首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 9.9-kilobase (kb) BamHI restriction endonuclease fragment encoding the catA and catBC gene clusters was selected from a gene bank of the Pseudomonas aeruginosa PAO1c chromosome. The catA, catB, and catC genes encode enzymes that catalyze consecutive reactions in the catechol branch of the beta-ketoadipate pathway: catA, catechol-1,2-dioxygenase (EC 1.13.11.1); catB, muconate lactonizing enzyme (EC 5.5.1.1); and catC, muconolactone isomerase (EC 5.3.3.4). A recombinant plasmid, pRO1783, which contains the 9.9-kb BamHI restriction fragment complemented P. aeruginosa mutants with lesions in the catA, catB, or catC gene; however, this fragment of chromosomal DNA did not contain any other catabolic genes which had been placed near the catA or catBC cluster based on cotransducibility of the loci. Restriction mapping, deletion subcloning, and complementation analysis showed that the order of the genes on the cloned chromosomal DNA fragment is catA, catB, catC. The catBC genes are tightly linked and are transcribed from a single promoter that is on the 5' side of the catB gene. The catA gene is approximately 3 kb from the catBC genes. The cloned P. aeruginosa catA, catB, and catC genes were expressed at basal levels in blocked mutants of Pseudomonas putida and did not exhibit an inducible response. These observations suggest positive regulation of the P. aeruginosa catA and catBC cluster, the absence of a positive regulatory element from pRO1783, and the inability of the P. putida regulatory gene product to induce expression of the P. aeruginosa catA, catB, and catC genes.  相似文献   

2.
Several mutant strains of Pseudomonas putida, selected on the basis of their inability to grow at the expense of benzoate, have been shown to be unable to form inducibly both muconate lactonizing enzyme and muconolactone isomerase. A secondary mutant strain derived from one of these pleiotropically negative strains forms these two enzymes and, in addition, catechol oxygenase in the absence of inducer. This constitutive mutant strain was used as a donor in transductionally mediated two-point crosses to determine the order of point mutations within the structural genes for muconate lactonizing enzyme and muconolactone isomerase (the catB and catC genes, respectively). The gene order conformed precisely with the one that has been established by deletion mapping.  相似文献   

3.
This report describes the isolation and preliminary characterization of a 5.0-kilobase-pair (kbp) EcoRI DNA restriction fragment carrying the catBCDE genes from Acinetobacter calcoaceticus. The respective genes encode enzymes that catalyze four consecutive reactions in the catechol branch of the beta-ketoadipate pathway: catB, muconate lactonizing enzyme (EC 5.5.1.1); catC, muconolactone isomerase (EC 5.3.3.4); catD, beta-ketoadipate enol-lactone hydrolase (EC 3.1.1.24); and catE, beta-ketoadipate succinyl-coenzyme A transferase (EC 2.8.3.6). In A. calcoaceticus, pcaDE genes encode products with the same enzyme activities as those encoded by the respective catDE genes. In Pseudomonas putida, the requirements for both catDE and pcaDE genes are met by a single set of genes, designated pcaDE. A P. putida mutant with a dysfunctional pcaE gene was used to select a recombinant pKT230 plasmid carrying the 5.0-kbp EcoRI restriction fragment containing the A. calcoaceticus catE structural gene. The recombinant plasmid, pAN1, complemented P. putida mutants with lesions in catB, catC, pcaD, and pcaE genes; the complemented activities were expressed constitutively in the recombinant P. putida strains. After introduction into Escherichia coli, the pAN1 plasmid expressed the activities constitutively but at much lower levels that those found in the P. putida transformants or in fully induced cultures of A. calcoaceticus or P. putida. When placed under the control of a lac promoter on a recombinant pUC13 plasmid in E. coli, the A. calcoaceticus restriction fragment expressed catBCDE activities at levels severalfold higher than those found in fully induced cultures of A. calcoaceticus. Thus there is no translational barrier to expression of the A. calcoaceticus genes at high levels in E. coli. The genetic origin of the cloned catBCDE genes was demonstrated by the fact that the 5.0-kbp EcoRI restriction fragment hybridized with a corresponding fragment from wild-type A. calcoaceticus DNA. This fragment was missing in DNA from an A. calcoaceticus mutant in which the cat genes had been removed by deletion. The properties of the cloned fragment demonstrate physical linkage of the catBCDE genes and suggest that they are coordinately transcribed.  相似文献   

4.
The biochemical characterization of the muconate and the chloromuconate cycloisomerases of the chlorophenol-utilizing Rhodococcus erythropolis strain 1CP previously indicated that efficient chloromuconate conversion among the gram-positive bacteria might have evolved independently of that among gram-negative bacteria. Based on sequences of the N terminus and of tryptic peptides of the muconate cycloisomerase, a fragment of the corresponding gene has now been amplified and used as a probe for the cloning of catechol catabolic genes from R. erythropolis. The clone thus obtained expressed catechol 1,2-dioxygenase, muconate cycloisomerase, and muconolactone isomerase activities. Sequencing of the insert on the recombinant plasmid pRER1 revealed that the genes are transcribed in the order catA catB catC. Open reading frames downstream of catC may have a function in carbohydrate metabolism. The predicted protein sequence of the catechol 1,2-dioxygenase was identical to the one from Arthrobacter sp. strain mA3 in 59% of the positions. The chlorocatechol 1,2-dioxygenases and the chloromuconate cycloisomerases of gram-negative bacteria appear to be more closely related to the catechol 1,2-dioxygenases and muconate cycloisomerases of the gram-positive strains than to the corresponding enzymes of gram-negative bacteria.  相似文献   

5.
6.
Crystal structure of muconate lactonizing enzyme at 3 A resolution   总被引:7,自引:0,他引:7  
The crystal structure of muconate lactonizing enzyme has been solved at 3 A resolution, and an unambiguous alpha-carbon backbone chain trace made. The enzyme contains three domains; the central domain is a parallel-stranded alpha-beta barrel, which has previously been reported in six other enzymes, including triose phosphate isomerase and pyruvate kinase. One novel feature of this enzyme is that its alpha-beta barrel has only seven parallel alpha-helices around the central core of eight parallel beta-strands; all other known alpha-beta barrels contain eight such helices. The N-terminal (alpha + beta) and C-terminal domains cover the cleft where the eighth helix would be. The active site of muconate lactonizing enzyme has been found by locating the manganese ion that is essential for catalytic activity, and by binding and locating an inhibitor, alpha-ketoglutarate. The active site lies in a cleft between the N-terminal and barrel domains; when the active sites of muconate lactonizing enzyme and triose phosphate isomerase are superimposed, barrel-strand 1 of triose phosphate isomerase is aligned with barrel-strand 3 of muconate lactonizing enzyme. This implies that structurally homologous active-site residues in the two enzymes are carried on different parts of the primary sequence; the ancestral gene would had to have been transposed during its evolution to the modern proteins, which seems unlikely. Therefore, these two enzymes may be related by convergent, rather than divergent, evolution.  相似文献   

7.
Detoxification of hydrogen peroxide is a fundamental aspect of the cellular antioxidant responses in which catalases play a major role. Two differentially regulated catalase genes, catA and catB, have been studied in Aspergillus nidulans. Here we have characterized a third catalase gene, designated catC, which predicts a 475-amino-acid polypeptide containing a peroxisome-targeting signal. With a molecular mass of 54 kDa, CatC shows high similarity to other small-subunit monofunctional catalases and is most closely related to catalases from other fungi, Archaea, and animals. In contrast, the CatA (approximately 84 kDa) and CatB (approximately 79 kDa) enzymes belong to a family of large-subunit catalases, constituting a unique fungal and bacterial group. The catC gene displayed a relatively constant pattern of expression, not being induced by oxidative or other types of stress. Targeted disruption of catC eliminated a constitutive catalase activity not detected previously in zymogram gels. However, a catalase activity detected in catA catB mutant strains during late stationary phase was still present in catC and catABC null mutants, thus demonstrating the presence of a fourth catalase, here named catalase D (CatD). Neither catC nor catABC triple mutants showed any developmental defect, and both mutants grew as well as wild-type strains in H(2)O(2)-generating substrates, such as fatty acids, and/or purines as the sole carbon and nitrogen sources, respectively. CatD activity was induced during late stationary phase by glucose starvation, high temperature, and, to a lesser extent, H(2)O(2) treatment. The existence of at least four differentially regulated catalases indicates a large and regulated capability for H(2)O(2) detoxification in filamentous fungi.  相似文献   

8.
9.
A cold-sensitive mutant of Pseudomonas putida has been isolated which grows normally at 30 C but is unable to grow on mandelate as a source of carbon at 15 C. The mutation results in the inability of the strain to carry out the reaction catalyzed by cis,cis-muconate lactonizing enzyme at low temperature and must lie in the structural gene for that enzyme, because the mutant enzyme produced at 30 C shows altered thermal stability. The mutant enzyme is not intrinsically cold-labile, nor is it cold-labile at the moment of synthesis. The activity of the mutant enzyme is not inhibited at low temperature. Evidence is presented to establish that this mutation in the structural gene coding for cis,cis-muconate lactonizing enzyme results in the lack of expression of that gene at low temperature.  相似文献   

10.
11.
Salmonella typhimurium mutants, either devoid or glutamate dehydrogenase activity or having a thermolabile glutamate dehydrogenase protein, were used to identify the structural gene (gdhA) for this enzyme. Transductions showed that the mutations producing these phenotypes were linked to both the pncA and nit genes, placing the gdhA locus between 23 and 30 U on the S. typhimurium chromosome. Additional transductions with several Tn10 insertions established the gene order as pncA-gdhA-nit. Since few genetic markers exist in this region of the chromosome, Hfr strains were constructed to orient the pncA-gdhA-nit cluster with outside genes. Conjugation experiments provided evidence for the gene order pyrD-pncA-gdhA-nit-trp. To further characterize gdhA, we used Mu cts d1 (Apr lac) insertions in this gene to select numerous strains containing deletions with various endpoints. Transductions of these deletions with strains containing different gdh mutations and with a mutant having a thermolabile glutamate dehydrogenase protein permitted us to construct a deletion map of the gdhA region.  相似文献   

12.
We isolated the two LysR-type regulatory proteins CatR1 and CatR2, which regulate the expression of cat1 and cat2 gene clusters, respectively, required for catechol degradation in the bacterium Frateuria sp. ANA-18. In a gel mobility shift assay using CatR1 and the DNA fragment containing the catB1 promoter region, the formation of two complexes, complex 1-1 (C1-1) and complex 1-2 (C1-2), was observed in the presence of cis,cis-muconate. On the other hand, CatR2 and the DNA fragment containing the catB2 promoter region formed only complex 2-2 (C2-2) at a lower concentration of cis,cis-muconate than that at which C1-1 and C1-2 were formed. As the concentration of cis,cis-muconate decreased, the production of the muconate cycloisomerase isozyme MC II encoded by catB2 decreased as well as that of MC I encoded by catB1. However, the amount of MC II synthesized was larger than that of MC I at low concentrations. On the basis of these results, we concluded that the catB2 promoter was activated at low concentrations of cis,cis-muconate.  相似文献   

13.
Comparative Immunological Studies of Two Pseudomonas Enzymes   总被引:23,自引:20,他引:3       下载免费PDF全文
Crystalline preparations of muconate lactonizing enzyme and muconolactone isomerase, two inducible enzymes that catalyze successive steps in the catechol branch of the beta-ketoadipate pathway, were used to prepare antisera. Both enzymes were isolated from a strain of Pseudomonas putida biotype A. The antisera did not cross-react with enzymes of the same bacterial strain that catalyze the chemically analogous steps in the protocatechuate branch of the beta-ketoadipate pathway, carboxymuconate lactonizing enzyme and carboxymuconolactone decarboxylase. The antisera gave heterologous cross-reactions of varying intensities with the muconate lactonizing enzymes and muconolactone isomerases of P. putida biotype B, P. aeruginosa, P. stutzeri, and all biotypes of P. fluorescens, but did not cross-react with the isofunctional enzymes of P. acidovorans, of P. multivorans, and of two bacterial species that belong to other genera. The evolutionary and taxonomic implications of the findings are discussed.  相似文献   

14.
Crystal structure of muconate lactonizing enzyme at 6.5 A resolution   总被引:2,自引:0,他引:2  
We have obtained crystals of Pseudomonas putida muconate lactonizing enzyme. They diffract to better than 2.4 A resolution and have two monomers in the asymmetric unit, related by a non-crystallographic 2-fold axis. The cell dimensions are 139.3 A X 139.3 A X 84.1 A, and the space group is I4. The electron density map at 6.5 A resolution shows that the enzyme is an octamer with D4 symmetry.  相似文献   

15.
Muconate lactonizing enzymes (MLEs) convert cis,cis-muconates to muconolactones in microbes as part of the beta-ketoadipate pathway; some also dehalogenate muconate derivatives of xenobiotic haloaromatics. There are three different MLE classes unrelated by evolution. We present the X-ray structure of a eukaryotic MLE, Neurospora crassa 3-carboxy-cis,cis-muconate lactonizing enzyme (NcCMLE) at 2.5 A resolution, with a seven-bladed beta propeller fold. It is related neither to bacterial MLEs nor to other beta propeller enzymes, but is structurally similar to the G protein beta subunit. It reveals a novel metal-independent cycloisomerase motif unlike the bacterial metal cofactor MLEs. Together, the bacterial MLEs and NcCMLE structures comprise a striking structural example of functional convergence in enzymes for 1,2-addition-elimination of carboxylic acids. NcCMLE and bacterial MLEs may enhance the reaction rate differently: the former by electrophilic catalysis and the latter by electrostatic stabilization of the enolate.  相似文献   

16.
17.
18.
The gene (pcaB) for 3-carboxymuconate lactonizing enzyme (CMLE; 3-carboxymuconate cycloisomerase; EC 5.5.1.2) from Pseudomonas putida has been cloned into pMG27NS, a temperature-sensitive expression vector, and expressed in Escherichia coli N4830. The specific activity and kinetic parameters of the recombinant CMLE were comparable to those previously reported. A comparison of the deduced amino acid sequence of CMLE with sequences available in the PIR and Genbank databases revealed that CMLE has highly significant sequence homology to the class II fumarase family, particularly to adenylosuccinate lyase from Bacillus subtilis. CMLE has no significant homology to muconate lactonizing enzyme (MLE) from P. putida, its sister enzyme in the beta-ketoadipate pathway. These findings fully corroborate a prediction made by us on the basis of mechanistic and stereochemical analyses of CMLE and MLE [Chari, R. V. J., Whitman, C. P., Kozarich, J. W., Ngai, K.-L., & Ornston, L. N. (1987) J. Am. Chem. Soc. 109, 5514-5519] and suggest that CMLE and MLE were recruited into this specialized pathway from two different enzyme families.  相似文献   

19.
Genetic studies of the hemB gene in Escherichia coli have resulted in the recovery of both stable and unstable mutant strains. The stable strains have been shown to result from large deletions. This study demonstrates that unstable strains result from the insertion of transposable element IS2 primarily into the 5' region of the structural gene; the instability results from precise excision of the element, producing strains with both high and low frequencies of reversion. This first report of IS2 insertion into hemB suggests that this gene may be a preferred target for insertion of this transposable element.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号