habitats, and likely contribute to maintenance of mammal diversity in agricultural landscapes.  相似文献   

15.
Cathemeral species are routinely active during the day, the night and at twilight. For the majority of species it is advantageous to specialize on the environmental conditions of a particular phase of the 24-hour day, so this rather uncommon type of activity must be a consequence of specific constraints. Good examples are the polyphasic activity patterns found in some small mammals. In shrews, with small body size and extremely high metabolic rate, polyphasic activity represents a simple short-term hunger cycle. In voles the short-term rhythm is triggered by an additional endogenous ultradian clock that interacts with the common circadian system, which probably is functionally related to endosymbiont digestion of cellulose-rich food. The activity bouts of individuals are synchronized on the population level to spread predation risk. As cathemeral species, voles are not specifically adapted to particular light conditions, but they are also not restricted to a particular activity phase. Therefore, the benefits from flexible responses in activity timing to environmental challenges may compensate for the disadvantages of not being specialized.  相似文献   

16.
Male golden hamsters underfed for 11-16 weeks showed a 30% decrease in body weight accompanied by significant testicular regression. Pinealectomy did not prevent underfeeding-induced gonadal regression. Resumption of ad-libitum feeding restored body weights to near control levels and permitted testicular redevelopment in animals with previously regressed tests. These data indicate that chronic food restriction can affect the reproductive status of hamsters and that this effect does not depend on an intact pineal gland. Body weight changes may serve as a secondary proximate cue in addition to photoperiod for timing the hamster seasonal breeding cycle.  相似文献   

17.
In male voles raised under different light conditions (L:D = 24:0, L:D = 18:6, L:D = 6:18) the following results were obtained. In the young males erythropoiesis seemed to be greatest in voles growing in "winter" photoperiod. In this light condition RBC count showed a tendency to decrease with age while in other illuminations erythrocyte numbers increased. The age related changes in RBC count were very similar to those observed in common voles aging in the different natural seasonal generations. The androgen level was higher after birth and then decreased. After reaching sexual maturity (13-15 weeks of vole life) it showed a peak and then decreased progressively. The age related changes in alpha 2-globulins (considered to be a potential binding proteins for steroid hormones) and in androgen level suggested a regulating mechanism based on a balance of hormones--blood proteins. The correlations stated between androgens and the parameters studied indicated more steroid than age-related metabolic changes. The more androgens, the less beta-globulin and fibrinogen while the greater rate of body and testes weight, as well as of albumin level and of RBC count were observed. All those might affect the transmission of lipoproteins from blood to adipose tissue and less predisposition to fighting with potentially lower blood coagulation capacity and more effective anabolic (erythropoietic) processes in the more "androgenic", reproductively active male voles. A higher protein metabolism in constant light, i.e. the higher level of the majority of plasma protein fraction and small weight was suggested. The high level of androgens in "winter" photoperiod might condition the aggressiveness and prevent hibernation in natural winter conditions.  相似文献   

18.
Supplementary feeding of wild large herbivores is a widespread practice in North America and Europe. The presence of feeding stations may have ecological consequences through changes to animal distributions, patterns of herbivory and a net nutrient input into the ecosystem. In Fennoscandia, supplementary feeding of moose in winter (Alces alces) is increasing. Although it has been shown to affect bird communities, its effects on small mammal communities were unknown. Here, we studied the effects of moose supplementary feeding stations on plants and on abundance, reproduction, and biomass of small mammals in years with low and high vole abundance. We sampled small mammals with snap traps and conducted surveys of the field layer vegetation, at varying distances from moose supplemental feeding stations. Due to the vegetation changes induced by feeding stations, abundance of common shrews (Sorex araneus) and Microtus voles were positively affected by long-term moose winter feeding, while bank voles (Myodes glareolus) were not affected. Moose feeding stations did not affect reproduction, individual body mass, or the total biomass of small mammals. Moose winter-feeding stations have impacts on nontarget species, providing islands of preferred grass and forb habitat for Microtus spp. and common shrews, allowing them to penetrate into a matrix of less preferred forest habitat.  相似文献   

19.
Hippocampus is involved in processing of environmental spatial information, and its size is known to correlate positively with spatial abilities in mammals and birds. Comparisons between species suggest that amount of spatial information processed (the mean area of home range in particular) is related with hippocampus size. Do seasonal and age changes in hippocampus size correlate with seasonal dynamics of spatial behaviour during ontogenesis? The data obtained through observational and experimental studies confirm the possibility that hippocampus size may be subjected to adaptive modifications along with cyclic changes in spatial behavior. In course of seasonal dynamics, strong positive correlation was found between hippocampus mass, home range size, and mobility of small mammals. Recently, first facts demonstrating seasonal changes of hippocampus and spatial behaviour (in connection with food-storing and brood parasitism) were found in birds. A lot of facts obtained for different taxonomical groups shows parallel seasonal changes in spatial behaviour and morphology of brain region functionally related to such behaviour. Thus, in adult birds and mammals, not only behaviour but also brain structure is phenotypically flexible in response to seasonally changing environment. Morphophysiological mechanisms of hippocampus seasonal changes are also discussed.  相似文献   

20.
The incidence and degree of infestation of the Bank vole, Clethrionomys glareolus , the Skomer vole, C. skomerensis , the Common shrew, Sorex araneus and the Pygmy shrew, S. minutus have been studied from a rough grassland and woodland area, Aberystwyth and from Skomer Island in Wales. In addition, small numbers of the Short-tailed vole, Microtus agrestis and the Water shrew, Neomys fodiens were examined for helminth parasites, when they became available. Seven new host records and six new British records are listed. The number of species of helminths in shrews, which consisted largely of digeneans and cestodes, was greater than that in voles. This is undoubtedly linked with differences in the feeding habits of the two hosts.
In Aberystwyth, where the composition of the helminth fauna was found to be more varied than that from Skomer Island, one species of nematode showed evidence of seasonal variation in the degree of infestation of Clethrionomys glareolus and four species, one digenean, two cestodes and one acantocephalan in Sorex araneus. The factors affecting this seasonal fluctuation in parasite numbers are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号