首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane differentiations at sites specialized for cell fusion   总被引:13,自引:12,他引:1       下载免费PDF全文
Fusion of plasma membranes between Chlamydomonas reinhardtii gametes has been studied by freeze-fracture electron microscopy of unfixed cells. The putative site of cell fusion developes during gametic differentiation and is recognized in thin sections of unmated gametes as a plaque of dense material subjacent to a sector of the anterior plasma membrane (Goodenough, U.W., and R.L. Weiss. 1975.J. Cell Biol. 67:623-637). The overlying membrane proves to be readily recognized in replicas of unmated gametes as a circular region roughly 500 nm in diameter which is relatively free of "regular" plasma membrane particles on both the P and E fracture faces. The morphology of this region is different for mating-type plus (mt+) and mt- gametes: the few particles present in the center of the mt+ region are distributed asymmetrically and restricted to the P face, while the few particles present in the center of the mt- region are distributed symmetrically in the E face. Each gamete type can be activated for cell fusion by presenting to it isolated flagella of opposite mt. The activated mt+ gamete generates large expanses of particle-cleared membrane as it forms a long fertilization tubule from the mating structure region. In the activated mt- gamete, the E face of the mating structure region is transformed into a central dome of densely clustered particles surrounded by a particle-cleared zone. When mt+ and mt- gametes are mixed together, flagellar agglutination triggeeeds to fuse with an activated mt- region. The fusion lip is seen to develop within the particle-dense central dome. We conclude that these mt- particles play an active role in membrane fusion.  相似文献   

2.
Cell fusion between mating type plus (mt+) and minus (mt-) gametes of Chlamydomonas reinhardtii is analyzed structurally and subjected to experimental manipulation. Cell wall lysis, a necessary prelude to fusion, is shown to require flagellar agglutination between competent gametes; glutaraldehyde-fixed gametes ("corpses") of one mating type will elicit both agglutination and cell wall lysis in the opposite mating type, whereas nonagglutinating impotent (imp) mutant strains are without effect. The fusion process is mediated by a narrow fertilization tubule which extends from the mt+ gamete and establishes contact with the mt- gamete. Formation of the tubule requires the "activation" of a specialized mating structure associated with the ml+ cell membrane; activation causes microfilaments to polymerize from the mating structure into the growing fertilization tubule. Mating structure activation is shown to depend on gametic flagellar agglutination; isoagglutination mediated by the lectin concanavalin A has no effect. Gametes carrying the imp-l mt+ mutation are able to agglutinate but not fuse with mt- cells; the imp-l gametes are shown to have structurally defective mating structures that do not generate microfilaments in response to gametic agglutination.  相似文献   

3.
The molecular mechanisms of the defining event in fertilization, gamete fusion, remain poorly understood. The FUS1 gene in the unicellular, biflagellated green alga Chlamydomonas is one of the few sex-specific eukaryotic genes shown by genetic analysis to be essential for gamete fusion during fertilization. In Chlamydomonas, adhesion and fusion of the plasma membranes of activated mt+ and mt- gametes is accomplished via specialized fusion organelles called mating structures. Herein, we identify the endogenous Fus1 protein, test the idea that Fus1 is at the site of fusion, and identify the step in fusion that requires Fus1. Our results show that Fus1 is a approximately 95-kDa protein present on the external surface of both unactivated and activated mt+ gametes. Bioassays indicate that adhesion between mating type plus and mating type minus fusion organelles requires Fus1 and that Fus1 is functional only after gamete activation. Finally, immunofluorescence demonstrates that the Fus1 protein is present as an apical patch on unactivated gametes and redistributes during gamete activation over the entire surface of the microvillous-like activated plus mating structure, the fertilization tubule. Thus, Fus1 is present on mt+ gametes at the site of cell-cell fusion and essential for an early step in the fusion process.  相似文献   

4.
Antisera raised against vegetative and gametic flagella of Chlamydomonas reinhardi have been used to probe dynamic properties of the flagellar membranes. The antisera, which agglutinate cells via their flagella, associate with antigens that are present on both vegetative and gametic membranes and on membranes of both mating types (mt+ and mt-). Gametic cells respond to antibody presentation very differently from vegetative cells, mobilizing even high concentrations of antibody towards the flagellar tips; the possibility is discussed that such "tipping" ability reflects a differentiated gametic property relevant to sexual agglutinability. Gametic cells also respond to antibody agglutination by activating their mating structures, the mt+ reaction involving a rapid polymerization of microfilaments. Several impotent mt+ mutant strains that fail to agglutinate sexually are also activated by the antisera and procede to form zygotes with normal mt- gametes. Fusion does not occur between activated cells of like mating type. Monovalent (Fab) preparations of the antibody fail to activate mt+ gametes, suggesting that the cross-linking properties of the antisera are essential for their ability to mimic, or bypass, sexual agglutination.  相似文献   

5.
The iso1 gene of Chlamydomonas is involved in sex determination.   总被引:2,自引:0,他引:2       下载免费PDF全文
Sexual differentiation in the heterothallic alga Chlamydomonas reinhardtii is controlled by two mating-type loci, mt+ and mt-, which behave as a pair of alleles but contain different DNA sequences. A mutation in the mt minus-linked imp11 gene has been shown previously to convert a minus gamete into a pseudo-plus gamete that expresses all the plus gametic traits except the few encoded by the mt+ locus. Here we describe the iso1 mutation which is unlinked to the mt- locus but is expressed only in minus gametes (sex-limited expression). A population of minus gametes carrying the iso1 mutation behaves as a mixture of minus and pseudo-plus gametes: the gametes isoagglutinate but they do not fuse to form zygotes. Further analysis reveals that individual gametes express either plus or minus traits: a given cell displays one type of agglutinin (flagellar glycoprotein used for sexual adhesion) and one type of mating structure. The iso1 mutation identifies a gene unlinked to the mating-type locus that is involved in sex determination and the repression of plus-specific genes.  相似文献   

6.
《The Journal of cell biology》1986,103(6):2449-2456
During the mating reaction (fertilization) in the biflagellated alga, Chlamydomonas reinhardtii, mt+ and mt- gametes adhere to each other via their flagella and subsequently fuse to form quadriflagellated zygotes. In the studies reported here, we describe a monoclonal antibody directed against an mt+ flagellar surface molecule. The antibody blocks the adhesiveness of mt+ gametes, isolated mt+ flagella, and detergent extracts thereof. It has no effect on mt- gametes. Cyanogen bromide- activated Sepharose beads derivatized with the antibody bind only mt+ gametes; mt- gametes and mt+ and mt- vegetative cells are unreactive with the derivatized beads. The interaction of mt+ gametes with the beads is dynamic and cells continuously bind, detach, and rebind to the beads. Surprisingly, antibody-derivatized beads that have been incubated with mt+ gametes acquire the ability to bind mt- gametes. Moreover, extraction of the preincubated beads with detergents releases active mt+ adhesion molecules. The evidence suggests that binding of the antibody to the flagellar surface adhesion molecules causes their release from the flagellar surface, possibly mimicking the normal mechanism of flagellar de-adhesion.  相似文献   

7.
Impotent mutant strains of Chlamydomonas reinhardi, mating-type (mt) plus, are described that have normal growth and motility but fail to differentiate into normal gametes. Procedures for their isolation and their genetic analysis are described. Five of the imp strains (imp-2, imp-5, imp-l, imp-7, and imp-8) exhibit no flagellar agglutination when mixed with mt- or mt+ gametes and the mutations are shown to be unlinked to the mt locus (with the possible exception of imp-7). Two of the strains (imp-3 and imp-4) carry leaky mutations that affect cell fusion; neither mutation is found by tetrad analysis to be linked to mt or to the other. Cells of the imp-1 strain agglutinate well with mt- gametes and active agglutination continues for up to 48 hours, but cell fusion occurs only very rarely. Analysis of these rare zygotes indicates that imp-1 is closely linked to the mt+ locus, and fine-structural studies reveal that imp-1 gametes produce a mutant mating structure involved in zygotic cell fusion. The development of sexuality in C. reinhardi therefore appears amenable to genetic dissection.  相似文献   

8.
The phototactic behavior of Chlamydomonas eugametos gametes and vis-à-vis pairs was quantitated using a fully automated, computer-controlled microvideo image analysis system. Two different mt- (mating type minus) and one mt+ (mating type plus) strain, together with the two combinations of pairs were studied. One mt- strain of dark-adapted gametes was non-phototactic while the others were positively phototactic at all effective intensities of white light. The mt+ strain exhibited one of the strongest positive responses that has so far been reported in algae (r-values greater than 0.7). After sexual fusion, the mt+ cell powers the swimming vis-à-vis pair. Its phototactic behavior reversed on fusion, with the pairs swimming away from all effective light intensities, irrespective of whether its partner was formerly phototactic or not. However, when adapted to the dark for an hour or more, vis-à-vis pairs swam positively to the light. The ecological consequence could be that pairs settle and develop into zygotes under intermediate light intensities or at light-dark interfaces.  相似文献   

9.
Monoclonal antibodies were raised against the mt- sexual agglutinin of Chlamydomonas eugametos gametes. Those that blocked the agglutination site were selected. They were divided into two classes dependent upon whether they gave a weak (class A) or clear positive (class B) reaction with mt- flagellar membranes in an ELISA and an indirect immunofluorescence test using glutaraldehyde-fixed mt- gametes. Class A antibodies were shown to be specific for the agglutinin in an extract of mt- gametes, based on results from immunoblotting, immunoprecipitation, affinity chromatography, and the absence of a reaction with nonagglutinable cells. Surprisingly, class A mAbs also recognized two mt+ glycoproteins, one of which is the mt+ agglutinin. Class B antibodies were shown to bind to several glycoproteins in both mt- and mt+ gametes, including the mt- agglutinin. Fab fragments from class A mAbs blocked the sexual agglutination process, but those from class B did not, even though the parent antibody did. We conclude that the class A epitope lies in or close to the agglutination site of the mt- agglutinin, whereas the class B epitope lies elsewhere on the molecule. We also conclude that the mt- agglutinin is the only component on the mt- flagellar surface directly involved in agglutination. Class A mAbs were found to elicit several reactions displayed by the mt+ agglutinin. They bound to the mt- agglutinin on gamete flagella and induced most of the reactions typical of sexual agglutination, with the exception of flagellar tip activation. None of these reactions was induced by Fab fragments. High concentrations of class A mAbs completely repressed the sexual competence of live mt- gametes, but low concentrations stimulated cell fusion.  相似文献   

10.
Although vegetative cells, gametes, and zygotes of the biflagellated alga Chlamydomonas bear flagella, only the flagella of mt+ and mt- gametes are adhesive. The molecules responsible for adhesiveness, mt+ and mt- agglutinins, are long rod-shaped glycoproteins displayed on the flagellar membrane. These flagellar agglutinins, which gametes use both as adhesion and signaling molecules during the early events of fertilization, are lost from the flagella during adhesion. Flagellar adhesiveness can be maintained, however, by recruitment and activation of preexisting, inactive agglutinins from the plasma membrane of the cell body (Hunnicutt et al, 1990, J. Cell Biol. 111, 1605-1616) unless the gametes of opposite mating types fuse to form zygotes. Upon cell fusion, flagellar adhesiveness is lost. In the studies presented here, we have employed an in vitro bioassay to measure agglutinins in both cell bodies and flagella at various times during gametogenesis, during fertilization, and after zygote-formation. By use of the bioassay, which can detect agglutinins that are functionally inactive in vivo, we found that vegetative cells are devoid of agglutinins. These adhesion molecules appear only after gametogenesis is underway with the cell body agglutinins appearing first and then the flagellar agglutinins. Surprisingly, 30 min after zygote formation, when the zygotes' flagella are no longer adhesive, the flagellar agglutinin activity detectable with the bioassay remains high. One interpretation of these results is that zygotes continue to recruit agglutinins from the cell body to the flagella, but cell fusion abrogates activation of the agglutinins. Within 45-90 min after fusion both the cell body and flagellar agglutinins are lost and can be detected in the medium. These mechanisms, which render the zygotes nonadhesive to other zygotes and unmated gametes, contribute to the Chlamydomonas equivalent of a block to polyspermy.  相似文献   

11.
Interactions between adhesion molecules, agglutinins, on the surfaces of the flagella of mt+ and mt- gametes in Chlamydomonas rapidly generate a sexual signal, mediated by cAMP, that prepares the cells for fusion to form a zygote. The mechanism that couples agglutinin interactions to increased cellular levels of cAMP is unknown. In previous studies on the adenylyl cyclase in flagella of a single mating type (i.e., non-adhering flagella) we presented evidence that the gametic form of the enzyme, but not the vegetative form, was regulated by phosphorylation and dephosphorylation (Zhang, Y., E. M. Ross, and W. J. Snell. 1991. J. Biol. Chem. 266:22954-22959; Zhang, Y., and W. J. Snell. 1993. J. Biol. Chem. 268:1786-1791). In the present report we describe studies on regulation of flagellar adenylyl cyclase during adhesion in a cell-free system. The results show that the activity of gametic flagellar adenylyl cyclase is regulated by adhesion in vitro between flagella isolated from mt+ and mt- gametes. After mixing mt+ and mt- flagella together for 15 s in vitro, adenylyl cyclase activity was increased two- to threefold compared to that of the non-mixed (non- adhering), control flagella. This indicates that the regulation of gametic flagellar adenylyl cyclase during the early steps of fertilization is not mediated by signals from the cell body, but is a direct and primary response to interactions between mt+ and mt- agglutinins. By use of this in vitro assay, we discovered that 50 nM staurosporine (a protein kinase inhibitor) blocked adhesion-induced activation of adenylyl cyclase in vitro, while it had no effect on adenylyl cyclase activity of non-adhering gametic flagella. This same low concentration of staurosporine also inhibited adhesion-induced increases in vivo in cellular cAMP and blocked subsequent cellular responses to adhesion. Taken together, our results indicate that flagellar adenylyl cyclase in Chlamydomonas gametes is coupled to interactions between mt+ and mt- agglutinins by a staurosporine- sensitive activity, probably a protein kinase.  相似文献   

12.
In Chlamydomonas reinhardtii, chloroplast genomes are normally transmitted by the mating type plus (mt+) parent and mitochondrial genomes by the mating type minus (mt-) parent. In this paper we describe three new nuclear mutations, designated mat-3-1 to -3, which are tightly linked to the mt+ allele and permit high transmission of chloroplast genomes from the mt- parent, but have no effect on transmission of mitochondrial genomes. We also show that mat-1, reported by others to be a nuclear mutation linked to mt- which promotes transmission of chloroplast genomes by the mt- parent, is probably a vegetative diploid since it contains both mt+ and mt- alleles. Vegetative diploids behave as if they are mt- with respect to mating, but possess a level of chloroplast gene transmission intermediate between that of haploid mt- and mt+ stocks.  相似文献   

13.
While the mating structure of unmated mating type minus ( mt -) gametes of Chlamydomonas reinhardtii has few intramembrane particles (IMPs), activation results in movement of IMPs to its center. Analysis of freeze-fractured replicas of wild type (wt) mt - and 3 mt - fusion-defective mutants, gam -1, gam -10 and gam -11, before and after activation with wt + flagella, provides a basis for suggesting that some of the IMPs in mt - mating structures, particularly a subset of particles that partitions to the E face, may be fusion-controlling molecules. Unmated gametes of gam -10 show a full range of images, from particle-free to fully activated, with both the P and E face of the mating structure revealing approximately twice as many IMPs as those observed on wt . Unactivated gametes of gam -1 and gam -11 appear identical to wt -. After activation, the mating structures of all of these gametes appear to have approximately the same number of IMPs. If the sizes of particles for these mutants are compared to wild type at the restrictive temperature, all 3 mutants have significantly smaller IMPs on the E face; before mating, in the plasma membrane and after mating, in the mating structure. At 34° C, the gam -1-II mating structure appears to be missing most of the particles from 15.5 to 16.5 nm in diameter, while all gametes with the ability to fuse have an equivalent percentage of their mating structure particles in this size range. The possibility that an IMP in this size range represents a protein that may be responsible for gamete fusion is discussed.  相似文献   

14.
The effect of EDTA on the mating-type-specific agglutinins located on the flagellar surfaces of Chlamydomonas reinhardii gametes was investigated. The mating-type minus (mt-) gametes lost their agglutinability without apparent loss of motility soon after addition of EDTA at low concentrations (1-2 mM). At the same time, the cells released into the medium agglutinins which can elicit agglutinative responses of mating-type plus (mt+) gametes specifically. When EDTA was neutralized with Mg2+ or removed by centrifugation, the mt- cells quickly replaced agglutinins by protein synthesis: the recovery process was sensitive to cycloheximide, but not to tunicamycin. The EDTA-treated mt+ gametes lost their agglutinins much more slowly than the mt- gametes. The replacement of mt+ agglutinins was inhibited by both cycloheximide and tunicamycin.  相似文献   

15.
Chlamydomonas monoica undergoes intraclonal mating-type differentiation (homothallism). Although the species differs in this regard from the more commonly studied heterothallic C. reinhardtii, cell-cell interactions and progression of the sexual cycle are similar for many homothallic and heterothallic species of the genus. Regulation of chloroplast gene transmission by the nuclear mating-type alleles (mt+ and mt-) is another common denominator for Chlamydomonas species studied thus far. We have previously reported the use of chloroplast inheritance patterns to identify mutants of C. monoica that have lost the potential to function as the mt+ mating-type. A similar screening procedure led to the isolation of an unusual mutant, mtl-3 whose phenotype is less readily explained. Chloroplast gene transmission patterns in crosses involving mtl-3 suggest that the mtl-3 strain mates preferentially as mt+. However, normal mating efficiencies and high zygospore viability are observed in clonal culture, indicating the unbiased production of functional opposite mating-types. By construction of appropriately marked strains we have been able to show that mtl-3 mt- gametes prefer the mt+ gametes of their own strain. A model is presented which invokes unequal crossing over between highly homologous flagellar agglutinin genes to account for the unusual properties of the mtl-3 strain and for the evolution of mating barriers within the genus.  相似文献   

16.
Within seconds after the flagella of mt+ and mt- Chlamydomonas gametes adhere during fertilization, their flagellar adenylyl cyclase is activated several fold and preparation for cell fusion is initiated. Our previous studies indicated that early events in this pathway, including control of adenylyl cyclase, are regulated by phosphorylation and dephosphorylation. Here, we describe a soluble, flagellar protein kinase activity that is regulated by flagellar adhesion. A 48-kDa, soluble flagellar protein was consistently phosphorylated in an in vitro assay in flagella isolated from nonadhering mt+ and mt- gametes, but not in flagella isolated from mt+ and mt- gametes that had been adhering for 1 min. Although the 48-kDa protein was present in the flagella isolated from adhering gametes, we demonstrate that its protein kinase was inactivated by flagellar adhesion. Immunoblot analysis and inhibitor studies indicate that the 48-kDa protein in nonadhering gametes is phosphorylated by a protein tyrosine kinase. In vivo experiments showing that the protein tyrosine phosphatase inhibitor sodium orthovanadate inhibits fertilization suggest that protein dephosphorylation may be required for signal transduction. The 48-kDa protein and its protein kinase may be among the first elements of a novel signalling pathway that couples interaction of flagellar adhesion molecules to gamete activation.  相似文献   

17.
Sexual fusion between plus and minus gametes of the unicellular green alga Chlamydomonas reinhardtii entails adhesion between plus-specific and minus-specific "fringe" proteins displayed on the plasma membrane of gametic mating structures. We report the identification of the gene (fus1) encoding the plus fringe glycoprotein, which resides in a unique domain of the mating-type plus (mt+) locus, and which was identified by transposon insertions in three fusion-defective mutant strains. Transformation with fus1+ restores fringe and fusion competence to these mutants and to the pseudo-plus mutant imp11 mt-, defective in minus differentiation. The fus1 gene is remarkable in lacking the codon bias found in all other nuclear genes of C. reinhardtii.  相似文献   

18.
The temperature-sensitive gametogenesis-defective mutant, gam-1 is sex- limited, expressed only in mating type minus (mt-), and can sexually agglutinate but not fuse at the restrictive temperature (35 degrees C) with gametes of wild type (wt) mt+. Thin-section, freeze-cleave, and scanning electron microscopy reveal that the gam-1 phenotype is dependent on both the temperature at which the cells undergo nitrogen starvation (and therefore gamete formation) and the temperature at which the cells are maintained during the 12 h before mating. Under all conditions of gametogenesis at 35 degrees C, each gam-1 cell produces a normal-appearing membrane-associated mating structure that fails to activate in response to flagellar agglutination. Varying with the conditions of gametogenesis, on the other hand, are the agglutination and signaling properties of the gam-1 flagella. The two mutant phenotypes displayed by gam-1 have been denoted gam-1-I and gam-1-II. An agglutination reaction involving gam-1-I cells does not result in activation of the wt mt+ mating structure. A more stable agglutination reaction, which can result in activation of the wt mt+ mating structure, is characteristic of gam-1-II cells, but because the gam-1 mt- mating sturcture still fails to activate, cell fusion is precluded. We conclude that the gam-1 mutation affects flagellar component(s) involved in establishing an effective, signal-generating agglutination reaction.  相似文献   

19.
《The Journal of cell biology》1989,109(4):1677-1687
Species-specific binding between the flagellar surfaces of mating types plus and minus (mt+ and mt-) gametes of Chlamydomonas eugametos is mediated by mating type-specific agglutinins. Their interaction triggers several mating responses that are necessary for cell fusion, such as flagellar twitching, flagellar tip activation, redistribution of agglutinin molecules to the flagellar tip (tipping), and mating structure activation. Earlier, we reported that a monoclonal antibody (mAb 66.3) can induce mating reactions by cross-linking the agglutinins (Homan, W. L., A. Musgrave, H. de Nobel, R. Wagter, A. H. J. Kolk, D. de Wit, and H. van den Ende. 1988. J. Cell Biol. 107:177-189). Here we report that the lectin wheat germ agglutinin (WGA), which does not bind to the agglutinins, can also invoke all these mating reactions. We show, by immunofluorescence studies using anti-WGA and an agglutinin- specific monoclonal antibody (mAb 66.3), that WGA induces the redistribution of agglutinin to the flagellar tips of mt- gametes. Vice versa, when agglutinin tipping is induced by mAb 66.3, the WGA-binding glycoproteins are also tipped. Under the same conditions, the major flagellar glycoproteins are not redistributed, indicating that membrane transport is limited to a few components. We conclude that each agglutinin is associated with a WGA-binding glycoprotein. When cells lacking agglutinin or cells possessing inactive agglutinins are treated with WGA, mating responses are again elicited. The data suggest that clustering of agglutinin-containing complexes results in the production of intracellular signals, such as cAMP, and the coupling of the complex to a force generating system. In nature, the complexes are clustered via the agglutinins, but artificially they can be clustered by lectins or antibodies directed against other proteins in the complex.  相似文献   

20.
In medium with low nitrogen content, vegetative strains of the unicellular biflagellate alga Chlamydomonas reinhardi form gametes. Mating type plus (mt+) and mating type minus (mt-) gametes adhere via their flagella to give aggregates in which the gametes eventually fuse to form zygotes. A quantitative assay has now been developed which measures aggregation and fusion by use of a Coulter electronic particle counter to determine loss of single gametes as they form aggregates in suspension. Determination of the rate and extent of cell fusion by microscopy agrees with the results obtained with the more rapid and convenient Coulter counter assay. By use of the assay it was found that aggregation and fusion occur at the same rate and to the same extent at 12 degrees C and 25 degrees C. Flagella from one of the mating types can specifically substitute for the corresponding live gametes; more than 70% of the gametes were aggregated and the extent of aggregation was proportional to the number of flagella added, until the ratio of cells to flagella exceeded 2. At 22 degrees C, in the flagella/gamete mixtures, adhesion was complete in less than 5 min, but at 5 to 10 min, gametes began to de-adhere from the clusters and, depending on the number of flagella added, essentially all of the gametes detached from the aggregates in 10 to 50 min. The gametes in such mixtures were fully competent to aggregate again, whereas the flagella recovered from such mixtures were shown by use of a radioactive flagella-binding assay to be inactive with fresh gametes. Inactivation of the flagella was temperature-dependent, was not catalyzed by soluble factors, and required adhesion of flagella to gametes of the opposite mating type. The potential physiological functions of the de-adhesion process are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号