首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mutant devoid of cytochrome c-554 (CT0075) in Chlorobium tepidum (syn. Chlorobaculum tepidum) exhibited a decreased growth rate but normal growth yield when compared to the wild type. From quantitative determinations of sulfur compounds in media, the mutant was found to oxidize thiosulfate more slowly than the wild type but completely to sulfate as the wild type. This indicates that cytochrome c-554 would increase the rate of thiosulfate oxidation by serving as an efficient electron carrier but is not indispensable for thiosulfate oxidation itself. On the other hand, mutants in which a portion of the soxB gene (CT1021) was replaced with the aacC1 cassette did not grow at all in a medium containing only thiosulfate as an electron source. They exhibited partial growth yields in media containing only sulfide when compared to the wild type. This indicates that SoxB is not only essential for thiosulfate oxidation but also responsible for sulfide oxidation. An alternative electron carrier or electron transfer path would thus be operating between the Sox system and the reaction center in the mutant devoid of cytochrome c-554. Cytochrome c-554 might function in any other pathway(s) as well as the thiosulfate oxidation one, since even green sulfur bacteria that cannot oxidize thiosulfate contain a cycA gene encoding this electron carrier.  相似文献   

2.
3.
Observations in enrichment cultures of ferric iron-reducing bacteria indicated that ferrihydrite was reduced to ferrous iron minerals via sulfur cycling with sulfide as the reductant. Ferric iron reduction via sulfur cycling was investigated in more detail with Sulfurospirillum deleyianum, which can utilize sulfur or thiosulfate as an electron acceptor. In the presence of cysteine (0.5 or 2 mM) as the sole sulfur source, no (microbial) reduction of ferrihydrite or ferric citrate was observed, indicating that S. deleyianum is unable to use ferric iron as an immediate electron acceptor. However, with thiosulfate at a low concentration (0.05 mM), growth with ferrihydrite (6 mM) was possible and sulfur was cycled up to 60 times. Also, spatially distant ferrihydrite in agar cultures was reduced via diffusible sulfur species. Due to the low concentrations of thiosulfate, S. deleyianum produced only small amounts of sulfide. Obviously, sulfide delivered electrons to ferrihydrite with no or only little precipitation of black iron sulfides. Ferrous iron and oxidized sulfur species were produced instead, and the latter served again as the electron acceptor. These oxidized sulfur species have not yet been identified. However, sulfate and sulfite cannot be major products of ferrihydrite-dependent sulfide oxidation, since neither compound can serve as an electron acceptor for S. deleyianum. Instead, sulfur (elemental S or polysulfides) and/or thiosulfate as oxidized products could complete a sulfur cycle-mediated reduction of ferrihydrite.  相似文献   

4.
5.
Bacterial strains CVO and FWKO B were isolated from produced brine at the Coleville oil field in Saskatchewan, Canada. Both strains are obligate chemolithotrophs, with hydrogen, formate, and sulfide serving as the only known energy sources for FWKO B, whereas sulfide and elemental sulfur are the only known electron donors for CVO. Neither strain uses thiosulfate as an energy source. Both strains are microaerophiles (1% O2). In addition, CVO grows by denitrification of nitrate or nitrite whereas FWKO B reduces nitrate only to nitrite. Elemental sulfur is the sole product of sulfide oxidation by FWKO B, while CVO produces either elemental sulfur or sulfate, depending on the initial concentration of sulfide. Both strains are capable of growth under strictly autotrophic conditions, but CVO uses acetate as well as CO2 as its sole carbon source. Neither strain reduces sulfate; however, FWKO B reduces sulfur and displays chemolithoautotrophic growth in the presence of elemental sulfur, hydrogen, and CO2. Both strains grow at temperatures between 5 and 40°C. CVO is capable of growth at NaCl concentrations as high as 7%. The present 16s rRNA analysis suggests that both strains are members of the epsilon subdivision of the division Proteobacteria, with CVO most closely related to Thiomicrospira denitrifcans and FWKO B most closely related to members of the genus Arcobacter. The isolation of these two novel chemolithotrophic sulfur bacteria from oil field brine suggests the presence of a subterranean sulfur cycle driven entirely by hydrogen, carbon dioxide, and nitrate.  相似文献   

6.
Chlorobaculum tepidum is an anaerobic green sulfur bacterium which oxidizes sulfide, elemental sulfur, and thiosulfate for photosynthetic growth. It can also oxidize sulfide to produce extracellular S0 globules, which can be further oxidized to sulfate and used as an electron donor. Here, we performed label-free quantitative proteomics on total cell lysates prepared from different metabolic states, including a sulfur production state (10 h post-incubation [PI]), the beginning of sulfur consumption (20 h PI), and the end of sulfur consumption (40 h PI), respectively. We observed an increased abundance of the sulfide:quinone oxidoreductase (Sqr) proteins in 10 h PI indicating a sulfur production state. The periplasmic thiosulfate-oxidizing Sox enzymes and the dissimilatory sulfite reductase (Dsr) subunits showed an increased abundance in 20 h PI, corresponding to the sulfur-consuming state. In addition, we found that the abundance of the heterodisulfide-reductase and the sulfhydrogenase operons was influenced by electron donor availability and may be associated with sulfur metabolism. Further, we isolated and analyzed the extracellular sulfur globules in the different metabolic states to study their morphology and the sulfur cluster composition, yielding 58 previously uncharacterized proteins in purified globules. Our results show that C. tepidum regulates the cellular levels of enzymes involved in sulfur metabolism in response to the availability of reduced sulfur compounds.  相似文献   

7.
Chlorobaculum (Cba) tepidum is a green sulfur bacterium that oxidizes sulfide, elemental sulfur, and thiosulfate for photosynthetic growth. As other anoxygenic green photosynthetic bacteria, Cba tepidum synthesizes bacteriochlorophylls for the assembly of a large light-harvesting antenna structure, the chlorosome. Chlorosomes are sac-like structures that are connected to the reaction centers in the cytoplasmic membrane through the BChl α-containing Fenna–Matthews–Olson protein. Most components of the photosynthetic machinery are known on a biophysical level, however, the structural integration of light harvesting with charge separation is still not fully understood. Despite over two decades of research, gaps in our understanding of cellular architecture exist. Here we present an in-depth analysis of the cellular architecture of the thermophilic photosynthetic green sulfur bacterium of Cba tepidum by cryo-electron tomography. We examined whole hydrated cells grown under different electron donor conditions. Our results reveal the distribution of chlorosomes in 3D in an unperturbed cell, connecting elements between chlorosomes and the cytoplasmic membrane and the distribution of reaction centers in the cytoplasmic membrane.  相似文献   

8.
Chemoautotrophic symbioses, in which endosymbiotic bacteria are the major source of organic carbon for the host, are found in marine habitats where sulfide and oxygen coexist. The purpose of this study was to determine the influence of pH, alternate sulfur sources, and electron acceptors on carbon fixation and to investigate which form(s) of inorganic carbon is taken up and fixed by the gamma-proteobacterial endosymbionts of the protobranch bivalve Solemya velum. Symbiont-enriched suspensions were generated by homogenization of S. velum gills, followed by velocity centrifugation to pellet the symbiont cells. Carbon fixation was measured by incubating the cells with 14C-labeled dissolved inorganic carbon. When oxygen was present, both sulfide and thiosulfate stimulated carbon fixation; however, elevated levels of either sulfide (>0.5 mM) or oxygen (1 mM) were inhibitory. In the absence of oxygen, nitrate did not enhance carbon fixation rates when sulfide was present. Symbionts fixed carbon most rapidly between pH 7.5 and 8.5. Under optimal pH, sulfide, and oxygen conditions, symbiont carbon fixation rates correlated with the concentrations of extracellular CO2 and not with HCO3 concentrations. The half-saturation constant for carbon fixation with respect to extracellular dissolved CO2 was 28 ± 3 μM, and the average maximal velocity was 50.8 ± 7.1 μmol min−1 g of protein−1. The reliance of S. velum symbionts on extracellular CO2 is consistent with their intracellular lifestyle, since HCO3 utilization would require protein-mediated transport across the bacteriocyte membrane, perisymbiont vacuole membrane, and symbiont outer and inner membranes. The use of CO2 may be a general trait shared with many symbioses with an intracellular chemoautotrophic partner.  相似文献   

9.
Chl. tepidum is a Gram-negative green-sulfur bacterium, which is strict by anaerobic and grows by utilizing sulfide or thiosulfate as an electron source. Blue native-polyacrylamide gel electrophoresis (BN-PAGE) is widely used for the analysis of oligomeric state and molecular mass non-dissociated protein complexes. In this study, a number of proteomic techniques were used to investigate the oligomeric state enzymes. In particular, the Chl. tepidum-soluble proteome was monitored under native condition by using BN-PAGE. The BN-PAGE protein complexes map was analyzed by MALDI-TOF MS after trypsin treatment and from 42 BN proteins bands, 62 different proteins were identified. Additionally, functional information regarding protein–protein interactions was assembled, by coupling 2-D BN-PAGE with MALDI-TOF MS. One-hundred and seventy gel bands were spotted, out of which 187 different proteins were identified. The identified proteins belong to various functional categories like energy metabolism, protein synthesis, amino acid biosynthesis, central intermediate metabolism, and biosynthesis of cofactors indicating the potential of the method for elucidation of functional proteomes.  相似文献   

10.
Iron(III) (oxyhydr)oxides can represent the dominant microbial electron acceptors under anoxic conditions in many aquatic environments, which makes understanding the mechanisms and processes regulating their dissolution and transformation particularly important. In a previous laboratory-based study, it has been shown that 0.05 mM thiosulfate can reduce 6 mM ferrihydrite indirectly via enzymatic reduction of thiosulfate to sulfide by the sulfur-reducing bacterium Sulfurospirillum deleyianum, followed by abiotic reduction of ferrihydrite coupled to reoxidation of sulfide. Thiosulfate, elemental sulfur, and polysulfides were proposed as reoxidized sulfur species functioning as electron shuttles. However, the exact electron transfer pathway remained unknown. Here, we present a detailed analysis of the sulfur species involved. Apart from thiosulfate, substoichiometric amounts of sulfite, tetrathionate, sulfide, or polysulfides also initiated ferrihydrite reduction. The portion of thiosulfate produced during abiotic ferrihydrite-dependent reoxidation of sulfide was about 10% of the total sulfur at maximum. The main abiotic oxidation product was elemental sulfur attached to the iron mineral surface, which indicates that direct contact between microorganisms and ferrihydrite is necessary to maintain the iron reduction process. Polysulfides were not detected in the liquid phase. Minor amounts were found associated either with microorganisms or the mineral phase. The abiotic oxidation of sulfide in the reaction with ferrihydrite was identified as rate determining. Cysteine, added as a sulfur source and a reducing agent, also led to abiotic ferrihydrite reduction and therefore should be eliminated when sulfur redox reactions are investigated. Overall, we could demonstrate the large impact of intermediate sulfur species on biogeochemical iron transformations.  相似文献   

11.
Thermophilic green sulfur bacteria of the genus Chlorobium were isolated from certain acidic high sulfide New Zealand hot springs. Cells were Gram-negative nonmotile rods of variable length and contained bacteriochlorophyll c and chlorosomes. Cultures of thermophilic chlorobia grew only under anaerobic, phototrophic conditions, either photoautotrophically or photoheterotrophically. The optimum growth temperature for the strains of thermophilic green sulfur bacteria isolated was 47–48°C with generation times of about 2 h being observed. The upper temperature limit for growth was about 52°C. Thiosulfate was a major electron donor for photoautotrophic growth while sulfide alone was only poorly used. N2 fixation was observed at 48°C and cell suspensions readily reduced acetylene to ethylene. The G+C content of DNA from strains of thermophilic chlorobia was 56.5–58.2 mol% and the organisms positioned phylogenetically within the green sulfur bacterial branch of the domain Bacteria. The new phototrophs are described as a new species of the genus Chlorobium, Chlorobium tepidum.This paper is dedicated to Professor Norbert Pfennig on the occasion of his 65th birthday  相似文献   

12.
Thermophilic bacteria were isolated from a sulfide-rich, neutral hot spring in Iceland on gelrite minimal medium with 16 mM thiosulfate. The isolates were aerobic, obligate chemolithoautotrophs and used thiosulfate and sulfur as electron donors, producing sulfate from both substrates. No growth was observed with hydrogen as the sole electron donor, and no hydrogenase activity was detected. The cells were gram-negative and usually single, 4—5 μm long and 0.7 μm in diameter and formed sulfur globules after a few days of incubation. By SSU rRNA sequence comparisons, the bacterium was placed in the genus Hydrogenobacter with the closest relative to be Calderobacterium hydrogenophilum with 98.3% sequence similarity. This novel bacterium shows an ecological adaptation to high sulfide springs and is differentiated from its closest known relatives by lack of H2 oxidation, deposition of sulfur and lower growth temperature.  相似文献   

13.
Bromate (BrO3 ) is a carcinogenic contaminant formed during ozonation of waters that contain trace amounts of bromide. Previous research shows that bromate can be microbially reduced to bromide using organic (i.e. acetate, glucose, ethanol) and inorganic (H2) electron-donating substrates. In this study, the reduction of bromate by a mixed microbial culture was investigated using elemental sulfur (S0) as an electron donor. In batch bioassays performed at 30°C, bromate (0.30 mM) was completely converted to bromide after 10 days and no accumulation of intermediates occurred. Bromate was also reduced in cultures supplemented with thiosulfate and hydrogen sulfide as electron donor. Our results demonstrated that S0-disproportionating microorganisms were responsible for the reduction of bromate in cultures spiked with S0 through an indirect mechanism involving microbial formation of sulfide and subsequent abiotic reduction of bromate by the biogenic sulfide. Confirmation of this mechanism is the fact that bromate was shown to undergo rapid chemical reduction by sulfide (but not S0 or thiosulfate) in abiotic experiments. Bromate concentrations above 0.30 mM inhibited sulfide formation by S0-disproportionating bacteria, leading to a decrease in the rate of bromate reduction. The results suggest that biological formation of sulfide from by S0 disproportionation could support the chemical removal of bromate without having to directly use sulfide as a reagent.  相似文献   

14.
Symbiotic associations between animals and chemoautotrophic bacteria crowd around hydrothermal vents. In these associations, symbiotic bacteria use chemical reductants from venting fluid for the energy to support autotrophy, providing primary nutrition for the host. At vents along the Eastern Lau Spreading Center, the partially oxidized sulfur compounds (POSCs) thiosulfate and polysulfide have been detected in and around animal communities but away from venting fluid. The use of POSCs for autotrophy, as an alternative to the chemical substrates in venting fluid, could mitigate competition in these communities. To determine whether ESLC symbioses could use thiosulfate to support carbon fixation or produce POSCs during sulfide oxidation, we used high-pressure, flow-through incubations to assess the productivity of three symbiotic mollusc genera—the snails Alviniconcha spp. and Ifremeria nautilei, and the mussel Bathymodiolus brevior—when oxidizing sulfide and thiosulfate. Via the incorporation of isotopically labelled inorganic carbon, we found that the symbionts of all three genera supported autotrophy while oxidizing both sulfide and thiosulfate, though at different rates. Additionally, by concurrently measuring their effect on sulfur compounds in the aquaria with voltammetric microelectrodes, we showed that these symbioses excreted POSCs under highly sulfidic conditions, illustrating that these symbioses could represent a source for POSCs in their habitat. Furthermore, we revealed spatial disparity in the rates of carbon fixation among the animals in our incubations, which might have implications for the variability of productivity in situ. Together, these results re-shape our thinking about sulfur cycling and productivity by vent symbioses, demonstrating that thiosulfate may be an ecologically important energy source for vent symbioses and that they also likely impact the local geochemical regime through the excretion of POSCs.  相似文献   

15.
Strain SF3, a gram-negative, anaerobic, motile, short curved rod that grows by coupling the reductive dechlorination of 2-chlorophenol (2-CP) to the oxidation of acetate, was isolated from San Francisco Bay sediment. Strain SF3 grew at concentrations of NaCl ranging from 0.16 to 2.5%, but concentrations of KCl above 0.32% inhibited growth. The isolate used acetate, fumarate, lactate, propionate, pyruvate, alanine, and ethanol as electron donors for growth coupled to reductive dechlorination. Among the halogenated aromatic compounds tested, only the ortho position of chlorophenols was reductively dechlorinated, and additional chlorines at other positions blocked ortho dechlorination. Sulfate, sulfite, thiosulfate, and nitrate were also used as electron acceptors for growth. The optimal temperature for growth was 30°C, and no growth or dechlorination activity was observed at 37°C. Growth by reductive dechlorination was revealed by a growth yield of about 1 g of protein per mol of 2-CP dechlorinated, and about 2.7 g of protein per mole of 2,6-dichlorophenol dechlorinated. The physiological features and 16S ribosomal DNA sequence suggest that the organism is a novel species of the genus Desulfovibrio and which we have designated Desulfovibrio dechloracetivorans. The unusual physiological feature of this strain is that it uses acetate as an electron donor and carbon source for growth with 2-CP but not with sulfate.  相似文献   

16.
Strain MC-1 is a marine, microaerophilic, magnetite-producing, magnetotactic coccus phylogenetically affiliated with the α-Proteobacteria. Strain MC-1 grew chemolithotrophically with sulfide and thiosulfate as electron donors with HCO3/CO2 as the sole carbon source. Experiments with cells grown microaerobically in liquid with thiosulfate and H14CO3/14CO2 showed that all cell carbon was derived from H14CO3/14CO2 and therefore that MC-1 is capable of chemolithoautotrophy. Cell extracts did not exhibit ribulose-1,5-bisphosphate carboxylase-oxygenase (RubisCO) activity, nor were RubisCO genes found in the draft genome of MC-1. Thus, unlike other chemolithoautotrophic, magnetotactic bacteria, strain MC-1 does not appear to utilize the Calvin-Benson-Bassham cycle for autotrophy. Cell extracts did not exhibit carbon monoxide dehydrogenase activity, indicating that the acetyl-coenzyme A pathway also does not function in strain MC-1. The 13C content of whole cells of MC-1 relative to the 13C content of the inorganic carbon source (Δδ13C) was −11.4 . Cellular fatty acids showed enrichment of 13C relative to whole cells. Strain MC-1 cell extracts showed activities for several key enzymes of the reverse (reductive) tricarboxylic acid (rTCA) cycle including fumarate reductase, pyruvate:acceptor oxidoreductase and 2-oxoglutarate:acceptor oxidoreductase. Although ATP citrate lyase (another key enzyme of the rTCA cycle) activity was not detected in strain MC-1 using commonly used assays, cell extracts did cleave citrate, and the reaction was dependent upon the presence of ATP and coenzyme A. Thus, we infer the presence of an ATP-dependent citrate-cleaving mechanism. These results are consistent with the operation of the rTCA cycle in MC-1. Strain MC-1 appears to be the first known representative of the α-Proteobacteria to use the rTCA cycle for autotrophy.  相似文献   

17.
Oscillatoria amphigranulata is a fast-growing (3 doublings/day) cyanobacterium isolated from sulfide hot springs in New Zealand. Photosynthesis, as measured by incorporation of [14C]-HCO 3 - , was initially inhibited by 0.3–1.5 mM sulfide at pH 7.9–8.1. However, conversion to sulfide-dependent anoxygenic photosynthesis occurred in about 2 h or less under light intensities of 3–14 klx. Under the stimulation of higher light intensity (8–14 klx) a partial recovery of oxygenic photosynthesis also occurred. It was concluded that oxygenic photosynthesis was responsible for 21–42% of the total incorporation at sulfide concentrations of 1.0–0.3 mM, respectively. This contribution was suppressed at 1.5 mM sulfide and not elicited under lower light intensities (3–7 klx). As judged by the inhibitory effect of 10 g/ml chloramphenicol protein synthesis was required for attainment of both anoxygenic photosynthesis and photosystem II recovery. Sulfide could not be replaced by thiosulfate, elemental sulfur or dithionite as electron donors in photosynthesis, but elemental sulfur could serve as the sole assimilatory source of sulfur. Oxygenic photosynthesis was inhibited by DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea] or DBMIB (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone), but sulfide relieved the effect of either inhibitor in adapted cells, indicating that electrons derived from sulfide enter the photosynthetic electron transport chain at a point beyond plastoquinone.Uncommon abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DSPD disalicyclidene propanediamine - DNP-INT 2-4-dinitrophenyl ether of 2-iodo-4-nitrothymol - TMPD N,N,N,N-tetramethyl-p-phenylenediamine - PPO 2,5-diphenyloxazole - POPOP 1,4-bis-2-(5-phenyl oxzolyl) benzene  相似文献   

18.
From the second-highest dilution in a most-probable-number dilution series with lactate and sulfate as substrates and rice paddy soil as the inoculum, a strain of Desulfovibrio desulfuricans was isolated. In addition to reducing sulfate, sulfite, and thiosulfate, the strain also reduced nitrate to ammonia. The latter process was studied in detail, since the ability to reduce nitrate was strongly influenced by the presence of sulfide. Sulfide inhibited both growth on nitrate and nitrate reduction. A 70% inhibition of the nitrate reduction rate was obtained at 127 μM sulfide, and growth was inhibited by 50% at approximately 320 μM sulfide and was not detectable above 700 μM sulfide. In contrast, sulfate reduction was not affected at concentrations of up to 5 mM. After growth with sulfate, an induction period of 2 to 4 days was needed before nitrate reduction started. When nitrate and sulfate were present simultaneously, only sulfate was reduced, except when sulfate was present at very low concentrations (4 μM). At higher sulfate concentrations (500 μM), nitrate reduction was temporarily halted. The affinity for nitrate uptake was extremely high (Km = 0.05 μM) compared with that for sulfate uptake (Km = 5 μM). Thus, at low nitrate concentrations this bacterium is favored relative to denitrifiers (Km = 1.8 to 13.7 μM) or other nitrate ammonifiers (e.g., Clostridium spp. [Km = 500 μM]).  相似文献   

19.
Enrichment cultures of phototrophic purple bacteria rapidly oxidized up to 10 mM dimethyl sulfide (DMS) to dimethyl sulfoxide (DMSO). DMSO was qualitatively identified by proton nuclear magnetic resonance. By using a biological assay, DMSO was always quantitatively recovered from the culture media. DMS oxidation was not detected in cultures incubated in the dark, and it was slow in cultures exposed to full daylight. Under optimal conditions, the second-order rate constant for DMS oxidation was 6 day−1 mg of protein−1 ml−1. The rate constant was reduced in the presence of high concentration of sulfide (>1 mM), but was not affected by the addition of acetate. DMS was also oxidized to DMSO by a pure strain (tentatively identified as a Thiocystis sp.) isolated from the enrichment cultures. DMS supported growth of the enrichment cultures and of the pure strain by serving as an electron source for photosynthesis. A determination of the amount of protein produced in the cultures and an estimation of the electron balance suggested that the two electrons liberated during the oxidation of DMS to DMSO were quantitatively used to reduce carbon dioxide to biomass. The oxidation of DMS by phototrophic purple bacteria may be an important source of DMSO detected in anaerobic ponds and marshes.  相似文献   

20.
Summary The sulfur-containing compounds cysteine, thiosulfate and dithionite, were investigated to substitute for sulfide as a sulfur source for cultivation ofMethanobacterium thermoautotrophicum. although none of the three compounds was suitable as the sole sulfur source, a combination of thiosulfate and cysteine supported growth and methanogenesis of the methanogen in batch and continuous culture as efficiently as sulfide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号