首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive method for the routine measurement of endogenous melatonin (MEL) in pineal, retina and plasma rat tissues has been developed using reversed-phase high-performance liquid chromatography with electrochemical detection. Quantification limit for MEL was 0.2 ng/mg protein in pineal, 15 pg/ml in plasma and 2.0 pg/mg protein in retina. To improve both MEL quantification and the reproducibility of the assay, an internal standard was used when an extraction in organic solvent was required, in contrast with other available chromatographic methods. MEL values and the circadian profile obtained in this study from both rat pineal and plasma agree with those reported previously. This method allows MEL detection in mammal retina, particularly in rat, where MEL levels are very low.  相似文献   

2.
A Chan  M Ebadi 《Life sciences》1981,28(6):697-703
The relationship between the concentration of CoASH and the activity of serotonin N-acetyltransferase (NAT) was studied in rat pineal glands in culture. A technique for microdetermination of CoASH was developed by utilizing acetyl CoA synthetase and partially purified rat liver NAT. Initially CoASH was acetylated with [1–3H] acetate using acetyl CoA synthetase. Subsequently, the labelled acetyl group was transferred from [1–3H] acetyl CoA to tryptamine forming [1–3H acetyl-tryptamine which was then extracted into chloroform and measured by scintillation spectrometry. A direct relationship appeared to exist between the concentrations of CoASH and [1–3H] acetyltryptamine. This method is sensitive and specific since it can detect as low as 10–15 pmoles of CoASH but not structurally related substances such as acetyl CoA, ADP, cysteamine, or D-pantothenic acid. After treating the rat pineal glands in culture with 10 μM norepinephrine for six hours, the concentration of CoASH was found to decrease significantly from 31.96 ± 0.68 to 24.44 ± 0.37 pmoles/gland, while the activity of NAT increased 68 fold. This inverse relationship indicates that CoASH does not play a direct role in NAT induction although it does protect darktime NAT activity in pineal homogenates against thermal inactivation. The sensitivity and the adaptability of this method can be utilized to measure CoASH in discrete regions of rat brain and in experimental conditions where the micromeasurement of CoASH may be required.  相似文献   

3.
N-Acetyltransferase (NAT) activity was determined in the pineal gland of frogs (Rana tigrina) of different ages using 2-aminofluorene and p-aminobenzoic acid as substrates, and assayed by high-pressure liquid chromatography. Frogs of different ages were either killed during the light phase or exposed to darkness or light for 1 min during the dark phase of the lighting cycle, then returned to their cages in darkness for 30 min before being killed. The pineal gland NAT activity of 1-month-old frogs was inhibited when the animal was nocturnally exposed to 1 min of light. Nocturnal light exposure did not inhibit NAT activity in 1-month-old frogs, even though these animal displayed clear light-dark differences in pineal gland NAT activity. Nocturnal light exposure did not inhibit night-time levels of NAT activity in 1-month-old animals which had been bilaterally enucleated, thus suggesting that this effect is retinally mediated. Pretreatment of 1-month-old and 6-month-old animals with isoproterenol (a beta-adrenoceptor agonist drug) prevented the nocturnal light-induced inhibition of NAT activity. From the different sensitivity of 1-month-old and 6-month-old animals to different intensities or durations of nocturnal light exposure it was found that the duration or intensity of light exposure was not able to inhibit nocturnal NAT activity. The NAT activity was at least 4–5-fold greater in 1-month-old frogs than in 6-month-old frogs. This is the first demonstration of the retino-pineal gland pathway that appears to produce light-induced changes in pineal glands of frogs 1-month-old or older, but this pathway only functions in 1-month-old frogs, and does not appear to function in 6-month-old frogs.  相似文献   

4.
Levels of norepinephrine and dopamine in the rat pineal gland were determined by a radioenzymatic assay with modifications to separate the reaction products. Catecholamines were converted to 3-O-methylated derivatives in the presence of catechol-O-methyltransferase (EC 2.1.1.1) and S-adenosyl-L-[methyl-3H]-methionine. Following solvent extraction of the labelled normetanephrine and 3-methoxytyramine, the amines were separated by high-performance liquid chromatography. Contents of both catecholamines in the pineal gland varied with a 24-hr rhythm. The content of norepinephrine was maximal at about 6 A.M. (lights on from 8 A.M. to 8 P.M.) and declined gradually thereafter. In contrast to the level of norepinephrine, the dopamine level was highest at about 0 A.M. and fell rapidly to reach a trough after the lights were turned on. These observations suggest that the diurnal variation of norepinephrine is generated by changes in the contents of dopamine in sympathetic nerve terminals innervating the pineal.  相似文献   

5.
N-acetyltransferase (NAT) is believed to be the rate-limiting enzyme in the synthesis of melatonin from serotonin in the pineal gland. Norepinephrine released from sympathetic nerve endings within the pineal gland stimulates NAT activity and, therefore, melatonin synthesis. When an animal is subjected to a stressful stimulus, it would be expected that the increase in plasma stimulus, it would be expected that the increase in plasma catecholamines originating from the adrenal medulla and/or the sympathetic nervous system would result in a stimulation of pineal NAT activity. Adult male rats were given a 1.5cc injection of physiological saline subcutaneously into the back leg. Compared to non-injected controls, animals stressed in this manner were shown to have significantly lower pineal melatonin content 10 min after the saline injection late in the light phase of the light/dark cycle (at 18.30 h-lights on at 07.00 h). To test this more thoroughly, a time course study was conducted during the dark phase (at 02.00 h-5 hours after lights out) when pineal NAT activity and melatonin levels are either increasing or elevated. NAT activity and melatonin levels in the pineal were significantly depressed in stressed animals as compared to controls by 10 min after the saline injection, and remained so until 60 min after injection. By 90 min they had returned to control values. In the next study the nighttime response of the pineal to stress was compared in intact and adrenalectomized rats. Adrenalectomy prevented the changes in NAT activity and melatonin content associated with the saline injection. Some factor, such as a catecholamine or corticosterone from the adrenal, seems to be eliciting the response in the pineal to the saline injection. It is not known if the factor is acting centrally or directly on the pineal gland.  相似文献   

6.
Lin SS  Hung CF  Ho CC  Liu YH  Ho HC  Chung JG 《Neurochemical research》2000,25(11):1503-1508
Numerous studies have demonstrated that the Acetyl Coenzyme A-dependent arylamine NAT enzyme exist in many tissues of experimental animals including humans, and that NAT has been shown to be exist in mouse brain tissue. Increased NAT activity levels are associated with increased sensitivity to the mutagenic effects of arylamine carcinogens. Attenuation of liver NAT activity is related to breast and bladder cancer processes. Therefore, the effects of ellagic acid (EA) on the in vitro and in vivo N-acetylation of 2-aminofluorene (AF) were investigated in cerebrum, cerebellum and pineal gland tissues from male Sprague-Dawley rats. For in vitro examination, cytosols with or without EA (0.5–500 M) co-treatment decreased 7–72%, 15–63% and 10–78% of AF acetylation for cerebrum, cerebellum and pineal gland tissues, respectively. For in vivo examination, EA and AF at the same time treated groups with all 3 examined tissues did show significant differences (the changes of total amounts of AF and AF metabolites based on the Anova analysis) when compared to the ones without EA cotreatment rats. The pretreatment of male rats with EA (10 mg/kg) 24 hr prior to the administration of AF (50 mg/kg) (one day of EA administration suffice to induce large changes in phase II enzyme activity) resulted in a 76% decrease in total AF and metabolites in pineal gland but did not show significant differences in cerebrum and cerebellum tissues. This is the first demonstration to show that EA decreases the N-acetylation of carcinogens in rat brain tissues.  相似文献   

7.
Melatonin synthesis in the pineal gland, which is primarily regulated by the environmental lighting regime, can also be influenced by other factors that elicit modifications in sympathetic tone. The objectives of this study were to determine if forced swimming alters the normal pattern of melatonin production in the pineal gland of the Richardson's ground squirrel (Spermophilus richardsonii). In early June, the squirrels were forced to swim for 10 min during the photophase or during the scotophase. In mid-July squirrels swam only during the scotophase. Animals were sacrificed 15, 30, or 60 min after the onset of swimming. Activities of pineal N-acetyltransferase (NAT) and hydroxyindole-O-methyltransferase (HIOMT) were assessed by radioenzyme assay, and pineal melatonin content was measured by radioimmunoassay. Daytime swimming elicited no major changes in enzyme activity or pineal melatonin. In June, swimming at night prevented the normal rises in NAT activity and pineal melatonin seen in nonswimming controls. In contrast, the pineals of squirrels that were tested 6 weeks later in mid-July did not appear to be as sensitive to nighttime swimming, as there were only minor differences in both NAT activity and melatonin content compared to controls. These results demonstrate that forced nighttime swimming, unlike several other aversive stimuli, can evoke changes in the normal pattern of pineal melatonin production in this species. Furthermore, the pineal's response to such stimuli may not be stable over the course of the active season.  相似文献   

8.
In the pineal gland numbers of synaptic ribbons (SR) undergo day/night changes which parallel the rhythm of melatonin synthesis. Since pineal biosynthetic activity is controlled by activation of adrenoreceptors, we investigated the effects of adrenergic agonists and antagonists on pineal synaptic ribbon numbers and N-acetyltransferase (NAT) activity, the key enzyme of melatonin synthesis in rats. In vivo application of the beta-adrenergic antagonist propranolol decreased melatonin synthesis when given during the dark phase but did not affect SR numbers. Treatment during daytime with the beta-adrenergic agonist isoproterenol increased pineal NAT activity whereas SR numbers did not change. Norepinephrine stimulated NAT activity in vitro in a dose-dependent manner, but did not elevate SR numbers. Incubation with an analog of the second messenger cyclic adenosine monophosphate increased both NAT activity and SR numbers. These results suggest that the beta-adrenergic system does not play a decisive role in the regulation of the nocturnal increase in SR numbers observed in the rat pineal gland.  相似文献   

9.
L Vollrath  H A Welker 《Life sciences》1988,42(22):2223-2229
Previous studies involving physical-immobilization stress in laboratory rats have yielded inconsistent results with respect to melatonin synthesis in the pineal gland. As melatonin formation undergoes circadian and infradian rhythms, the aim of the present study was to examine whether stress experiments exhibit day-to-day variation. Toward this end, groups of male Sprague-Dawley rats were stressed by physical immobilization on eight consecutive days, respectively, or left relatively undisturbed, and killed. The pineal gland was rapidly dissected out and serotonin N-acetyltransferase (NAT) activity and melatonin levels were measured. NAT activity was significantly depressed on experimental days 1, 3 and 5, and slightly depressed on day 7. In addition, both in control and experimental animals NAT activity exhibited statistically significant differences between experimental days. Pineal melatonin levels were less variable. On experimental days 3 and 6 immobilization led to a significant increase of pineal melatonin levels. These results show that day-to-day variation is an important factor that influences the outcome of stress experiments and represent another example that NAT activity and pineal melatonin levels do not always show corresponding changes.  相似文献   

10.
Young adult male rats were treated with isoproterenol during the day to induce high levels of pineal N-acetyltransferase (NAT) activity and melatonin. Roughly 2 hr later when pineal NAT activity and melatonin levels were elevated, animals were given either an injection of a calcium channel blocker, i.e., either nifedipine or verapamil, or diluent. The rats were then forced to swim for 10 min in room temperature (22 degrees C) water. Fifteen minutes after swimming onset, pineal glands were collected for measurement of NAT activity and melatonin. Swimming caused a dramatic reduction in pineal melatonin content without influencing NAT activity. Nifedipine substantially and verapamil completely blocked the drop in pineal melatonin levels due to swimming without influencing NAT activity. The results suggest that calcium may be somehow directly or indirectly involved in melatonin release from the rat pineal gland.  相似文献   

11.
Abstract: The distribution of methionine adenosyltransferase (MAT) in the CNS of the rat was studied by use of a rapid, sensitive and specific radiochemical method. The S -adenosyl-[methyl-14C] l -methionine ([14C]SAM) generated by adenosyl transfer from ATP to [methyl-14C] l -methionine is quantitated by use of a SAM-consuming transmethylation reaction. Catechol O -methyltransferase (COMT), prepared from rat liver, transfers the methyl-14C group of SAM to 3,4-dihydroxybenzoic acid. The 14C-labelled methylation products, vanillic acid and isovanillic acid, are separated from unreacted methionine by solvent extraction and quantitated by liquid scintillation counting. Compared to other methods of MAT determination, which include separation of generated SAM from methionine by ion-exchange chromatography, the assay described exhibited the same high degree of specificity and sensitivity but proved to be less time consuming. MAT activity was found to be uniformly distributed between various brain regions and the pituitary gland of adult male rats. In the pineal gland the enzyme activity is about tenfold higher.  相似文献   

12.
Two rabbit arylamine N-acetyltransferases (NAT1 and NAT2, EC 2.3.1.5) have been cloned and characterized recently in this laboratory. They catalyze the acetylation of primary arylamine and hydrazine drugs and other substrates in the liver, including sulfamethazine, p-aminosalicylic acid, and p-aminobenzoic acid. In the pineal gland, serotonin is metabolized to N-acetylserotonin by an unknown N-acetyl-transferase. Similarity of the liver enzymes and the pineal gland arylalkylamine N-acetyltransferase (AA-NAT) has been suggested, because pineal gland homogenates were shown to metabolize arylamine substrates as p-phenetidine, aniline, or phenylethylamine, and liver homogenates or partially purified liver enzyme preparations catalyzed the N-acetylation of serotonin. The present study was undertaken to elucidate the possible role of NAT1 or NAT2 in serotonin acetylation in the pineal gland. We transiently expressed rNAT1 and rNAT2 genes in COS cells, studied the kinetics of the enzymes produced with various substrates, and compared these data with activities of rabbit pineal glands and livers. These enzymatic studies were complemented with western blot analysis with antibodies against NAT1 and NAT2. Cross-hybridization of rNAT1 or rNAT2 to the gene for the pineal gland AA-NAT was tested by Southern blot studies of genomic rabbit DNA. Our results indicate that although NAT1 is expressed in the pineal gland, it is not involved in the physiologically important step of N-acetylation of serotonin.  相似文献   

13.
Some studies have shown a decrease in pineal N-acetyltransferase (NAT) activity and/or blood melatonin concentration in rodents exposed to extremely low-frequency (ELF) and low magnetic flux density electromagnetic fields. The mechanism/s involved in such effects are not known. It has been hypothesized that the magnetic fields (MF) could act on the pineal gland directly and/or indirectly through the retina. The aim of this work was to study whether MFs could modify NAT activity through a direct effect on the gland. Pineal glands obtained from rats sacrificed in the middle of the dark period were exposed during a 1-h incubation to 10-, 100-, or 1,000-μT, 50-Hz, sinusoidal MFs. The results showed that the glands exposed to the highest magnetic flux density responded with a significant decrease in NAT activity. The data obtained from these experiments support the idea that the pineal gland can be directly affected by ELF electromagnetic fields.  相似文献   

14.
Wild-captured cotton rats (Sigmodon hispidus) trapped and tested in September and October exhibited a rapid reduction in pineal N-acetyltransferase (NAT) activity and melatonin levels after exposure to a light irradiance of 300 ωW/cm2 during the dark period. The half-time for the depression of both NAT and melatonin was on the order of 2 min. The exposure of cotton rats during darkness to much lower irradiances of light, i.e., 5.0, 0.04, 0.03 or 0.01 W/cm2, for 32 min also greatly diminished pineal NAT activity and radioimmunoassayable melatonin levels; however, a light irradiance of 0.005 ωW/cm2 failed to significantly depress either the acetylating enzyme or the melatonin content of the pineal gland. The results show that the pineal gland of the wild-captured cotton rat, as judged by NAT activity and melatonin levels, is inhibited even by very low irradiances of light.  相似文献   

15.
N-Acetyltransferase (NAT) is an enzyme whose rhythmic activity in the pineal gland and retina is responsible for circadian rhythms in melatonin. The NAT activity rhythm has circadian properties such as persistence in constant conditions and precise control by light and dark. Experiments are reported in which chicks (Gallus domesticus), raised for 3 weeks in 12 h of light alternating with 12 h of dark (LD12:12), were exposed to 1-3 days of light-dark treatments during which NAT activity was measured in their pineal glands. (a) In LD12:12, NAT activity rose from less than 4.5 nmol/pineal gland/h during the light-time to 25-50 nmol/pineal gland/h in the dark-time. Constant light (LL) attenuated the amplitude of the NAT activity rhythm to 26-45% of the NAT activity cycle in LD12:12 during the first 24 h. (b) The timing of the increase in NAT activity was reset by the first full LD12:12 cycle following a 12-h phase shift of the LD12:12 cycle (a procedure that reversed the times of light and dark by imposition of either 24 h of light or dark). This result satisfies one of the criteria for NAT to be considered part of a circadian driving oscillator. (c) In less than 24-h cycles [2 h of light in alternation with 2 h of dark (LD2:2), 4 h of light in alternation with 4 h of dark (LD4:4), and 6 h of light in alternation with 6 h of dark (LD6:6)], NAT activity rose in the dark during the chicks' previously scheduled dark-time but not the previously scheduled light-time of LD12:12. In a cycle where 8 h of light alternated with 8 h of dark (LD8:8), NAT activity rose in both 8-h dark periods, even though the second one fell in the light-time of the prior LD12:12 schedule.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Summary Prothoracicotropic hormone (PTTH)-like activity was obtained from embryonated eggs of the gypsy moth, Lymantria dispar. Activity was detected using an in vitro prothoracic gland stimulation bioassay. Doseresponse kinetics of crude extract revealed a 4-fold activation range with a maximum activation of 35-fold. Nearly 70% of the activity was sensitive to denaturation by heat or organic solvent extraction. Heat and organic solvent-stable activity is due to a protein. Dose-response kinetics suggest the presence of a small molecular weight PTTH with pre-hatch eggs providing a rich source of the hormone.Abbreviations Ar activation ratio - ED 50 50 percent effective dose - eq equivalent - HPLC high performance liquid chromatography - PC prothoracic gland - PTTH prothoracicotropic hormone - RIA radioimmuno assay - TFA trifluoroacetic acid  相似文献   

17.
Abstract: Serotonin N -acetytransferase (NAT) activity in chicken pineal homogenates is increased 16-fold in the presence of high-molarity phosphate buffer (0.35 m ) as compared with its activity in low-molarity (0.05 m ) phosphate buffer. This phosphate effect on NAT does not depend on ionic, osmotic, or pH changes; rather, it appears to be a direct effect of phosphate on NAT activity. Phosphate also stabilizes NAT activity to thermal inactivation and inactivation caused by incubation at 4°C for 48 h. Stimulation of NAT activity by phosphate occurs only in chick pineal and retina, not in chick cerebrum, cerebellum or liver, nor in rat pineal or other tissues tested. There is a correlation between the occurrence of the phosphate effect and the occurrence of endogenous NAT circadian rhythmicity and light inactivation. The effect of phosphate on NAT activity in homogenates may reflect physiological mechanisms of NAT regulation.  相似文献   

18.
The endogenous γ-aminobutyric acid (GABA) content of the rat pineal gland and superior cervical ganglion (SCG) was measured by high pressure liquid chromatography. It was found that GABA levels in both tissues increased after decapitation of the animals. The GABA content of tissues frozen within 20 seconds after decapitation was the same as that of tissues removed from animals killed by microwave irradiation. Amino-oxyacetic acid, a GABA-transaminase inhibitor, increased the endogenous GABA content of both of these tissues. Dimethylphenylpiperizinium or isoniazid administration did not alter GABA levels in these tissues. Isoproterenol increased the GABA content of the SCG but did not change the pineal gland GABA levels. The ability of the pineal gland to take up and accumulate 3H-GABA was significantly reduced in rats that had been ganglionectomized. A fluctuation in endogenous GABA levels in the pineal gland was seen to occur when measures were taken at different times of the day. These results tend to suggest that GABA may have some functional role in the pineal gland and the superior cervical ganglion.  相似文献   

19.
The purpose of these experiments was to determine whether the exposure of rats at night to pulsed DC magnetic fields (MF) would influence the nocturnal production and secretion of melatonin, as indicated by pineal N-acetyltransferase (NAT) activity (the rate limiting enzyme in melatonin production) and pineal and serum melatonin levels. By using a computer-driven exposure system, 15 experiments were conducted. MF exposure onset was always during the night, with the duration of exposure varying from 15 to 120 min. A variety of field strengths, ranging from 50 to 500 μT (0.5 to 5.0 G) were used with the bulk of the studies being conducted using a 100 μT (1.0 G) field. During the interval of DC MF exposure, the field was turned on and off at 1-s intervals with a rise/fall time constant of 5 ms. Because the studies were performed during the night, all procedures were carried out under weak red light (intensity of <5 μW/cm2). At the conclusion of each study, a blood sample and the pineal gland were collected for analysis of serum melatonin titers and pineal NAT and melatonin levels. The outcome of individual studies varied. Of the 23 cases in which pineal NAT activity, pineal melatonin, and serum melatonin levels were measured, the following results were obtained; in 5 cases (21.7%) pineal NAT activity was depressed, in 2 cases (8.7%) studies pineal melatonin levels were lowered, and in 10 cases (43.5%) serum melatonin concentrations were reduced. Never was there a measured rise in any of the end points that were considered in this study. The magnitudes of the reductions were not correlated with field strength (i.e., no dose-response relationships were apparent), and likewise the reductions could not be correlated with the season of the year (experiments conducted at 12-month intervals under identical exposure conditions yielded different results). Duration of exposure also seemed not to be a factor in the degree of melatonin suppression. The inconsistency of the results does not permit the conclusion that pineal melatonin production or release are routinely influenced by pulsed DC MF exposure. In the current series of studies, a suppression of serum melatonin sometimes occurred in the absence of any apparent change in the synthesis of this indoleamine within the pineal gland (no alteration in either pineal NAT activity or pineal melatonin levels). Because melatonin is a direct free radical scavenger, the drop in serum melatonin could theoretically be explained by an increased uptake of melatonin by tissues that were experiencing augmented levels of free radicals as a consequence of MF exposure. This hypothetical possibly requires additional experimental documentation. Bioelectromagnetics 19:318–329, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
The activities of serotonin N-acetyltransferase (NAT) and hydroxyindole-O-methyltransferase (HIOMT) and the melatonin content were measured in Syrian hamster pineal glands at 2-hr intervals over a period of 24 hr. NAT and HIOMT are the two enzymes which catalyze the formation of melatonin from serotonin. The use of micromethods for determination of the enzyme activities allowed concurrent measurement of NAT and melatonin or HIOMT and melatonin in the same gland. HIOMT activity showed no significant diurnal rhythm whereas NAT activity and melatonin content exhibited distinct peak values late in the dark phase as described previously. Despite an apparent parallelism between the NAT activity rhythm and melatonin content, no correlation exists between these parameters in single pineal glands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号