首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have performed a mutational analysis together with RNA interference to determine the role of the kinesin-like protein KLP67A in Drosophila cell division. During both mitosis and male meiosis, Klp67A mutations cause an increase in MT length and disrupt discrete aspects of spindle assembly, as well as cytokinesis. Mutant cells exhibit greatly enlarged metaphase spindle as a result of excessive MT polymerization. The analysis of both living and fixed cells also shows perturbations in centrosome separation, chromosome segregation, and central spindle assembly. These data demonstrate that the MT plus end-directed motor KLP67A is essential for spindle assembly during mitosis and male meiosis and suggest that the regulation of MT plus-end polymerization is a key determinant of spindle architecture throughout cell division.  相似文献   

2.
The him-8 gene is essential for proper meiotic segregation of the X chromosomes in C. elegans. Here we show that loss of him-8 function causes profound X chromosome-specific defects in homolog pairing and synapsis. him-8 encodes a C2H2 zinc-finger protein that is expressed during meiosis and concentrates at a site on the X chromosome known as the meiotic pairing center (PC). A role for HIM-8 in PC function is supported by genetic interactions between PC lesions and him-8 mutations. HIM-8 bound chromosome sites associate with the nuclear envelope (NE) throughout meiotic prophase. Surprisingly, a point mutation in him-8 that retains both chromosome binding and NE localization fails to stabilize pairing or promote synapsis. These observations indicate that stabilization of homolog pairing is an active process in which the tethering of chromosome sites to the NE may be necessary but is not sufficient.  相似文献   

3.
Progesterone Receptor Membrane Component 1 (PGRMC1) is expressed in both oocyte and ovarian somatic cells, where it is found in multiple cellular sub-compartments including the mitotic spindle apparatus. PGRMC1 localization in the maturing bovine oocytes mirrors its localization in mitotic cells, suggesting a possible common action in mitosis and meiosis. To test the hypothesis that altering PGRMC1 activity leads to similar defects in mitosis and meiosis, PGRMC1 function was perturbed in cultured bovine granulosa cells (bGC) and maturing oocytes and the effect on mitotic and meiotic progression assessed. RNA interference-mediated PGRMC1 silencing in bGC significantly reduced cell proliferation, with a concomitant increase in the percentage of cells arrested at G2/M phase, which is consistent with an arrested or prolonged M-phase. This observation was confirmed by time-lapse imaging that revealed defects in late karyokinesis. In agreement with a role during late mitotic events, a direct interaction between PGRMC1 and Aurora Kinase B (AURKB) was observed in the central spindle at of dividing cells. Similarly, treatment with the PGRMC1 inhibitor AG205 or PGRMC1 silencing in the oocyte impaired completion of meiosis I. Specifically the ability of the oocyte to extrude the first polar body was significantly impaired while meiotic figures aberration and chromatin scattering within the ooplasm increased. Finally, analysis of PGRMC1 and AURKB localization in AG205-treated oocytes confirmed an altered localization of both proteins when meiotic errors occur. The present findings demonstrate that PGRMC1 participates in late events of both mammalian mitosis and oocyte meiosis, consistent with PGRMC1's localization at the mid-zone and mid-body of the mitotic and meiotic spindle.  相似文献   

4.
Sister-Chromatid Misbehavior in Drosophila Ord Mutants   总被引:1,自引:0,他引:1       下载免费PDF全文
In Drosophila males and females mutant for the ord gene, sister chromatids prematurely disjoin in meiosis. We have isolated five new alleles of ord and analyzed them both as homozygotes and in trans to deficiencies for the locus, and we show that ord function is necessary early in meiosis of both sexes. Strong ord alleles result in chromosome nondisjunction in meiosis I that appears to be the consequence of precocious separation of the sister chromatids followed by their random segregation. Cytological analysis in males confirmed that precocious disjunction of the sister chromatids occurs in prometaphase I. This is in contrast to Drosophila mei-S332 mutants, in which precocious sister-chromatid separation also occurs, but not until late in anaphase I. All three of the new female fertile ord alleles reduce recombination, suggesting they affect homolog association as well as sister-chromatid cohesion. In addition to the effect of ord mutations on meiosis, we find that in ord2 mutants chromosome segregation is aberrant in the mitotic divisions that produce the spermatocytes. The strongest ord alleles, ord2 and ord5, appear to cause defects in germline divisions in the female. These alleles are female sterile and produce egg chambers with altered nurse cell number, size, and nuclear morphology. In contrast to the effects of ord mutations on germline mitosis, all of the alleles are fully viable even when in trans to a deficiency, and thus exhibit no essential role in somatic mitosis. The ord gene product may prevent premature sister-chromatid separation by promoting cohesion of the sister chromatids in a structural or regulatory manner.  相似文献   

5.
S. E. Bickel  D. W. Wyman    T. L. Orr-Weaver 《Genetics》1997,146(4):1319-1331
The ord gene is required for proper segregation of all chromosomes in both male and female Drosophila meiosis. Here we describe the isolation of a null ord allele and examine the consequences of ablating ord function. Cytologically, meiotic sister-chromatid cohesion is severely disrupted in flies lacking ORD protein. Moreover, the frequency of missegregation in genetic tests is consistent with random segregation of chromosomes through both meiotic divisions, suggesting that sister cohesion may be completely abolished. However, only a slight decrease in viability is observed for ord null flies, indicating that ORD function is not essential for cohesion during somatic mitosis. In addition, we do not observe perturbation of germ-line mitotic divisions in flies lacking ORD activity. Our analysis of weaker ord alleles suggests that ORD is required for proper centromeric cohesion after arm cohesion is released at the metaphase I/anaphase I transition. Finally, although meiotic cohesion is abolished in the ord null fly, chromosome loss is not appreciable. Therefore, ORD activity appears to promote centromeric cohesion during meiosis II but is not essential for kinetochore function during anaphase.  相似文献   

6.
PUF proteins are a conserved family of RNA binding proteins that regulate RNA stability and translation by binding to specific sequences in 3'-untranslated regions. Drosophila PUMILIO and C. elegans FBF are essential for self-renewal of germline stem cells, suggesting that a common function of PUF proteins may be to sustain mitotic proliferation of stem cells. Here, we show that PUF-8, the C. elegans PUF most related to PUMILIO, performs a different function in germ cells that have begun meiosis: in primary spermatocytes, puf-8 is required to maintain meiosis and prevent the return to mitosis. Primary spermatocytes lacking PUF-8 complete meiotic prophase but do not undergo normal meiotic divisions. Instead, they dedifferentiate back into mitotically cycling germ cells and form rapidly growing tumors. These findings reveal an unexpected ability for germ cells that have completed meiotic prophase to return to the mitotic cycle, and they support the view that PUF proteins regulate multiple transitions during germline development.  相似文献   

7.
The mitotic exit network (MEN) is an essential GTPase signaling pathway that triggers exit from mitosis in budding yeast. We show here that during meiosis, the MEN is dispensable for exit from meiosis I but contributes to the timely exit from meiosis II. Consistent with a role for the MEN during meiosis II, we find that the signaling pathway is active only during meiosis II. Our analysis further shows that MEN signaling is modulated during meiosis in several key ways. Whereas binding of MEN components to spindle pole bodies (SPBs) is necessary for MEN signaling during mitosis, during meiosis MEN signaling occurs off SPBs and does not require the SPB recruitment factor Nud1. Furthermore, unlike during mitosis, MEN signaling is controlled through the regulated interaction between the MEN kinase Dbf20 and its activating subunit Mob1. Our data lead to the conclusion that a pathway essential for vegetative growth is largely dispensable for the specialized meiotic divisions and provide insights into how cell cycle regulatory pathways are modulated to accommodate different modes of cell division.  相似文献   

8.
Malmanche N  Maia A  Sunkel CE 《FEBS letters》2006,580(12):2888-2895
Aneuploidy is a common feature of many cancers, suggesting that genomic stability is essential to prevent tumorigenesis. Also, during meiosis, chromosome non-disjunction produces gamete imbalance and when fertilized result in developmental arrest or severe birth defects. The spindle assembly checkpoint prevents chromosome mis-segregation during both mitosis and meiosis. In mitosis, this control system monitors kinetochore-microtubule attachment while in meiosis its role is still unclear. Interestingly, recent data suggest that defects in the spindle assembly checkpoint are unlikely to cause cancer development but might facilitate tumour progression. However, in meiosis a weakened checkpoint could contribute to age-related aneuploidy found in humans.  相似文献   

9.
Inductions of reversions of nonsense, missense and frameshift-type mutations were investigated in a diploid cell population of Saccharomyces cerevisiae during commitment to meiosis, by using the medium-transfer technique from sporulation medium to vegetative medium. The yields of spontaneous reverse mutations obtained from the cells that were committed to different stages during meiosis were rather constant irrespective of the alleles tested, although the yields of both intergenic and intragenic recombinations markedly increased.The susceptibilities to UV-induced reverse mutations examined during commitment to meiosis were not changed appreciably. It is concluded that induction of base-change-type mutations in meiosis is not essentially different from that in mitosis.  相似文献   

10.
BACKGROUND: Mitotic chromosome segregation depends on bi-orientation and capture of sister kinetochores by microtubules emanating from opposite spindle poles and the near synchronous loss of sister chromatid cohesion. During meiosis I, in contrast, sister kinetochores orient to the same pole, and homologous kinetochores are captured by microtubules emanating from opposite spindle poles. Additionally, mechanisms exist that prevent complete loss of cohesion during meiosis I. These features ensure that homologs separate during meiosis I and sister chromatids remain together until meiosis II. The mechanisms responsible for orienting kinetochores in mitosis and for causing asynchronous loss of cohesion during meiosis are not well understood. RESULTS: During mitosis in C. elegans, aurora B kinase, AIR-2, is not required for sister chromatid separation, but it is required for chromosome segregation. Condensin recruitment during metaphase requires AIR-2; however, condensin functions during prometaphase, independent of AIR-2. During metaphase, AIR-2 promotes chromosome congression to the metaphase plate, perhaps by inhibiting attachment of chromatids to both spindle poles. During meiosis in AIR-2-depleted oocytes, congression of bivalents appears normal, but segregation fails. Localization of AIR-2 on meiotic bivalents suggests this kinase promotes separation of homologs by promoting the loss of cohesion distal to the single chiasma. Inactivation of the phosphatase that antagonizes AIR-2 causes premature separation of chromatids during meiosis I, in a separase-dependent reaction. CONCLUSIONS: Aurora B functions to resolve chiasmata during meiosis I and to regulate kinetochore function during mitosis. Condensin mediates chromosome condensation during prophase, and condensin-independent pathways contribute to chromosome condensation during metaphase.  相似文献   

11.
The gamma-tubulin ring complex (gammaTuRC) forms an essential template for microtubule nucleation in animal cells. The molecular composition of the gammaTuRC has been described; however, the functions of the subunits proposed to form the cap structure remain to be characterized in vivo. In Drosophila, the core components of the gammaTuRC are essential for mitosis, whereas the cap component Grip75 is not required for viability but functions in bicoid RNA localization during oogenesis. The other cap components have not been analyzed in vivo. We report the functional characterization of the cap components Grip128 and Grip75. Animals with mutations in Dgrip128 or Dgrip75 are viable, but both males and females are sterile. Both proteins are required for the formation of distinct sets of microtubules, which facilitate bicoid RNA localization during oogenesis, the formation of the central microtubule aster connecting the meiosis II spindles in oocytes and cytokinesis in male meiosis. Grip75 and Grip128 anchor the axoneme at the nucleus during sperm elongation. We propose that Grip75 and Grip128 are required to tether microtubules at specific microtubule-organizing centers, instead of being required for general microtubule nucleation. The gammaTuRC cap structure may be essential only for non-centrosome-based microtubule functions.  相似文献   

12.
13.
The final steps of oogenesis occur during oocyte maturation that generates fertilization-competent haploid eggs capable of supporting embryonic development. Cyclin-dependent kinase 1 (CDK1) drives oocyte maturation and its activity and actions on substrates are tightly regulated. CDC14 is a dual-specificity phosphatase that reduces CDK1 activity and reverses the actions of CDK1 during mitosis. In budding yeast, Cdc14 is essential for meiosis, but it is not known whether its mammalian homolog CDC14A is required for meiosis in females. Here, we report that CDC14A is concentrated in the nucleus of meiotically incompetent mouse oocytes but is dispersed throughout meiotically competent oocytes. During meiotic progression CDC14A has no specific sub-cellular localization except between metaphase of meiosis I (Met I) and metaphase of meiosis II (Met II) when it co-localizes with the central portion of the meiotic spindle. Over-expression of CDC14A generally delays meiotic progression after resumption of meiosis whereas microinjection of oocytes with an antibody against CDC14A specifically delays exit from Met I. Each of these perturbations generates eggs with chromosome alignment abnormalities and eggs that were injected with the CDC14A antibody had an elevated incidence of aneuploidy. Collectively, these data suggest that CDC14A regulates oocyte maturation and functions to promote the meiosis I-to-meiosis II transition as its homolog does in budding yeast.  相似文献   

14.
The elevated incidence of aneuploidy in human oocytes warrants study of the molecular mechanisms regulating proper chromosome segregation. The Aurora kinases are a well‐conserved family of serine/threonine kinases that are involved in proper chromosome segregation during mitosis and meiosis. Here we report the expression and localization of all three Aurora kinase homologs, AURKA, AURKB, and AURKC, during meiotic maturation of mouse oocytes. AURKA, the most abundantly expressed homolog, localizes to the spindle poles during meiosis I (MI) and meiosis II (MII), whereas AURKB is concentrated at kinetochores, specifically at metaphase of MI (Met I). The germ cell‐specific homolog, AURKC, is found along the entire length of chromosomes during both meiotic divisions. Maturing oocytes in the presence of the small molecule pan‐Aurora kinase inhibitor, ZM447439 results in defects in meiotic progression and chromosome alignment at both Met I and Met II. Over‐expression of AURKB, but not AURKA or AURKC, rescues the chromosome alignment defect suggesting that AURKB is the primary Aurora kinase responsible for regulating chromosome dynamics during meiosis in mouse oocytes. Mol. Reprod. Dev. 76: 1094–1105, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Accurate chromosome segregation during meiosis and mitosis is essential for the maintenance of genomic stability. Defects in the regulation of chromosome segregation during division predispose cells to undergo mitotic catastrophe or neoplastic transformation. Cohesin, a molecular glue holding sister chromatids together, is removed from chromosomes in a stepwise fashion during mitosis and meiosis. Cohesin at centromeres but not on chromosome arm remains intact until anaphase onset during early mitosis and the initiation of anaphase II during meiosis. Several recent studies indicate that the activity of protein phosphatase 2A is essential for maintaining the integrity of centromeric cohesin. Shugoshin, a guardian for sister chromatid segregation, may cooperate with and/or mediate PP2A function by suppressing the phosphorylation status of centromeric proteins including cohesin.  相似文献   

16.
17.
18.
19.
20.
Sister chromatid cohesion is fundamental for the faithful transmission of chromosomes during both meiosis and mitosis. Proteins involved in this process are highly conserved from yeasts to humans. In screenings for sterile animals with abnormal vulval morphology, mutations in the Caenorhabditis elegans evl-14 and scc-3 genes were isolated. Defects in cell divisions were observed in germ line as well as in vulval and somatic gonad lineages. Through positional cloning of these genes, we have shown that EVL-14 and SCC-3 are likely the only C. elegans homologs of the yeast sister chromatid cohesion proteins Pds5 and Scc3, respectively. Both evl-14 and scc-3 mutants displayed defects in the meiotic germ line. In evl-14 mutants, synaptonemal complexes (SCs) were detectable but more than the usual six DAPI (4',6'-diamidino-2-phenylindole)-positive structures were seen at diakinesis, suggesting that EVL-14/PDS-5 is important for the maintenance of sister chromatid cohesion in late prophase. In scc-3 mutant animals, normal SCs were not visible and approximately 24 DAPI-positive structures were seen at diakinesis, indicating that SCC-3 is necessary for sister chromatid cohesion. Immunostaining revealed that localization of REC-8, a homolog of the yeast meiotic cohesin subunit Rec8, to the chromosomes depends on the presence of SCC-3 but not that of EVL-14/PDS-5. scc-3 RNA interference (RNAi)-treated embryos were 100% lethal and displayed defects in cell divisions. evl-14 RNAi caused a range of phenotypes. These results indicate that EVL-14/PDS-5 and SCC-3 have functions in both mitosis and meiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号