首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposing dark-grown seedlings for 3 d to oxygen deficiency (0or 5 kPa) or to additions of carbon dioxide (10 kPa) or ethylene(0·1 Pa) slowed shoot extension in Echinochloa oryzoides,while in rice it was promoted by these treatments, except that5 kPa oxygen was without effect. In E. oryzoides this was dueto reduced growth of the mesocotyl, and in rice to enhancedgrowth of the coleoptile. These responses to carbon dioxideand oxygen deficiency were not consequences of increased ethyleneproduction, since this remained unchanged by carbon dioxideand depressed by oxygen shortage in both species. Furthermore,exogenous ethylene and the ethylene action inhibitor 2,5-norbornadieneeach failed to influence extension in anoxic seedlings, indicatingno regulatory role for ethylene in the absence of oxygen. However,concentrations of the ethylene precursor 1 -aminocyclopropane-1-carboxylic acid (ACC) were increased by carbon dioxide and0 kPa or 5 kPa oxygen, although after 72 h without oxygen totalACC production (i.e. changes in ethylene + ACC + MACC) was suppressedin both species. There was little effect on bound ACC [putativemalonyl-ACC (MACC)] formation. Transferring anaerobic (0 kPa)seedlings to oxygenated conditions (21 kPa) resulted in abnormallyfast rates of ethylene formation, possibly due to the accumulationof ACC under anoxia. This post-anoxic ethylene may have contributedto the faster extension by rice coleoptiles and slower extensionby mesocotyls of E. oryzoides compared with those of seedlingsmaintained continuously in air. Echinochloa oryzoides [Ard.] Fritsch, barnyard grass, Oryza sativa L, rice, oxygen shortage, carbon dioxide, ethylene biosynthesis, shoot extension, 1-aminocyclopropane-1-carboxylic acid (ACC), malonyl-ACC, GC-MS  相似文献   

2.
3.
Photothermal Responses of Flowering in Rice (Oryza sativa)   总被引:1,自引:0,他引:1  
Durations from sowing to panicle emergence in 16 diverse genotypesof rice (Oryza sativa L.) were recorded in 13 different photothermalregimes, comprising constant and diurnally alternating temperaturesbetween 16 and 32 °C and photoperiods between 10.5 and 15.0h d–1—all provided by controlled-environment growthcabinets. In 11.5 h days and at sub-optimal temperatures, relationsbetween the rate of progress towards panicle emergence and meantemperature were linear in all genotypes, and amongst thesethe base temperature at that photoperiod varied between 6.6and 11.9 °C. In most cases progress was most rapid at 24–26°C, i.e. the optimum temperature was much cooler than expectedfrom previously published values of times to panicle emergencein a less extensive range of photothermal regimes. Only in threecultivars was it warmer than 28 °C, and in these there weresufficient data to establish that relations between rates ofprogress to panicle emergence and photoperiod in the diurnallyalternating temperature regime of 28–20 °C are alsolinear. Also, the responses of these three cultivars provideno evidence of any interaction between the effects of photoperiodand temperature. We conclude, then, that the model in whichrate of development is a linear function of both temperatureand photoperiod with no interaction, which has been shown tobe common to many other species, also applies to rice. Differencesamong genotypes in relative sensitivity of rate of progresstowards panicle emergence to both temperature and to photoperiodwere considerable; japonica cultivars tended to be more sensitiveto temperature and less sensitive to photoperiod than indicacultivars. Four indica cultivars bred and selected at The InternationalRice Research Institute (IRRI) in the Philippines did not differ(P > 0.10) in their relations between rate of progress towardspanicle emergence and sub-optimal temperatures in a daylengthof 11.5 h, but the optimum temperature for cv. IR 36 was appreciablywarmer than that for the cvs IR 5, IR 8 and IR 42. Oryza sativa, rice, flowering, temperature, photoperiod, photothermal responses  相似文献   

4.
Tolerance to ethanol and the ability to metabolize key intermediary substrates under anaerobiosis were studied in Echinochloa crus-galli (L.) Beauv. var oryzicola seeds to further characterize the mechanisms which enable it to germinate and grow without O2.

Our results indicate that E. crus-galli var oryzicola possesses an inherently high tolerance to ethanol and is able to metabolize low levels of ethanol in the absence of O2. Concentrations of ethanol 45-fold greater than endogenous levels did not prove toxic to germinating seeds.

Five-day anaerobically grown seedlings of E. crus-galli var oryzicola metabolized added [14C]sucrose primarily to CO2 and ethanol. Of the soluble compounds labeled, the phosphorylated intermediates of glycolysis and the oxidative pentose phosphate pathway predominated more under anaerobiosis than in air. In addition, organic acids and lipids were labeled from [14C]sucrose, the latter indicating that metabolism of carbohydrate via acetyl-CoA occurred in the absence of O2. Lipids were also labeled when seeds were supplied with [14C]ethanol or [14C]acetate. Labeling experiments using the above compounds plus [14C]NaHCO3, showed further labeling of organic acids; succinate and citrate being labeled under nitrogen, while fumarate was formed in air.

The above metabolic characteristics would allow for the maintenance of an active alcoholic fermentation system which, along with high alcohol dehydrogenase activity, would continue to recycle NAD and result in continued energy production without O2. In addition, Echinochloa's ability to metabolize carbohydrate intermediates and to synthesize lipids indicates that mechanisms exist for providing the carbon intermediates for biosynthesis, particularly membrane synthesis for growth, even in the absence of O2.

  相似文献   

5.
采用FACE(Free Air Carbon-dioxide Enrichment)技术,研究了不同N、P施肥水平下,水稻分蘖期、拔节期、抽穗期和成熟期根、茎、穗生长,C/N比、N、P含量及N、P吸收对大气CO2浓度升高的响应,结果表明,高CO2促进水稻茎、穗和根的生长,增加分蘖期叶干重,对拔节期、抽穗期的成熟期叶干重没有显著增加,降低茎、叶N含量;增加抽穗期穗N含量;降低成熟期穗N含量;对分蘖期根N含量影响不显著,而降低拔节期,抽穗期和成熟期根N含量,增加拔节期、抽穗期和成熟期叶P含量,对茎、穗、根P含量影响不显著,水稻各组织C含量变化不显著,C/N比增加,显著增加水稻地上部分P吸收;增加N吸收,但没有统计显著性,N、P施用对水稻各组织生物量没有显著影响,高N(HN)比低N(LN)增加组织中N含量,而不同P肥水平间未表现出明显差异,高N条件下高CO2增加水稻成熟期地下部分/地上部分比,文中还讨论了高CO2对N、P含量及地下部分/地上部分比的影响机制。  相似文献   

6.
The possible roles of oxygen and carbon dioxide treatments inthe presence or absence of ethylene on tuber dormancy releasein potato (Solanum tuberosumL.) were examined. Using two gascompositions (I: 60% CO2–20% O2–20% N2and II: 20%CO2–40% O2–40% N2), the phase of tuber dormancyand previous storage temperature were demonstrated to be importantparameters for dormancy release by these gas mixtures. Gas Icaused decreased abscisic acid (ABA) levels within 24 h regardlessof previous storage temperature, although this effect was reversible.Exogenous C2H4, an effective dormancy release agent, also causeddecreased ABA levels within 24 h. It also enhanced dormancyrelease and further promoted ABA losses by gas I. Gas II treatmentled to slight reductions in ABA levels that were further decreasedby C2H4. Sprout length was modelled successfully by multipleregression analysis in terms of glucose and ABA levels withinthe apical eye tissues of Russet Burbank tubers immediatelyafter, and regardless of, previous gas treatments or storagetemperatures. Solanum tuberosum,potato, abscisic acid, ethylene, carbon dioxide, oxygen, dormancy.  相似文献   

7.
Echinochloa crus-galli L. Beauv., a rice-field weed, can germinate and grow for extended periods of time in an anaerobic environment. Compared to pea, which does not germinate under anaerobiosis, the evolution of CO2 in Echinochloa and rice is lower and the peak rate of CO2 evolution is delayed when germinated without oxygen. The plants studied also differ with respect to their respiration ratio ([CO2] N2/[CO2] air) and metabolism used during the early stages of germination. Echinochloa does not increase its glycolytic rate under anaerobiosis, whereas pentose phosphate pathway activity appears to increase during the first 40 to 50 hours of germination.

Based on its response to metabolic inhibitors (NaF, dinitrophenol, and malonate), anaerobic metabolism in Echinochloa proceeds primarily through glycolysis, with partial operation of the tricarboxylic acid cycle and little or no oxidative phosphorylation. Also, Echinochloa is sensitive to CN during aerobic germination, whereas rice appears to be able to shift to CN-insensitive electron transport. Finally, the effectiveness of cyanide and azide on inhibiting germination of Echinochloa in N2, but not CO, suggests that cytochrome oxidase is not used to reoxidize pyridine nucleotides in the absence of oxygen. The possible existence of an alternate electron acceptor is discussed.

  相似文献   

8.
Echinochloa crus-galli, a problem weed in rice fields, has the rare ability to germinate and to grow in a totally oxygen-free environment. After 7 days growth in the light or dark under N2, E. crus-galli var. oryzicola produces a 2- to 3-centimeter nonpigmented shoot.  相似文献   

9.
Gu XY  Foley ME  Chen ZX 《Genetica》2004,122(2):127-140
Differentiation in photoperiodic response of flowering has been key to the evolution and wide geographic distribution of rice, an essentially short-day plant. Crosses were made such that the hybrid F1 plants flower later than the late-flowering parents to investigate the genetic basis underlying this differentiation. From initial experiments, three major genes for flowering time were identified from four naturally occurring variants under natural long-day conditions. An F2-derived trigenic mutant line bred-true for a day-neutral response was selected and used as the recipient to synchronize the genetic background for the major genes. Experiments conducted under various daylengths indicated that these genes are responsible for photoperiodic sensitivity and the trihybrid has a critical daylength between 13.5 and 14 h. The three genes regulate photoperiodic responses qualitatively and quantitatively through complementary and other epistatic effects, respectively. The complementation suggests that the three genes act in a linear manner to repress the transition from the vegetative to reproductive phases under long daylengths. This set of genes also provides a model to understand the genetic mechanism underlying the elongated vegetative growth period in the F1 generation, which is usually an obstacle to the use of heterosis, and the selection for early maturation in rice breeding.  相似文献   

10.
Unlike most plant species, Oryza sativa L. cv. S-201 and Echinochloaphyllopogon (Stev.) Koss germinate and grow under anaerobicconditions. In both species, the radicle or shoot emerged byday 3 when the seeds were germinated in air or N2. Under eithercondition, shoot and/or root dry weight (d. wt) increased linearlyfrom day 3 to day 7, with a corresponding decrease in seed d.wt. In anaerobically grown O. sativa, d. wt accumulation wasreduced to 7% of that in air whereas d. wt lost from the seedwas reduced to only 37%. No root growth occurred during anaerobicgermination and shoot d. wt accumulation accounted for 10% ofthe d. wt lost from the seed. In E. phyllopogon, d. wt accumulationduring anoxia was 25% of that in air, but loss of d. wt fromthe seed was 44% of the aerobic rate. In air, 48% of the d.wt lost from the seed was converted to shoot or root d. wt.Like O. sativa, E. phyllopogon does not produce a root underN2, but shoot growth accounted for 27% of the d. wt lost fromthe seed. Thus, either in air or N2, E. phyllopogon was moreefficient at converting seed reserves to shoot/root structuraldry matter than O. sativa . Based on changes in metabolite pools,O. sativa appeared to shift exclusively to fermentation duringanaerobic growth. In E. phyllopogon, however, fermentation alonecannot satisfy the energy requirement for growth without O2.Rather, fermentation, coupled with limited tricarboxylic acid(TCA) cycle operation could supply sufficient ATP for growthunder anaerobic conditions. An active oxidative pentose phosphatepathway and lipid synthesis were discussed as important mechanismsfor converting NADH to NAD, a necessary cofactor for fermentationand TCA cycle activity.Copyright 1994, 1999 Academic Press Anaerobiosis, Echinochloa phyllopogon, energetics model, fermentation, mitochondrial activity, Oryza sativa, rice, tricarboxylic acid cycle, watergrass  相似文献   

11.
Jackson, M. B., Fenning, T. M., and Jenkins, W. 1985 Aerenchyma(gas-space) formation in adventitious roots of rice (Oryza sativaL.) is not controlled by ethylene or small partial pressuresof oxygen.—J. exp. Bot. 36: 1566–1572. The extent of gas-filled voids (aerenchyma) within the cortexof adventitious roots of vegetative rice plants (Oryza sativaL. cv. RB3) was estimated microscopically from transverse sectionswith the aid of a computer-linked digitizer drawing board. Gas-spacewas detectable in 1-d-old tissue and increased in extent withage. After 7 d, approximately 70% of the cortex had degeneratedto form aerenchyma. The extent of the voids in 1-4-d-old tissuewas not increased by stagnant, poorly-aerated external environmentscharacterized by sub-ambient oxygen partial pressures and accumulationsof carbon dioxide and ethylene. Treatment with small oxygenpartial pressures, or with carbon dioxide or ethylene appliedin vigorously stirred nutrient solution also failed to promotethe formation of cortical gas-space. Furthermore, ethylene productionby rice roots was slowed by small oxygen partial pressures typicalof stagnant conditions. Silver nitrate, an inhibitor of ethylene action, did not retardgas-space formation; similarly when endogenous ethylene productionwas inhibited by the application of aminoethoxyvinylglycine(A VG), aerenchyma development continued unabated. Cobalt chloride,another presumed inhibitor of ethylene biosynthesis, did notimpair formation of the gas in rice roots nor did it decreasethe extent of aerenchyma even if A VG was supplied simultaneously.These results contrast with those obtained earlier using rootsof Zea mays L. We conclude that in rice, aerenchyma forms speedily even inwell-aerated environments as an integral part of ordinary rootdevelopment There seems to be little or no requirement for ethyleneas a stimulus in stagnant root-environments where aerenchymais likely to increase the probability of survival. Key words: Rice (Oryza sativa L.), ethylene, flooding, aeration, aerenchyma, environmental stress  相似文献   

12.
水稻染色体G—带的研究   总被引:10,自引:2,他引:10  
姚青  宋运淳 《遗传学报》1990,17(4):301-307
用改良的ASG法首次在籼稻(O.sativa subsp.indica)品种珍汕97和粳稻(O.subsp.iaponica)品种秀岭的有丝分裂染色体上显示了G-带,并作了相应的G-带核型分析。就同一材料来说,随着有丝分裂时期的推进,染色体上带纹数目逐渐减少。籼、粳亚种间相对应的同源染色体上G-带带纹特征彼此相似。讨论了水稻G-带带型与染色体不同区域分化的关系;G-带带型与籼、粳稻分歧的关系;以及G-显带的方法。  相似文献   

13.
14.
15.
Vascular plant bio-photovoltaics (VP-BPV) is a recently developed technology that uses higher plants to harvest solar energy and the metabolic activity of heterotrophic microorganisms in the plant rhizosphere to generate electrical power. In the present study, electrical output and maximum power output variations were investigated in a novel VP-BPV configuration using the crop plant rice (Oryza sativa L.) or an associated weed, Echinochloa glabrescens (Munro ex Hook. f.). In order to compare directly the physiological performances of these two species in VP-BPV systems, plants were grown in the same soil and glasshouse conditions, while the bio-electrochemical systems were operated in the absence of additional energy inputs (e.g. bias potential, injection of organic substrate and/or bacterial pre-inoculum). Diurnal oscillations were clearly observed in the electrical outputs of VP-BPV systems containing the two species over an 8-day growth period. During this 8-day period, O. sativa generated charge ~6 times faster than E. glabrescens. This greater electrogenic activity generated a total charge accumulation of 6.75?±?0.87 Coulombs for O. sativa compared to 1.12?±?0.16 for E. glabrescens. The average power output observed over a period of about 30 days for O. sativa was significantly higher (0.980?±?0.059 GJ?ha?1?year?1) than for E. glabrescens (0.088?±?0.008 GJ?ha?1?year?1). This work indicates that electrical power can be generated in both VP-BPV systems (O. sativa and E. glabrescens) when bacterial populations are self-forming. Possible reasons for the differences in power outputs between the two plant species are discussed.  相似文献   

16.
Abstract Aerobically germinated seedlings of rice and Echinochloa were found to survive when placed in an anaerobic environment for 4 d, whereas pea and maize seedlings did not. Although root and shoot growth were inhibited in rice and Echinochloa under anaerobiosis, growth resumed when the seedlings were returned to aerobic conditions. Alcohol dehydrogenase (ADH) activity increased more, and protein synthesis was greater, in the shoots than in the roots under anaerobic conditions. These results suggest that, in anaerobiosis-tolerant species, ADH activity and protein synthesis in the shoots represents or results from metabolic adaptations to low oxygen. These results are discussed in terms of plant establishment and growth in a low-oxygen environment.  相似文献   

17.
Enzymatically modified proteins (EMP) with different methionine levels were produced from soy protein isolate using an improved plastein reaction. The products having methionine at approximate levels of 4%, 7%, and 14%, designated as EMP4, EMP7, and EMP14, respectively, were investigated to characterize their chemical properties particularly in terms of the state and location of the methionine residues. Leucine aminopeptidase treatment of the EMP products did not find any significant amount of methionine residues at the N-terminals, but carboxypeptidase A treatment liberated methionine efficiently in accordance with the methionine levels in the EMP products. Treatment with LiBH4 reduced the methionine content of EMP14 by approximately 64%. A significant amount of homoserine was produced when EMP14 was treated with BrCN. All these data indicate that the covalently attached methionine molecules are localized at or near the C-terminals of the EMP molecules, probably as oligomers.  相似文献   

18.
The dual effects of auxin and ethylene on rice seminal root growth were investigated in this study. Low concentrations of exogenous indole-3-acetic acid (IAA) had no effect on rice seminal root growth, whereas higher concentrations (≥0.003 μM) were inhibitory. In contrast, low concentrations of the auxin action inhibitor p-chlorophenoxyisobutyric acid (PCIB), ranging from 0.5 to 50 μM, promoted rice seminal root growth, whereas high concentrations of PCIB (≥500 μM) and the polar auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA) inhibited rice seminal root growth. These results suggest that endogenous auxin is required but supraoptimal for rapid growth of rice seminal roots. In addition, although rice seminal root growth was inhibited by the exogenous ethylene-releasing compound ethephon or the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) as well as exogenous IAA, the 50% inhibition of growth (I50) caused by ethephon or ACC was weakened by certain concentrations of the ethylene action inhibitor Ag+ (0.016-0.4 μM). However, the I50 caused by exogenous IAA was strengthened by Ag+ or the ethylene biosynthetic inhibitor aminoethoxyvinylglycine (AVG) and weakened by certain concentrations of PCIB (0.5-50 μM). Together, the inhibitory mechanisms of auxin and ethylene on rice seminal root growth should be different, and auxin inhibition of rice seminal root growth should not be caused by ethylene. Furthermore, our results indicated that a certain threshold level of ethylene was required to maintain rice seminal root growth, and that ethylene within the threshold may antagonize auxin inhibition of rice seminal root growth.  相似文献   

19.
Sclerotium rolfsii was grown in various atmospheres, the compositionsof which were controlled by the diffusion column technique.Growth-rate of mycelium was constant within a range of oxygenconcentrations from 3 to 21 per cent, but dirminished steadilyas carbon dioxide concentration increased from about 0.03 percent. The rate of sclerotial germination was reduced by oxygenconcentrations less than 6 per cent and by carbon dioxide concentrationsgreater than about 10 per cent. No sclerotia were formed ifthe concentration of oxygen fell below 15 per cent or if thatof carbon dioxide exceeded 4 per cent. The effects of inverserationof gases, from 0 per cent oxygen: 20 per cent carbon dioxideto 21 per cent oxygen: 0 per cent carbon dioxide, were in eachcase similar to the effect of the corresponding carbon dioxideconcentration when combined with 21 per cent oxygen.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号