首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tuberculosis remains a major global threat to human health, with 8 million cases of clinical tuberculosis and 3 million deaths annually[1] (www.stoptb.org/tuberculosis/#facts.html). Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis. The emergence of multi-drug resistant strains of Mtb and co-infection with the human immunodeficiency virus (HIV) have further emphasized the need for effective prevention and treatment of tuberculosis. Mtb is a facultative intracellular pat…  相似文献   

2.
Xie JP  Li Y  Yue J  Xu YZ  Liang L  Hu CH  Yu SQ  Wang HH 《生理学报》2003,55(1):14-18
为研究人巨噬细胞的离子通道及其调控元件是否参与了抗结核分枝杆菌感染免疫,利用表达谱芯片技术研究细菌感染后主巨噬细胞基因的表达情况,在全局表达谱分析的基础上,重点分析了离子通道及其调控元件的表达,并比较无毒株和临床分离有毒株在诱导离子通道及其调控元件表达方面的差异。结果表明,细菌感染影响离子通道及其调控元件基因的表达,涉及的离子通道包括钾通道、钠通道、氯通道、钙通道,差异表达的调控元件包括G蛋白、G蛋白偶联受体、蛋白质激酶和磷酸化酶;临床株感染影响的离子通道及其调控元件较无毒株广泛和丰富。这些观察结果提示,离子通道及其调控元件参与了宿主细胞对感染细菌的免疫应答,有关离子通道及其调控元件在抗结核免疫中的作用有待进一步研究。芯片研究的结果为将来的研究提供了线索。  相似文献   

3.
Oxidized bases are removed from DNA of Escherichia coli by enzymes formamidopyrimidine DNA glycosylase (Eco-Fpg) and endonuclease VIII (Eco-Nei) of the same structural family Fpg/Nei. New homologs of these enzymes not characterized earlier have been found in genomes of Actinobacteria. We have cloned and expressed two paralogs (Mtu-Nei2 and Mtu-Fpg2) from 36KAZ and KHA94 isolates of Mycobacterium tuberculosis and studied their ability to participate in DNA repair. Under heterologous expression in E. coli, Mtu-Nei2 decreased the rate of spontaneous mutagenesis in the rpoB gene, whereas Mtu-Fpg2 moderately increased it, possibly due to absence of residues crucially important for catalysis in this protein. Mtu-Nei2 was highly active toward double-stranded DNA substrates containing dihydrouracil residues and apurine-apyrimidine sites and was less efficient in cleavage of substrates containing 8-oxoguanine and uracil residues. These lesions, as well as 8-oxoadenine residues, were also recognized and removed by the enzyme from single-stranded DNA. Fpg and Nei homologs from M. tuberculosis can play an important role in protection of bacteria against genotoxic stress caused by oxidative burst in macrophages.  相似文献   

4.
A model for studying mycobacterial L-form formation in vivo was established to demonstrate the ability of M. tuberculosis to behave as a drug-tolerant L-form persister. Rats were infected by intranasal (i.n.) and intraperitoneal (i.p.) routes with 1×108 cells/ml of M. tuberculosis. At weekly intervals during a period of five weeks, samples from lung, spleen, liver, kidney, mesenterial and inguinal lymph nodes, broncho-alveolar and peritoneal lavage liquid were plated simultaneously on Löwenstein-Jensen (LJ) medium or inoculated into specially supplemented for L-forms Dubos broth (drug-free and drug-containing variants). The use of liquid media enabled isolation of mycobacterial L-form cultures during the whole period of experiment including the last two weeks, when tubercle bacilli were not isolated on LJ medium. An unique feature of mycobacterial L-forms was their ability to grow faster than the classical tubercle bacilli. Isolation and growth of L-form cultures in primary drug-containing media demonstrated their drug-tolerant properties. Electron microscopy of liquid media isolates showed that they consisted of morphologically heterogenous populations of membrane-bound and of variable sized L-bodies that completely lack cell walls. The identity of the isolated non-acid fast and morphologically modified L-forms as M. tuberculosis was verified by specific spoligotyping test. The results contribute to special aspects concerning the importance of mycobacterial L-form phenomenon for persistence and latency in tuberculosis, phenotypic drug tolerance, as well as for diagnosis of difficult to identify morphologically changed tubercle bacilli which are often mistaken for contaminants.  相似文献   

5.
6.
Mycobacterium tuberculosis, the causative agent of human tuberculosis, synthesizes and secretes siderophores in order to compete for iron (an essential micronutrient). Successful iron acquisition allows M. tuberculosis to survive and proliferate under the iron-deficient conditions encountered in the host. To examine structural determinants important for iron siderophore transport in this pathogen, the citrate-based siderophores petrobactin, acinetoferrin and various acinetoferrin homologs were synthesized and used as iron transport probes. Mutant strains of M. tuberculosis deficient in native siderophore synthesis or transport were utilized to better understand the mechanisms involved in iron delivery via the synthetic siderophores. Acinetoferrin and its derivatives, especially those containing a cyclic imide group, were able to deliver iron or gallium into M. tuberculosis which promoted or inhibited, respectively, the growth of this pathogen. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
8.
Three wild red-legged partridges (Alectoris rufa) from intensively managed hunting areas in Spain were received for necropsy. They showed granulomatous lesions in different parts of the body, mainly in liver and spleen. Microscope examination of the granulomas showed central caseous necrosis and large amounts of acid-fast bacilli, surrounded by epitheloid cells, giant cells, and lymphocytes. Attempts to isolate and culture the bacillus in Colestsos medium were unsuccessful, but the polymerase chain reaction technique revealed the presence of microorganisms belonging to the Mycobacterium avium complex in one of the partridges. This is the first report of avian tuberculosis in free-living red-legged partridges.  相似文献   

9.
A cassava cDNA microarray based on a large cassava EST database was constructed and used to study the incompatible interaction between cassava and Xanthomonas axonopodis pv. manihotis (Xam) strain CIO151. For microarray construction, 5700 clones from the cassava unigene set were amplified by polymerase chain reaction (PCR) and printed on glass slides. Microarray hybridization was performed using cDNA from cassava plants (resistant variety MBra685) collected at 12, 24, 48 h and 7 and 15 days post-infection as treatment and cDNA from mock-inoculated plants as control. A total of 199 genes were found to be differentially expressed (126 up-regulated and 73 down-regulated). A greater proportion of differentially-expressed genes was observed at 7 days after inoculation. Expression profiling and cluster analyses indicate that, in response to inoculation with Xam, cassava induces dozens of genes, including principally those involved in oxidative burst, protein degradation and pathogenesis-related (PR) genes. In contrast, genes encoding proteins that are involved in photosynthesis and metabolism were down regulated. In addition, various other genes encoding proteins with unknown function or showing no similarity to other proteins were also induced. Quantitative real time PCR experiments confirmed the reliability of our microarray data. In addition we showed that some genes are induced more rapidly in the resistant than in the susceptible cultivar.These authors made equal contributions to this work.  相似文献   

10.
11.
12.
13.
Arylamine N-acetyltansferase (NAT) from Mycobacterium tuberculosis (TBNAT) is a potential drug target for anti-tubercular therapy. Recombinant TBNAT is much less soluble and is produced in lower yields than the closely related NAT from Mycobacterium marinum (MMNAT). In order to explore MMNAT as a model for TBNAT in drug discovery, we compare the two mycobacterial NAT enzymes. Two site-directed mutants of MMNAT have been prepared and characterised: MMNAT71, Tyr → Phe and MMNAT209, Met → Thr, in which residues within 6 Å of the active-site cysteine have been replaced with the corresponding residue from TBNAT. Two chimeric proteins have also been produced in which the third domain of MMNAT has been replaced by the third domain of TBNAT and vice versa. The activity profile of the chimeric proteins suggests a role for the third domain in the evolutionary divergence of NAT between these closely related mycobacterial species.  相似文献   

14.
Most of isoniazid-resistant Mycobacterium tuberculosis evolved due to mutation in the katG gene encoding catalase-peroxidase. A set of new mutations, namely T1310C, G1388T, G1481A, T1553C, and A1660G, which correspond to amino acid substitutions of L437P, R463L, G494D, I518T, and K554E, in the katG gene of the L10 clinical isolate M. tuberculosis was identified. The wild-type and mutant KatG proteins were expressed in Escherichia coli BL21(DE3) as a protein of 80 kDa based on sodium dodecyl sulphate-polyacrylamide gel electrophoresis analysis. The mutant KatG protein exhibited catalase and peroxidase activities of 4.6% and 24.8% toward its wild type, respectively, and retained 19.4% isoniazid oxidation activity. The structure modelling study revealed that these C-terminal mutations might have induced formation of a new turn, perturbing the active site environment and also generated new intramolecular interactions, which could be unfavourable for the enzyme activities.  相似文献   

15.
To understand how Mycobacterium tuberculosis (M. tuberculosis) could survive in human lung, Genomic expression library of M. tuberculosis in Escherichia coli (E. coli) had been prepared. Taking advantage of the genetic simplicity of E. coli and the functional conservation of some prokaryote proteins, a surfactant stress resistant gene Rv0621 was identified, which encodes a 37 kDa putative membrane protein. The E. coli colony with the partial Rv0621 gene insert, named S1, was able to grow in medium containing 0.4% sodium dodecyl sulfate, while the strain carried empty vector was unable to grow. The full length of the Rv0621 gene was then cloned into plasmid pET32a (+) expressed in E. coli BL21 (DE3). Using gas chromatographic–mass spectrometric (GC–MS), the fatty acid composition of the E. coli BL21 (DE3) carrying Rv0621–pET32a (+) and the E. coli BL21 (DE3) carrying empty vector pET32a (+) were compared. E. coli BL21 (DE3) carrying Rv0621–pET32a (+) contained more oleic acid. This suggests the gene may be involved in regulation of fatty acid synthesis and M. tuberculosis resistance to the surfactant defense of its host.  相似文献   

16.
The possibility of expression of genes encoding mycobacterial antigens in Francisella tularensis 15/10 vaccine strain cells has been shown for the first time. To obtain stable and effective expression of mycobacterial antigens in the F. tularensis cells, the plasmid vector pPMC1 and hybrid genes consisting of the leader part FL of the F. tularensis membrane protein FopA and structural moieties of the mature protein Ag85B or the fused protein Ag85B-ESAT-6 were constructed. Recombinant strains F. tularensis RVp17 and RVp18 expressing protective mycobacterial antigens in the fused proteins FL-Ag85B and FL-Ag85B-ESAT-6, respectively, were obtained. Expression of the protective mycobacterial antigens in F. tularensis was analyzed using specific antisera to the recombinant proteins Ag85-(His)6 and ESAT-6-(His)6 isolated from Escherichia coli producer strains created on the basis of the pET23b(+) and pET24b(+) vectors. The expression of heterologous protective antigens in F. tularensis 15/10 is promising for creation of live recombinant anti-tuberculosis vaccines on the basis of the tularemia vaccine strain.  相似文献   

17.
We have recently identified a tachykinin-related peptide (AmTRP) from the mushroom bodies (MBs) of the brain of the honeybee Apis mellifera L. by using direct matrix-assisted laser desorption/ionization with time-of-flight mass spectometry and have isolated its cDNA. Here, we have examined prepro-AmTRP gene expression in the honeybee brain by using in situ hybridization. The prepro-AmTRP gene is expressed predominantly in the MBs and in some neurons located in the optic and antennal lobes. cDNA microarray studies have revealed that AmTRP expression is enriched in the MBs compared with other brain regions. There is no difference in AmTRP-expressing cells among worker, queen, and drone brains, suggesting that the cell types that express the prepro-AmTRP gene do not change according to division of labor, sex, or caste. The unique expression pattern of the prepro-AmTRP gene suggests that AmTRPs function as neuromodulators in the MBs of the honeybee brain.This work was supported by a Grant-in-Aid from the Bio-oriented Technology Research Advancement Institution (BRAIN)  相似文献   

18.
The immune response to Mycobacterium tuberculosis (Mtb) infection is the formation of multicellular lesions, or granolomas, in the lung of the individual. However, the structure of the granulomas and the spatial distribution of the immune cells within is not well understood. In this paper we develop a mathematical model investigating the early and initial immune response to Mtb. The model consists of coupled reaction-diffusion-advection partial differential equations governing the dynamics of the relevant macrophage and bacteria populations and a bacteria-produced chemokine. Our novel application of mathematical concepts of internal states and internal velocity allows us to begin to study this unique immunological structure. Volume changes resulting from proliferation and death terms generate a velocity field by which all cells are transported within the forming granuloma. We present numerical results for two distinct infection outcomes: controlled and uncontrolled granuloma growth. Using a simplified model we are able to analytically determine conditions under which the bacteria population decreases, representing early clearance of infection, or grows, representing the initial stages of granuloma formation.  相似文献   

19.
Complex biological systems exhibit a property of robustness at all levels of organization. Through different mechanisms, the system tries to sustain stress such as due to starvation or drug exposure. To explore whether reconfiguration of the metabolic networks is used as a means to achieve robustness, we have studied possible metabolic adjustments in Mtb upon exposure to isoniazid (INH), a front-line clinical drug. The redundancy in the genome of M. tuberculosis (Mtb) makes it an attractive system to explore if alternate routes of metabolism exist in the bacterium. While the mechanism of action of INH is well studied, its effect on the overall metabolism is not well characterized. Using flux balance analysis, inhibiting the fluxes flowing through the reactions catalyzed by Rv1484, the target of INH, significantly changes the overall flux profiles. At the pathway level, activation or inactivation of certain pathways distant from the target pathway, are seen. Metabolites such as NADPH are shown to reduce drastically, while fatty acids tend to accumulate. The overall biomass also decreases with increasing inhibition levels. Inhibition studies, pathway level clustering and comparison of the flux profiles with the gene expression data indicate the activation of folate metabolism, ubiquinone metabolism, and metabolism of certain amino acids. This analysis provides insights useful for target identification and designing strategies for combination therapy. Insights gained about the role of individual components of a system and their interactions will also provide a basis for reconstruction of whole systems through synthetic biology approaches.  相似文献   

20.
Zhou Y  Xin Y  Sha S  Ma Y 《Archives of microbiology》2011,193(10):751-757
The UDP-N-acetylglucosamine (UDP-GlcNAc) is present as one of the glycosyl donors for disaccharide linker (d-N-GlcNAc-l-rhamnose) and the precursor of peptidoglycan in mycobacteria. The bifunctional enzyme GlmU involves in the last two sequential steps of UDP-GlcNAc synthetic pathway. Glucosamine-1-phosphate acetyltransferase catalyzes the formation of N-acetylglucosamine-1-phosphate (GlcNAc-1-P) from glucosamine-1-phosphate (GlcN-1-P) and acetyl coenzyme A (Acetyl CoA), and N-acetylglucosamine-1-phosphate uridyltransferase catalyzes the synthesis of UDP-GlcNAc from GlcNAc-1-P and UTP. The previous studies demonstrating the essentiality of GlmU to mycobacterial survival supported GlmU as a novel and potential target for TB drugs. In this work, two accurate and simple colorimetric assays based on 96-well microtiter plate were developed to measure the kinetic properties of bifunctional GlmU including initial velocity, optimal temperature, optimal pH, the effect of Mg2+, and the kinetic parameters. Both of the colorimetric assays for bifunctional GlmU enzyme activities and the kinetic properties will facilitate high-throughput screening of GlmU inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号