首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
With an automated computerized temperature control and a specialized temperature measurement system, dry spores of Bacillus subtilis subsp. niger were treated with heat simultaneously in a convection dry-heat oven and a microwave oven. The temperature of the microwave oven was monitored such that the temperature profiles of the spore samples in both heat sources were nearly identical. Under these experimental conditions, we unequivocally demonstrated that the mechanism of sporicidal action of the microwaves was caused solely by thermal effects. Nonthermal effects were not significant in a dry microwave sterilization process. Both heating systems showed that a dwelling time of more than 45 min was required to sterilize 10(5) inoculated spores in dry glass vials at 137 degrees C. The D values of both heating systems were 88, 14, and 7 min at 117, 130, and 137 degrees C, respectively. The Z value was estimated to be 18 degrees C.  相似文献   

2.
With an automated computerized temperature control and a specialized temperature measurement system, dry spores of Bacillus subtilis subsp. niger were treated with heat simultaneously in a convection dry-heat oven and a microwave oven. The temperature of the microwave oven was monitored such that the temperature profiles of the spore samples in both heat sources were nearly identical. Under these experimental conditions, we unequivocally demonstrated that the mechanism of sporicidal action of the microwaves was caused solely by thermal effects. Nonthermal effects were not significant in a dry microwave sterilization process. Both heating systems showed that a dwelling time of more than 45 min was required to sterilize 10(5) inoculated spores in dry glass vials at 137 degrees C. The D values of both heating systems were 88, 14, and 7 min at 117, 130, and 137 degrees C, respectively. The Z value was estimated to be 18 degrees C.  相似文献   

3.
AIMS: To determine the effectiveness of a novel dry air decontamination apparatus in the deactivation of Salmonella serotype Typhimurium DT104 or Escherichia coli O157:H7 on beef surfaces. METHODS AND RESULTS: A laboratory scale dry air decontamination apparatus, capable of producing repeatable and known heating time-temperature cycles on food surfaces was used in decontamination trials. Beef samples were surface inoculated with 7-8 log10CFU cm(-2) of S. Typhimurium DT104 or E. coli O157:H7 and heated at 60, 75, 90 and 100 degrees C using fast and slow heating rates and subsequently held at these temperatures for up to 600 s. A substantial reduction in pathogen numbers was achieved at higher temperatures (90 and 100 degrees C, 4.18-6.06 log10CFU cm(-2)) using both heating rates, but cell survival at these temperatures was also observed. At the lower temperatures, deactivation was small at 60 degrees C in particular it was less than one log unit after 3 min heating. No significant differences were observed when total reductions in pathogen counts were compared for all the temperature/heat up time combinations tested. During slow heating at 90 degrees C, and both heating rates at 100 degrees C, the pattern of deactivation of S. Typhimurium DT104 or E. coli O157:H7 was triphasic. CONCLUSIONS: This study has shown that heating meat surfaces with dry air can achieve substantial reductions in S. Typhimurium DT104 or E. coli O157:H7. As surface decontamination of beef surfaces with dry air had a negative effect on beef colour and appearance, such a decontamination apparatus would be unsuitable for producing meat for retail sale but it could be used to produce safer meat for use in the catering trade. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides researchers and food processors with data on the dynamic changes in S. Typhimurium DT104 and E. coli O157:H7 counts on intact beef surfaces during heating with dry air under realistic (time-varying) temperature conditions.  相似文献   

4.
AIM: This study was carried out to determine the survival of Escherichia coli O157:H7 and subsequent shelf life of beef subjected to subatmospheric steam at differing temperatures. METHODS AND RESULTS: A specifically built, laboratory scale decontamination apparatus was used in decontamination trials to examine the effect of condensing steam at differing subatmospheric pressures on the survival of E. coli O157:H7 on meat. Beef slices were inoculated with a nontoxigenic E. coli O157:H7 strain and subjected to condensing steam at temperatures of 55, 65 and 75 degrees C. Following treatment, the decontaminated meat was packaged and stored in air or under vacuum at temperatures of 10 or 0 degrees C for up to 42 days. Microbiological analysis of the decontaminated and a control product (not subjected to any heat treatment) was carried out at regular intervals over the storage time of the product. Overall, significant reductions (ca 1.5 log(10) CFU cm(-2)) in pathogen numbers were observed at a steam treatment temperature of 75 degrees C, however, postprocess storage conditions were important in ensuring no re-growth of the pathogen and this was best achieved by storage under vacuum at 0 degrees C. CONCLUSIONS: Steam had a significant impact in reducing E. coli O157:H7 populations, but storage conditions post-treatment were important for ensuring inhibition of the pathogen. SIGNIFICANCE AND IMPACT OF THE STUDY: This study indicated that subatmospheric steam could have significant application in the decontamination of meat primals postfabrication, immediately prior to packaging thus ensuring a safer product for consumers.  相似文献   

5.
Effect of microwave radiation on Bacillus subtilis spores   总被引:4,自引:0,他引:4  
AIMS: To compare the killing efficacy and the effects exerted by microwaves and conventional heating on structural and molecular components of Bacillus subtilis spores. METHODS AND RESULTS: A microwave waveguide applicator was developed to generate a uniform and measurable distribution of the microwave electric-field amplitude. The applicator enabled the killing efficacy exerted by microwaves on B. subtilis spores to be evaluated in comparison with conventional heating at the same temperature value. The two treatments produced a similar kinetics of spore survival, while remarkably different effects on spore structures were seen. The cortex layer of the spores subjected to conductive heating was 10 times wider than that of the untreated spores; in contrast, the cortex of irradiated spores did not change. In addition, the heated spores were found to release appreciable amounts of dipicolinic acid (DPA) upon treatment, while extracellular DPA was completely undetectable in supernatants of the irradiated spores. These observations suggest that microwave radiation may promote the formation of stable complexes between DPA and other spore components (i.e. calcium ions); thus, making any release of DPA from irradiated spores undetectable. Indeed, while a decrease in measurable DPA concentrations was not produced by microwave radiation on pure DPA solutions, a significant lowering in DPA concentration was detected when this molecule was exposed to microwaves in the presence of either calcium ions or spore suspensions. CONCLUSIONS: Microwaves are as effective as conductive heating in killing B. subtilis spores, but the microwave E-field induces changes in the structural and/or molecular components of spores that differ from those attributable only to heat. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides information on the effect of microwaves on B. subtilis spore components.  相似文献   

6.
Exploration of haemostasis was performed on plasmas thawed in an experimental microwave oven comparatively to a 37 degrees C water bath. Factor VIII:R:Ag, procoagulant and antigenic fibrinogen, and Fg:C/Fg:Ag ratio were found to be significantly, slightly decreased with microwave thawing. Factor VIII:C and VIII:C/VIII:R:Ag ratio were found to be increased with microwaves. Antigenic fractions were decreased because of partial precipitation. In addition, Fibrinogen slightly lost its activity; on the contrary, factor VIIIC was activated by micro-waves. All this allows to select parameters for new experimental microwave ovens development.  相似文献   

7.
AIMS: This study was conducted to validate combined heat and acid treatments for inactivating Escherichia coli O157:H7, Listeria monocytogenes and Salmonella typhimurium in an acidified brine containing, or pickled, asparagus model food. METHODS AND RESULTS: A mixture of three strains of E. coli O157:H7, L. monocytogenes and S. typhimurium were inoculated onto pickled asparagus samples. Combinations of various concentrations of acetic acid [0%, 0.25%, 0.5%, 0.75%, 1%, 1.5% and 2% (v/v)] and various temperatures (40 degrees C, 50 degrees C, 60 degrees C and 75 degrees C) were investigated. Following treatment, asparagus samples were stored at room temperature and enumerated at 0, 0.5, 1, 2 and 3 days. Heat and acetic acid treatments were synergistic. The inhibitory effects of these combined treatments on the tested foodborne pathogens were also effective during storage. Loss of green colour in the pickled asparagus significantly increased with increasing concentrations of acetic acid. CONCLUSIONS: Using a combination of mild heat and acetic acid treatments can successfully control E. coli O157:H7, L. monocytogenes and S. typhimurium in pickled asparagus, combinations of heat and acid are synergistic and effective treatments can be selected to reduce adverse effect on colour which occur during product storage. SIGNIFICANCE AND IMPACT OF THE STUDY: Mild heating plus acetic acid treatment are synergistic, so combined treatments can be developed, which would lower the temperature and amount of acetic acid required for minimally processed vegetables while maintaining pathogen control.  相似文献   

8.
AIMS: Thermal inactivation of a mixture of five strains of Listeria monocytogenes, four strains of Escherichia coli O157:H7 and eight serotypes of Salmonella were compared with that of indigenous microflora in 75% lean ground beef. METHODS AND RESULTS: Inoculated meat was packaged in bags that were completely immersed in a circulating water bath and held at 55, 57.5 and 60 degrees C for predetermined lengths of time. The surviving cell population was enumerated by spiral plating heat-treated samples onto tryptic soya agar supplemented with 0.6% yeast extract and 1% sodium pyruvate. D-values, determined by linear regression, in beef were 77.49, 21.9, and 10.66 min at 55, 57.5, and 60 degrees C, respectively, for indigenous microflora (z = 5.81 degrees C). When either of the three pathogens were heated in beef, their D-values calculated were significantly lower (P < 0.05) than those of indigenous microflora at all temperatures. The slope of the thermal death time curve for L. monocytogenes, E. coli O157:H7 and indigenous microflora were similar. Using a survival model for nonlinear survival curves, the D1-values at all temperatures for L. monocytogenes were significantly higher (P < 0.05) compared with those for Salmonella serotypes, E. coli O157:H7 or indigenous microflora. However, higher recovery of a subpopulation of the indigenous microflora in beef exposed to heating at 55, 57.5 or 60 degrees C resulted in significantly higher (P < 0.05) D2-values at all three temperatures, compared with those of the three pathogens at the same test temperatures. CONCLUSIONS: If the thermal process is designed to ensure destruction of indigenous microbial flora, it should also provide an adequate degree of protection against L. monocytogenes, Salmonella serotypes or E. coli O157:H7. SIGNIFICANCE AND IMPACT OF THE STUDY: The results of this study will assist the retail food industry in designing acceptance limits on critical control points that ensure safety, without introducing pathogens in a retail food environment, against L. monocytogenes, E. coli O157:H7 and Salmonella in cooked ground beef.  相似文献   

9.
Summary Microwave effects on free amino acid concentrations in milkversus a water bath heating were investigated in view of their importance for infant growth. Concentrations of few amino acids, such as aspartate, serine or lysine, are unchanged whatever the way and the temperature of heating. In contrast, tryptophan concentrations decreased similarly whatever the way of heating (110 ± 3µmol/l before heatingvs 84 ± 4µmol/l after 30°C microwave heating, p < 0.05). On the contrary, concentrations of glutamate and glycine increased more after water bath heating at 90°C (325 ± 4 and 101 ± 1µmol/l, respectively) than after microwave heating (312 ± 4 and 95 ± 1µmol/l, respectively, p < 0.05) suggesting milk proteolysis. Moreover, the accumulation of ammonia observed at 90°C with the water bath together with increase Glu levels might reflect a degradation of glutamine. An ornithine enrichment, more evident with microwave heating, was shown and could be of interest as it is a polyamine precursor. Also, considering few variations of free amino acid concentrations and the time saved, microwave heating appears to be an appropriate method to heat milk.  相似文献   

10.
Effect of Microwaves on Escherichia coli and Bacillus subtilis   总被引:7,自引:6,他引:1       下载免费PDF全文
Suspensions of Escherichia coli and Bacillus subtilis spores were exposed to conventional thermal and microwave energy at 2,450 MHz. The degrees of inactivation by the different energy sources were compared quantitatively. During the transient heating period by microwave energy, approximately a 6 log cycle reduction in viability was encountered for E. coli. This reduction was nearly identical to what is expected for the same time-temperature exposure to conventional heating. Heating of B. subtilis spores by conventional and microwave energy was also carried out at 100 C, in ice and for transient heating. The degree of inactivation by microwave energy was again identical to that by conventional heating. In conclusion, inactivation of E. coli and B. subtilis by exposure to microwaves is solely due to the thermal energy, and there is no per se effect of microwaves.  相似文献   

11.
AIMS: To develop improved methods for the detection of Escherichia coli O157 from water and sediments. METHODS AND RESULTS: The effects of different broth enrichment media (unsupplemented tryptic soya broth, tryptic soya broth with antibiotics, and gram-negative broth), incubation durations (5 and 24 hrs), incubation temperatures (37 and 44.5 degrees C) and the use of immunomagnetic separation (IMS) on the sensitivity of E. coli O157 detection were evaluated on artificially and naturally-contaminated water and sediment samples. The sensitivity of recovery of E. coli O157 from samples was dependent upon the media composition, temperature duration of incubation and the use of IMS. CONCLUSION: Use of high temperature (44.5 degrees C) incubation for 24 hrs in unsupplemented tryptic soya broth and the use of IMS improved the sensitivity of E. coli O157 culture from water and sediment samples. SIGNIFICANCE AND IMPACT OF THE STUDY: The methods described can be used to increase the sensitivity of E. coli O157 detection from water and sediments.  相似文献   

12.
AIMS: The objective of this study was to determine the combined effects of water activity (a(w)), chemical treatment and temperature on Salmonella and Escherichia coli O157:H7 inoculated onto alfalfa seeds. METHODS AND RESULTS: Alfalfa seeds inoculated with Salmonella or E. coli O157:H7 and adjusted to various a(w) values were subjected to simultaneous and separate treatments with chemicals and heat. The rate of death of both pathogens was correlated with increased a(w) (0.15-0.60) and temperature (5-37 degrees C) over a 52-week storage period. Higher seed a(w) enhanced the inactivation of pathogens on seeds heated at 50-70 degrees C for up to 24 h. Treatment of seeds with water, 1% Ca(OH)2, 1% Tween 80, 1% Ca(OH)2 plus 1% Tween 80 or 40 mg l(-1) Tsunami 200 at 23 or 55 degrees C for 2 min significantly (alpha=0.05) reduced populations of Salmonella and E. coli O157:H7. CONCLUSIONS: Overall, at the combinations of temperature and concentrations of chemicals tested, 1% Ca(OH)2 was most effective in killing Salmonella and E. coli O157:H7 without reducing seed viability. SIGNIFICANCE AND IMPACT OF THE STUDY: None of the treatments evaluated in this study, whether applied separately or in combination, eliminated Salmonella or E. coli O157:H7 on alfalfa seeds without sacrificing the viability of the seeds. It remains essential that practices to prevent the contamination of alfalfa seeds be strictly followed in order to minimize the risk of Salmonella and E. coli O157:H7 infections associated with sprouts produced from these seeds.  相似文献   

13.
AIMS: To determine if the temperatures used in feed manufacture are likely to destroy Escherichia coli O157. METHODS AND RESULTS: Two commercial feeds were ground and inoculated with E. coli O157 cells. The feeds were heated to 50, 55, 60, 65 or 70 degrees C. Heating produced quadratic survivor curves, with rapid initial decreases. The survival characteristics of E. coli O157 differed in the two feeds. The reductions observed in one feed may not have been due to heat alone. There was evidence that indigenous anti-E. coli O157 factor(s) in one feed acted with the heat and contributed to the observed rates of bacterial death. Heating at 70 degrees C for 20 or 120 s resulted in approx. 1.3 and 2.2 log reductions in E. coli O157 numbers respectively. Lesser reductions were observed at lower temperatures. CONCLUSIONS: The time/temperature combinations used in commercial pelleting processes would not effectively kill high numbers of E. coli O157. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study to look at the survival of E. coli O157 strains after heat treatment within concentrated animal feed. The study provides information on the likely risk of E. coli O157 surviving the animal feed manufacturing process.  相似文献   

14.
Combined effect of 460-MHz microwave irradiation and increased (up to 40 degrees C) temperature on Drosophila embryos of definite age was studied. It was demonstrated that the effect of 5-min exposures to non-modulated microwaves with 6 W/kg SAR accompanied with heating is only a little stronger than at normal temperature (24.5 degrees C). Irradiation with pulse-modulated microwaves with pulse repetition rates of 6, 10, 16, and 22 p.p.s. with average SAR of 0.12 W/kg (pulsed SAR 3 W/kg) combined with increased temperature caused some changes in PID dependent on the pulse rate. At 6 and 22 p.p.s, the increase in PID was close to that observed at normal temperature while at 10 and 16 p.p.s. the microwave irradiation did not produce any noticeable effect on development of the Drosophilas.  相似文献   

15.
One of the most important aspects of the problem of life transfer in the cosmic space is the resistance of microorganisms to high-temperature heating during the launch and entry into the atmosphere. The high-temperature limits of the survival of microorganisms were studied under conditions modeling the laungh from the Mars and the landing on the Earth. Two strain of E. coli K12 exposed to short heating pulse were studied in order to tind out if they could resist high temperature while being in the desiccated state. The procedure was performed in vacuum. It was found that a fraction of bacteria survive heating pulses up to 250 degrees C in vacuum, while similar heating at normal atmospheric pressure leads to the total sterilization of samples.  相似文献   

16.
This study evaluated the impact of inoculum preparation and storage conditions on the response of Escherichia coli O157:H7 exposed to consumer-induced stresses simulating undercooking and digestion. Lean beef tissue samples were inoculated with E. coli O157:H7 cultures prepared in tryptic soy broth or meat decontamination runoff fluids (WASH) or detached from moist biofilms or dried biofilms formed on stainless steel coupons immersed in inoculated WASH. After inoculation, the samples were left untreated or dipped for 30 s each in hot (75 degrees C) water followed by lactic acid (2%, 55 degrees C), vacuum packaged, stored at 4 (28 days) or 12 degrees C (16 days), and periodically transferred to aerobic storage (7 degrees C for 5 days). During storage, samples were exposed to sequential heat (55 degrees C; 20 min) and simulated gastric fluid (adjusted to pH 1.0 with HCl; 90 min) stresses simulating consumption of undercooked beef. Under the conditions of this study, cells originating from inocula of planktonic cells were, in general, more resistant to heat and acid than cells from cultures grown as biofilms and detached prior to meat inoculation. Heat and acid tolerance of cells on meat stored at 4 degrees C was lower than that of cells on nondecontaminated meat stored at 12 degrees C, where growth occurred during storage. Decontamination of fresh beef resulted in injury that inhibited subsequent growth of surviving cells at 12 degrees C, as well as in decreases in resistance to subsequent heat and acid stresses. The shift of pathogen cells on beef stored under vacuum at 4 degrees C to aerobic storage did not affect cell populations or subsequent survival after sequential exposure to heat and simulated gastric fluid. However, the transfer of meat stored under vacuum at 12 degrees C to aerobic storage resulted in reduction in pathogen counts during aerobic storage and sensitization of survivors to the effects of sequential heat and acid exposure.  相似文献   

17.
AIMS: To determine a temperature-humidity-time treatment that eliminates Salmonella and Escherichia coli in substrates representing organic matter in poorly cleaned poultry houses, i.e. worst case scenario laboratory tests. METHODS AND RESULTS: Organic matter (poultry faeces and feed) in a 2.5-cm layer was inoculated with 2 x 10(5)-3 x 10(6) Salmonella g(-1), left undried or dried at ca. 30% relative humidity (RH) during a 10-day period, and temperature increased at 1 degrees C h(-)1 to the final heating temperature of 50, 55, 60, 65 or 70 degrees C and held at 16-30 or 100% RH. All samples were tested for Salmonella according to predetermined sampling time schedules and faecal samples were also tested for naturally occurring E. coli. Overall, humidity was an important factor in the elimination of Salmonella and E. coli. Results for recovery of Salmonella and E. coli were highly associated. CONCLUSIONS: The application of >/=60 degrees C and 100% RH during a 24-h period eliminated Salmonella and E. coli in all samples. Escherichia coli could be used as an indicator bacterium for the elimination of Salmonella. SIGNIFICANCE AND IMPACT OF THE STUDY: The results from worst case scenario laboratory tests could be applied in steam heating of persistently Salmonella-infected poultry houses. The use of E. coli as an indicator bacterium for the validation of Salmonella results should be considered.  相似文献   

18.
AIMS: This study aimed to apply differential scanning calorimetry (DSC) to evaluate the thermal inactivation kinetics of bacteria. METHODS AND RESULTS: The apparent enthalpy (DeltaH) of Escherichia coli cells was evaluated by a temperature scan in a DSC after thermal pretreatment in the calorimeter to various temperatures between 56 and 80 degrees C. Conventional semilogarithmic survival curve analysis was combined with a linearly increasing temperature protocol. Calorimetrically determined D and z values were compared to those obtained from plate count data collected under isothermal conditions to validate the new approach. CONCLUSIONS: The calculated D values using both apparent enthalpy and viability data for cells heat treated in the DSC were similar to the D values obtained from isothermal treatment. Temperatures for 1 through 10-log microbial population reductions, calculated from plate count and enthalpy data, were in agreement within 0.5-2.4 degrees C at a 4 degrees C min-1 heating rate. SIGNIFICANCE AND IMPACT OF THE STUDY: This novel calorimetric method provides an approach to obtain accurate and reproducible kinetic parameters for inactivation. The calorimetric method here described is time efficient and is conducted under conditions similar to food processing conditions.  相似文献   

19.
AIMS: To investigate the effects of storage and the presence of a beef microflora on the thermal resistance of Salmonella serotype Typhimurium DT104 on beef surfaces and in a broth system during subsequent heat treatments after extended low-temperature storage (4 degrees C for 14 days) or mild temperature abuse (10 degrees C for 7 days). METHODS AND RESULTS: Surviving Salm. Typhimurium DT104 cells were estimated after heating in a water bath (55 degrees C) by plating beef and broth samples on tryptone soya agar and overlaying with xylose-lysine-deoxycholate agar. In beef and broth systems, D(55) values for Salm. Typhimurium DT104 stored at 4 degrees C or 10 degrees C in the presence or absence of a beef microflora were significantly lower (P < 0.01) than the D values for this organism heat-treated immediately after inoculation. In beef systems, the D(55) values were significantly lower (P < 0.05) in the presence of a beef microflora than the D(55) values obtained in 'pure' culture under all temperature/storage combinations. However, in broth systems, there was no significant difference between the D(55) values obtained in 'pure' culture and the D(55) values obtained from systems containing beef microflora. CONCLUSIONS: Storage of Salm. Typhimurium DT104 significantly reduced the thermal resistance of the pathogen in beef and broth systems. In the presence of high numbers of a Gram-negative beef microflora, the heat sensitivity of the pathogen was further increased on beef surfaces but not in broth. SIGNIFICANCE AND IMPACT OF THE STUDY: Studies investigating the survival of Salm. Typhimurium DT104 in different food systems will help define safe food preservation processes and will aid in the elimination this pathogen from the food production environments.  相似文献   

20.
AIMS: The fate of Escherichia coli O157:H7 was investigated during the manufacture of Mozzarella cheese. METHODS AND RESULTS: The Mozzarella cheese was made from unpasteurized milk which was inoculated to contain ca 10(5) cfu ml(-1)E. coli O157:H7. Two different heating temperatures (70 and 80 degrees C), commonly used during curd stretching, were investigated to determine their effects on the viability of E. coli O157:H7 in Mozzarella cheese. Stretching at 80 degrees C for 5 min resulted in the loss of culturability of E. coli O157:H7 strains, whereas stretching at 70 degrees C reduced the number of culturable E. coli O157:H7 by a factor of 10. CONCLUSIONS: The results show that stretching curd at 80 degrees C for 5 min is effective in controlling E. coli O157:H7 during the production of Mozzarella cheese. Brining and storage at 4 degrees C for 12 h was less effective than the stretching. Significance and Impact of the Study: Mozzarella cheese should be free of E. coli O157:H7 only if temperatures higher than or equal to 80 degrees C are used during milk processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号