首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Threonine dehydratase (TD; EC.4.2.1.16) is a key enzyme involved in the biosynthesis of isoleucine. Inhibition of TD by isoleucine regulates the flow of carbon to isoleucine. We have identified two different forms of TD in tomato (Lycopersicon esculentum) leaves. One form, present predominantly in younger leaves, is inhibited by isoleucine. The other form of TD, present primarily in older leaves, is insensitive to inhibition by isoleucine. Expression of the latter enzyme increases as the leaf ages and the highest enzyme activity is present in the old, chlorotic leaves. The specific activity of the enzyme present in older leaves is much higher than the one present in younger leaves. Both forms can use threonine and serine as substrates. Whereas TD from the older leaves had the same Km (0.25 mM) for both substrates, the enzyme from the young leaves preferred threonine (Km = 0.25 mM) over serine (Km = 1.7 mM). The molecular masses of TD from the young and the old leaves were 370,000 and 200,000 D, respectively. High levels of the isoleucine-insensitive form of threonine dehydratase in the older leaves suggests an important role of threonine dehydratase in nitrogen remobilization in senescing leaves.  相似文献   

3.
Liver threonine dehydratase and histidase activities of rats fed on a threonine and a histidine imbalanced diets respectively, were measured, each of which was the degradation enzyme of the most limiting amino acid for rats on each imbalanced diet. Rats of the imbalanced groups initially lost their body weight, and began to grow again after a few days. Threonine dehydratase activity decreased by changing from stock diet to the experimental diets, and no difference was observed among the control and the imbalanced groups. Histidase activity decreased gradually on the control diet, but, the enzyme activity of the histidine imbalanced group was maintained at the higher level. The inconsistency among the enzyme activities and growth showed that neither the increase of threonine dehydratase activity in threonine imbalance nor that of histidase activity in histidine imbalance would be the main cause of the imbalance.  相似文献   

4.
The effect of cyclic 3',5'-AMP and supplemental dietary glycine upon de novo synthesis of serine metabolic enzymes in chick livers were examined. Chicks fed crystalline amino acid diets containing 2% glycine had approximately twofold the activity in liver for 3-phosphoglycerate dehydrogenase and phosphoserine phosphatase compared to liver tissue from chicks fed diets lacking in dietary glycine. Chicks subjected to daily intraperitoneal injections of cyclic 3',5'-AMP and fed diets containing no dietary glycine contained biosynthetic enzyme activity similar to glycine-fed chicks suggesting a correlation between glycine and cyclic AMP for serine enzyme induction. The elevated enzyme activity in liver of chicks fed dietary glycine or injected with cyclic AMP was inhibited when chicks were also injected with actinomycin D indicating de novo synthesis of 3-phosphoglycerate dehydrogenase and phosphoserine phosphatase. Dietary glycine or cyclic AMP, however, did not change serine dehydratase and glycerate dehydrogenase activities in chick liver.  相似文献   

5.
L-Threonine dehydratase preparations were isolated from liver of intact, treated with hydrocortisone and adrenalectomized rats. These preparations had different properties in stability, sensitivity to proteases and kinetic patterns. The preparations possessed also serine dehydratase activity, and the ratio threonine: serine activities was modified during the procedure of enzyme purification. It appears that the hormones affect not only the amount of enzyme proteins, but the qualitative properties of these proteins.  相似文献   

6.
Nagao K  Bannai M  Seki S  Mori M  Takahashi M 《Amino acids》2009,36(3):555-562
It is known that plasma serine and threonine concentrations are elevated in rats chronically fed an essential amino acid deficient diet, but the underlying mechanisms including related gene expressions or serine and threonine concentrations in liver remained to be elucidated. We fed rats lysine or valine deficient diet for 4 weeks and examined the mRNA expressions of serine synthesising (3-phosphoglycerate dehydrogenase, PHGDH) and serine/threonine degrading enzymes (serine dehydratase, SDS) in the liver. Dietary deficiency induced marked elevation of hepatic serine and threonine levels associated with enhancement of PHGDH mRNA expression and repression of SDS mRNA expression. Increases in plasma serine and threonine levels due to essential amino acid deficiency in diet were caused by marked increases in hepatic serine and threonine levels. Proteolytic responses to the amino acid deficiency may be lessened by storing amino radicals as serine and inducing anorexia through elevation of threonine.  相似文献   

7.
Akagi S  Sato K  Ohmori S 《Amino acids》2004,26(3):235-242
Summary. In general, threonine is metabolized by reaction catalyzed by threonine-3-dehydrogenase (TDH), threonine dehydratase (TH) or threonine aldolase (TA). The activities of these three enzymes were compared in the liver of Japanese quails and rats. The animals were fed a standard or threonine rich-diet, or fasted for 3 days. The specific activity of TDH in the liver from quail fed a standard diet was 11 times higher than that in the liver from rats fed a standard diet. The TDH activities in the livers of the fasting and 5% threonine-rich diet groups of quail were 3 and 2 times higher than those in the livers from quail fed the standard diet, respectively. The TH activity in the liver of rats fed a standard diet was 14 times higher than that in the liver of quail fed a standard diet. The TH activity in the rat liver after fasting was 2.3 times higher than that of the standard diet control. The activity of TA in the livers of rat and quail were so low that its role in threonine metabolism in both animals seemed to be negligible. These results suggest that threonine is a ketogenic amino acid in the quail liver, while it is a glucogenic in the rat liver.  相似文献   

8.
9.
Serine hydroxymethyltransferase, a pyridoxal phosphate-dependent enzyme, catalyses the interconversion of serine and glycine, both of which are major sources of one-carbon units necessary for the synthesis of purine, thymidylate, methionine, and so on. Threonine aldolase catalyzes the pyridoxal phosphate-dependent, reversible reaction between threonine and acetaldehyde plus glycine. No extensive studies have been carried out on threonine aldolase in animal tissues, and it has long been believed that serine hydroxymethyltransferase and threonine aldolase are the same, i.e. one entity. This is based on the finding that rabbit liver serine hydroxymethyltransferase possesses some threonine aldolase activity. Recently, however, many kinds of threonine aldolase and corresponding genes were isolated from micro-organisms, and these enzymes were shown to be distinct from serine hydroxymethyltransferase. The experiments with isolated hepatocytes and cell-free extracts from various animals revealed that threonine is degraded mainly through the pathway initiated by threonine 3-dehydrogenase, and there is little or no contribution by threonine aldolase. Thus, although serine hydroxymethyltransferase from some mammalian livers exhibits a low threonine aldolase activity, the two enzymes are distinct from each other and mammals lack the "genuine" threonine aldolase.  相似文献   

10.
By administering 2 mg/day of cortisone acetate to adrenalectomized rats, the hepatic threonine dehydratase activity of these rats increased 5 times as much as that of the control. By administering 5 IU/day of ACTH to hypophysectomized rats, both the hepatic threonine dehydratase activity and the adrenal glucose-6-phosphate dehydrogenase activity increased 3 times and 7 times as much as that of the control group, respectively. The effects of excess feeding of lysine or threonine on the increase of the dehydratase activity by the adminitration of cortisone to the adrenalectomized rats and the administration of ACTH to the hypophysetomized rats were negative. When the intact rats were fed on lysine and/or threonine excess diet, the amount of glucocorticoid secretion as measured by the adrenal glucose-6-phosphate dehydrogenase activity increased and the hepatic threonine dehydratase activity increased accordingly. A linear relationship was found between these two activities and no significant deviation from the relationship due to the difference in diet composition was observed. A mechanism was proposed, based on these results, explaining the fact that the hepatic threonine dehydratase activity increased when rats were fed on lysine or threonine excess diet.  相似文献   

11.
The specific activity of inducible biodegradative threonine dehydratase (EC 4.2.1.16) in Escherichia coli K-12 increased significantly when the standard tryptone-yeast extract medium or a synthetic mixture of 18 L-amino acids was supplemented with 10 mM KNO3 or 50 mM fumarate and with 4 mM cyclic AMP. In absolute terms, almost four times as much enzyme was produced in the amino acid medium as in the tryptone-yeast extract medium. Enzyme induction in the amino acid medium was sensitive to catabolite repression by glucose, gluconate, glycerol, and pyruvate. An analysis of amino acid requirements for enzyme induction showed that a combination of only four amino acids, threonine, serine, valine, and isoleucine, produced high levels of threonine dehydratase provided that both fumarate and cyclic AMP were present. Immunochemical data revealed that the enzyme synthesized in the presence of these four amino acids was indistinguishable from that produced in the tryptone-yeast extract or the medium with 18 amino acids. We interpret these results to mean that not the amino acids themselves but some metabolites derived anaerobically in reactions involving an electron acceptor may function as putative regulatory molecule(s) in the anaerobic induction of this enzyme.  相似文献   

12.
Administration of glucagon to rats fed a protein-free diet caused a significant induction of the liver enzyme, serine dehydratase. This effect of glucagon is inhibited by the concomitant administration of fluoroorotic acid. This inhibition was enhanced by pretreatment with glucosamine or galactosamine, probably through depletion of the intracellular uridine pools. Although less than a doubling of enzyme activity was observed after glucagon plus fluoroorotic acid administration, the amount of protein precipitable by antisera specifically reactive against serine dehydratase increased 4.5 times. Ouchterlony double-diffusion analysis showed a completely cross-reacting single precipitin band from liver extracts of untreated animals and rats treated with the analog. Analysis of the antigen-antibody complex by Na dodecyl sulfate-gel electrophoresis indicated that a single protein was being immunochemically precipitated from both the glucagon- and glucagon plus fluoroorotic acid-treated rats. In the latter, the precipitated protein had a molecular weight similar to purified serine dehydratase. These results are consistent with the concept that the incorporation of fluoroorotic acid into mRNA results in the synthesis of a protein with characteristics similar to authentic serine dehydratase but without normal enzymatic activity. Other possible mechanisms to explain the production of this abnormal protein are discussed.  相似文献   

13.
The principal energy-yielding reactions of the strict anaerobe Peptococcus prévotii comprised the fermentation of l-serine and l-threonine via the enzymes threonine dehydratase, thioclastic enzyme, phosphotransacetylase and acetate kinase.Threonine dehydratase was purified 700-fold and shown to require pyridoxal 5-phosphate as co-enzyme, and a reducing agent for optimum activity. The ratio of threonine and serine dehydratase activities was unaltered during purification. The optimum pH was 8.5 to 9.5 and isoleucine did not inhibit.Lineweaver-Burk plots were linear at l-threonine concentrations above 1.35 mM and the K m for threonine was 2.5 mM and for serine 29 mM. Below this concentration co-operativity occurred which was not nullified by individual adenine nucleotides: Hill plots were biphasic.However, the enzyme was controlled by the adenylate energy charge in a novel manner; only at very low threonine concentrations (<1 mM) was control manifest, when a high energy charge inhibited and a low energy charge stimulated activity.During starvation for 33 hrs in phosphate buffer, pH 6.8, viability fell to zero but, of the enzymes of the energy-generating sequence, only the total units and specific activity of threonine dehydratase decreased (by 35%), which was insufficient to explain the loss of ability to generate ATP.  相似文献   

14.
Tryptophanase from Bacillus alvei also possesses serine dehydratase activity. A comparison of this enzyme with l-serine dehydratase [l-serine hydro-lyase (deaminating), EC 4.2.1.13] in toluene-treated whole cell preparations of the organism was undertaken. Tryptophanase is a constitutive enzyme in B. alvei. The dehydratase undergoes a repression-derepression-repression sequence as the l-serine level in the growth medium is increased from 0 to 0.1 m. Tryptophanase activity is decreased in organisms grown in medium containing glucose. Both enzymes are repressed in organisms grown in glycerol-containing medium. l-Serine dehydratase has a pH optimum of 7.5 in potassium phosphate buffer; tryptophanase functions optimally in this buffer at pH 8.2. Both enzymes lose activity in the presence of tris(hydroxymethyl)aminomethane buffer. Either K(+) or NH(4) (+) is required for full tryptophanase activity, but Na(+) is markedly inhibitory. These three cations are stimulatory to l-serine dehydratase activity. Both enzymes are subject to apparent substrate inhibition at high concentrations of their respective amino acids, but the inhibition of tryptophanase activity can be completely overcome by the removal of indole as it is formed. The dehydratase does not catalyze cleavage of d-serine, l-threonine, or alpha-substituted serine analogues at the concentrations tested. However, activity of the enzyme in cleaving l-serine is competitively inhibited by d-serine, indicating that the d-isomer can occupy an active site on the enzyme. The enzyme catalyzes cleavage of some beta-substituted serine analogues.  相似文献   

15.
The blocked amino-terminal residue of rat liver serine dehydratase was shown to be acetylalanine by analysis of an isolated amino-terminal peptide after digestion with acylamino acid-releasing enzyme. Digestion of the borohydride-reduced, carboxymethylated enzyme with lysyl endopeptidase yielded a single epsilon-N-pyridoxyllysine-containing peptide, whose sequence is Met-Asp-Ser-Ser-Gln-Pro-Ser-Gly-Ser-Phe-Lys(Pxy)-Ile-Arg-Gly- His-Leu-Cys(Cm)-Lys. This peptide comprises residues 30-49 of the cDNA-deduced amino acid sequence. The sequence of seven amino acids around the bound pyridoxal phosphate is highly conserved in serine dehydratase from rat liver, and threonine dehydratases from yeast and Escherichia coli.  相似文献   

16.
17.
Pyrobaculum islandicum is an anaerobic hyperthermophilic archaeon that is most active at 100 degrees C. A pyridoxal 5'-phosphate-dependent serine racemase called Srr was purified from the organism. The corresponding srr gene was cloned, and recombinant Srr was purified from Escherichia coli. It showed the highest racemase activity toward L-serine, followed by L-threonine, D-serine, and D-threonine. Like rodent and plant serine racemases, Srr is bifunctional, showing high L-serine/L-threonine dehydratase activity. The sequence of Srr is 87% similar to that of Pyrobaculum aerophilum IlvA (a putative threonine dehydratase) but less than 32% similar to any other serine racemases and threonine dehydratases. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration analyses revealed that Srr is a homotrimer of a 44,000-molecular-weight subunit. Both racemase and dehydratase activities were highest at 95 degrees C, while racemization and dehydration were maximum at pH 8.2 and 7.8, respectively. Unlike other, related Ilv enzymes, Srr showed no allosteric properties: neither of these enzymatic activities was affected by either L-amino acids (isoleucine and valine) or most of the metal ions. Only Fe2+ and Cu2+ caused 20 to 30% inhibition and 30 to 40% stimulation of both enzyme activities, respectively. ATP inhibited racemase activity by 10 to 20%. The Km and Vmax values of the racemase activity of Srr for L-serine were 185 mM and 20.1 micromol/min/mg, respectively, while the corresponding values of the dehydratase activity of L-serine were 2.2 mM and 80.4 micromol/min/mg, respectively.  相似文献   

18.
A cDNA clone containing sequences complementary to the mRNA cording for rat hepatic serine dehydratase was isolated to study the multihormonal regulation of this enzyme. Serine dehydratase mRNA was partially purified (50-fold enrichment, 8.2% of the total mRNA activity) from the liver of rats fed high protein diet by polysome immunoadsorption followed by oligo(dT)-cellulose column chromatography. This preparation was used as template for synthesis of cDNA. Double-stranded cDNA sequences were inserted into the plasmid pBR322 and cloned in Escherichia coli DH1. Of 860 transformants screened, 6 clones containing DNA complementary to serine dehydratase mRNA were identified by differential colony hybridization and hybrid-selected translation. The length of serine dehydratase mRNA was estimated to be 1,500 bases by Northern blot analysis. One cloned cDNA comprised about 1,000 base pairs, or 65% of the length of the mRNA. The amount of the mRNA was greatly increased in the liver of rats given high protein diet.  相似文献   

19.
Previous studies of serine dehydratase (EC 4.2.1.13) and ornithine aminotransferase (EC 2.6.1.13) adaptation in rat liver showed that in rats on a high protein diet, glucocorticoid administration increased serine dehydratase activity while simultaneously reducing the activity of ornithine aminotransferase. The present study examines the role of enzyme synthesis in the expression of these and other dissimilar adaptive characteristics of the two enzymes. Both enzymes were purified to crystallinity and used to prepare specific antibodies. Changes in the rate of synthesis of each enzyme during adaptation were then measured immunochemically. In rats fed ad libitum, the synthetic rates for both enzymes exhibited circadian rhythm, although enzyme levels remained relatively constant. The circadian cycle for ornithine aminotransferase synthesis was in phase with the cycles for body weight and relative liver weight (maxima at 9 a.m., minima at 9 p.m.) but was approximately 12 hours out of phase with the cycle for serine dehydratase synthesis. 9alpha-Fluoro-11beta, 21-dihydroxy-16alpha, 17alpha-isopted at 9 a.m., increased serine dehydratase synthesis and simultaneously decreased the synthesis of ornithine aminotransferase. When triamcinolone was injected at 9 p.m., however, serine dehydratase synthesis was not stimulated, although the reduction of ornithine aminotransferase synthesis was still produced. These results suggest that: (a) circadian cycling of synthesis may be a general phenomenon in enzyme regulation even though for enzymes with relatively long half-lives, such cycling may not be reflected as fluctuations in enzyme levels; (b) such circadian rhythmicity may also involve cyclic changes in the responsiveness of the enzyme-forming system to regulatory stimuli; (c) whereas the adaptive behavior of serine dehydratase typifies that of amino acid-catabolizing enzymes in general, the responses of ornithine aminotransferase denote a functional association of this enzyme with anabolic processes. On this basis, the possibility that ornithine aminotransferase plays a pivotal role in the regulation of urea cycle activity and nitrogen balance is discussed.  相似文献   

20.
In these studies the incorporation of 32P into proteins within subcellular fractions, obtained from rat white adipose tissue upon incubation in the presence of [gamma-32P]ATP, was investigated. A stable increase in the activity of protein serine(threonine) kinase in high-speed supernatant fractions was observed following treatment of intact tissue with insulin. Protein kinase activity associated with the plasma membrane fraction of cells was diminished in response to insulin, but the decrease was apparently insufficient to account for increases observed in corresponding supernatant fractions. A range of assay conditions was employed to characterize the insulin-stimulated protein serine(threonine) kinase in in supernatant fractions. The insulin-stimulated protein serine(threonine) kinase displays properties that indicate it is distinct from a number of well-characterized protein kinases, including those regulated by cAMP, calcium ions (in the presence or absence of calmodulin or mixtures of phosphatidylserine-diacylglycerol), polyamines, or heparin. There were no apparent effects of insulin on incorporation of 32P into added casein or histones II-S or III-S. The protein serine(threonine) kinase activity (or activities) described here displays properties that also appear to differ from the properties of previously described insulin-stimulated activities able to catalyze the phosphorylation of the ribosomal protein S6. The differences in properties may, in part, be explained by the use of different cell types, but may also indicate that treatment of cells with insulin leads to activation of more than one protein serine(threonine) kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号