首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We have examined phosphorylation of nerve growth factor (NGF) receptor in cultured sympathetic neurons and PC12 cells. Dissociated rat superior cervical ganglion neurons or PC12 cells were incubated with 32Pi to label cellular phosphoproteins. Membrane proteins were solubilized, and NGF receptor proteins were immunoprecipitated with the monoclonal antibody 192-IgG. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography showed that NGF receptor components of Mr = 80,000 and Mr = 210,000 were phosphorylated. Phosphorylation of neither species was affected by treating the cells with NGF or phorbol 12-myristate 13-acetate. When the 80,000-Da protein was subjected to complete trypsin proteolysis and then analyzed by reverse phase liquid chromatography, two 32P-labeled peptides were resolved. The more hydrophobic peptide accounted for most of the 32P and contained only phosphoserine; the other peptide contained phosphoserine and phosphothreonine. No phosphotyrosine was detected in the receptor proteins. When receptor molecules from nonlabeled PC12 cells were immunoprecipitated and then incubated in vitro with [gamma-32P]ATP and the cAMP-independent protein kinase FA/GSK-3, phosphorylation occurred predominantly on serine and to a lesser extent on threonine. However, the immunoprecipitated receptor proteins neither autophosphorylated nor were they detectably phosphorylated by cAMP-dependent protein kinase, casein kinase II, or protein kinase C (the Ca2+/phospholipid-dependent enzyme). We conclude that binding units of the NGF receptor are phosphorylated constitutively in at least two sites in intact cells and that they can be phosphorylated by FA/GSK-3 in vitro.  相似文献   

2.
A high-Mr phosphoprotein (Mr 442,000) was purified from Nonidet-P-40-solubilized plasma membranes of cultured human skin fibroblasts. The protein comprised one 200,000-Mr subunit consisting of 116,000- and 84,000-Mr polypeptides and two identical 121,000-Mr subunits each consisting of 66,000- and 55,000-Mr polypeptides. The 200,000-Mr subunit and its polypeptides contained phosphotyrosine residues and were also [32P]phosphorylated at these residues from [gamma-32P]ATP in vitro by an intrinsic tyrosine kinase activity of the protein molecule in response to the presence of hyaluronate precursors, UDP-glucuronic acid and UDP-N-acetylglucosamine. The 121,000-Mr subunits and their polypeptides contained phosphoserine residues that could not be [32P]phosphorylated during autophosphorylation of the protein in vitro. The protein molecules separated from exponential- and stationary-growth-phase cells were identical in their quaternary structure, but appeared to exist in different proportions with respect to the state of phosphorylation of their 121,000-Mr subunits during different growth phases of the cell. Phosphorylation of polypeptides appeared to predispose in favour of their UDP-glucuronic acid- and UDP-N-acetylglucosamine-binding activities. The phosphorylated 116,000- and 84,000-Mr polypeptides of 200,000-Mr subunits possessed a single binding site for UDP-glucuronic acid and UDP-N-acetylglucosamine respectively. The phosphorylated 200,000-Mr subunit could also cleave the UDP moiety from UDP-glucuronic acid and UDP-N-acetylglucosamine precursors. The phosphorylated 121,000-Mr subunit possessed two binding sites with equal affinity towards UDP-glucuronic acid and UDP-N-acetylglucosamine but did not possess UDP-moiety-cleavage activity. The phosphorylation of 200,000-Mr subunit by an intrinsic kinase activity of the protein molecule appeared to elicit its oligosaccharide-synthesizing activity, whereas phosphorylation of 121,000-Mr subunits, presumably carried out in vivo, abolished this activity of the protein molecule. The oligosaccharides synthesized by the protein were about Mr 5000 and about 12 disaccharide units in length. Neither nucleotide sugars nor glycosyl residues nor newly synthesized oligosaccharides were bound covalently to the protein molecule. The UDP moiety of nucleotide sugar precursors did not constitute a link between protein molecule and oligosaccharide during its synthesis. Although isolated 442,000-Mr protein did not synthesize high-Mr hyaluronate in vitro, this protein molecule can be considered as a constituent of membrane-bound hyaluronate synthase complex because of its observed properties.  相似文献   

3.
As assessed by immunoprecipitation analyses, expression of the epitope recognized by the rat mAb B23.1 is approximately sevenfold greater on the surface of mouse IL-3-dependent bone marrow culture-derived mast cells (BMMC) than on serosal mast cells (SMC) obtained directly from the peritoneal cavity. Immunoprecipitation of B23.1 antibody-binding molecules from Na[125I] surface-labeled BMMC and SMC followed by sizing on SDS-polyacrylamide gels under reducing conditions demonstrated that the epitope is located on molecules of 49,000 and 47,500 Mr, respectively. An additional immunoprecipitated molecule of 42,000 Mr was detected from BMMC intrinsically radiolabeled with [35S]methionine, and pulse-chase analyses revealed that this species was a biosynthetic precursor of the 49,000 Mr cell surface form of the Ag. Treatment of the immunoprecipitated 42,000 and 49,000 Mr forms with endoglycosidase F reduced the Mr of both to 37,000, as did intrinsic radiolabeling of BMMC in the presence of tunicamycin, indicating that both the 42,000 Mr precursor form and the 49,000 Mr cell surface molecule (gp49) contained N-linked carbohydrate. Activation of [32P]orthophosphate-labeled BMMC by sensitization with mouse monoclonal IgE anti-TNP and challenge with TNP-BSA or by exposure to the calcium ionophore A23187 elicited the rapid phosphorylation of gp49 but not of its precursor forms, as did treatment of the cells with PMA. Elution of phosphorylated and immunoprecipitated gp49 from SDS-polyacrylamide gels followed by partial acid hydrolysis of the protein and phosphoamino acid analysis by high voltage thin-layer electrophoresis on cellulose plates indicated that serine, but not threonine or tyrosine, was phosphorylated upon stimulation of BMMC with IgE/Ag, calcium ionophore, or PMA. Cholera toxin did not elicit phosphorylation of gp49. These data suggest that gp49, a plasma membrane glycoprotein preferentially expressed by mouse BMMC, may be either directly or indirectly phosphorylated via protein kinase C during mast cell activation-secretion.  相似文献   

4.
The phosphorylation sites of simian virus 40 (SV40) large tumor (T) antigens have been analyzed by partial proteolysis peptide mapping and phosphoamino acid analysis of the resulting products. At least four sites were found to be phosphorylated. An amino-terminal part of the molecule contained both phosphoserine and phosphothreonine. One phosphothreonine residue was located in the proline-rich carboxy-terminal end of the molecule, either at position 701 or at position 708. The mutant dl 1265, which is defective in adenovirus helper function, lacked this phosphorylation site. In addition, the carboxy-terminal part of the molecule contained phosphoserine at a more central position. T-antigen-associated proteins of SV40-transformed cell (nonviral T; 51,000 to 55,000 daltons) also contained multiple phosphorylation sites involving at least two serine residues in mouse antigens and an additional threonine residue in rat, human, and monkey antigens. The latter residue and at least one phosphoserine residue were located near one terminus of the human NVT molecule. We did not find any evidence for phosphorylation of tyrosine residues in any of the multiple species of either large T or nonviral T molecules. Several forms of large T antigens were extracted from both SV40-transformed and SV40-infected permissive and nonpermissive cells, and their phosphorylation patterns were compared. No evidence was found for a different phosphorylation pattern of T antigen in transformed cells.  相似文献   

5.
The cell adhesion molecules N-CAM and L1 are important for cell-cell recognition and cell migration and so may be involved in the metastatic process. We have studied the biosynthesis of N-CAM and L1 in the B16 melanoma cell lines B16-F1 and B16-F10 which differ in metastatic capacity. N-CAM was synthesised as two glycosylated polypeptides with Mr of 150,000 and 210,000; L1 was synthesised as one polypeptide with Mr of 215,000. In fetal neurons N-CAM is synthesised as a 135,000 and a 200,000 Mr polypeptide and L1 as a 200,000 Mr polypeptide. Thus, the Mr of N-CAM and L1 in tumour cells appeared to be 10,000-15,000 higher than in the normal cells. L1 was phosphorylated in the tumour cells as in neurons. The tumour cells also phosphorylated the 210,000 Mr N-CAM polypeptide, whereas no phosphorylation of the 150,000 Mr polypeptide was observed. In neuronal cells both the corresponding polypeptides are phosphorylated and thus the biosynthesis of N-CAM in tumour cells seem to differ from that in neuronal cells with regard to phosphorylation. No differences in biosynthesis of N-CAM or L1 were apparent between the two tumour cell lines, B16-F1 and B16-F10.  相似文献   

6.
Binding of staphylococcal enterotoxin A to HLA-DR on B cell lines   总被引:16,自引:0,他引:16  
Staphylococcal enterotoxin A (SEA) is a potent polyclonal T cell activator. Its activating effect is entirely dependent upon its binding to accessory cells. Monocytes, B cells, and B lymphomas can bind SEA and support activation of T cells. We have earlier found that Raji cells are particularly efficient as accessory cells for SEA-induced T cell proliferation. In the present investigation we have used this cell line for the isolation and characterization of the membrane molecule to which SEA binds. Flow cytometric analysis of cells dually stained with SEA and anti-HLA-DR mAb showed that the amount of bound SEA was proportional to the HLA-DR expression. Electrophoresis of detergent extracts of Raji cells revealed one distinct SEA-binding band with a Mr of 60 to 65 kDa. This band had the same electrophoretic mobility as the MHC class II molecules. A mAb (G8) with the ability to block SEA binding to Raji cells was established. This mAb was shown to bind to the HLA-DR molecule. Both the G8 mAb and an anti-HLA-DR mAb 9-49 inhibited SEA binding to accessory cells and also inhibited SEA-induced, but not PHA-induced, T cell proliferation and production of IL-2. Immunoprecipitation with specific anti-HLA-DR and anti-HLA-DQ mAb demonstrated that SEA binds to the HLA-DR molecule but not to the HLA-DQ molecule. Binding SEA to Raji cells followed by cross-linking and detergent solubilization of cell membranes, electrophoresis, and Western blotting resulted in two SEA-containing bands corresponding to a Mr of 90 and 105 kDa, respectively. Both these bands also contained the HLA-DR molecule and their appearance could be blocked by preincubation of the Raji cells with the G8 mAb. Collectively the results show that the HLA-DR molecule is the main functional molecule for binding of SEA to accessory cells and that this binding of SEA to HLA-DR is a necessary requirement for SEA-induced T cell activation.  相似文献   

7.
The expression of the antigenic determinant identified by the B54.2 rat monoclonal antibody on four populations of mouse mast cells has been quantified, and the epitope-bearing surface antigen and its biosynthesis have been characterized. As assessed by indirect immunofluorescence staining and flow cytometric analysis, B54.2 antibody bound to serosal mast cells (S-MC), bone marrow culture-derived mast cells (BM-MC), fetal liver culture-derived mast cells (FTL-MC), and Abelson murine leukemia virus-transformed FTL-MC (ABFTL-MC). However, the intensity of cell surface fluorescence exhibited by ABFTL-MC was approximately eightfold less per cell compared with nontransformed, culture-derived mast cells. Immunoprecipitation of B54.2 antibody-binding molecules from each population of mast cells labeled intrinsically with [35S]methionine and analysis by SDS-PAGE demonstrated that the B54.2 epitope was expressed in each case on two noncovalently associated proteins of 110,000 Mr and approximately 130,000 Mr, but that the percentage of radiolabel in the latter species was approximately threefold less in ABFTL-MC than in BM-MC. As assessed by pulse-chase analysis with [35S]methionine, the 110,000 Mr protein was a precursor of the 130,000 Mr molecule ("B54.2 antigen") synthesized by BM-MC. Labeling of BM-MC with [35S]methionine in the presence of tunicamycin followed by immunoprecipitation and SDS-PAGE of B54.2 antibody-binding material revealed a single species of 93,000 Mr, indicating that the native molecules contained N-linked carbohydrate. Endoglycosidase H treatment of the glycoproteins precipitated by B54.2 antibody from BM-MC reduced the Mr of the 110,000-Mr molecule to 93,000 Mr without an appreciable change in the 130,000-Mr species. These data indicate that the 110,000-Mr precursor form is a "high mannose" type glycoprotein and the 130,000-Mr membrane surface B54.2 antigen is a "complex" type glycoprotein, and that the epitope recognized by the B54.2 antibody on the surface of the mouse mast cell populations is located on the 93,000-Mr peptide core.  相似文献   

8.
Polyclonal antiserum prepared against the human epidermal growth factor receptor immunoprecipitated four proteins of Mr = 66,000, 68,000, 74,000, and 82,000 from avian erythroblastosis virus-transformed chick embryo fibroblasts (cell line AEV-C23) which seemed to be related to the erbB gene product. The Mr = 66,000 and 68,000 proteins chased into the Mr = 74,000 and 82,000 proteins in pulse-chase experiments. The Mr = 68,000 and 82,000 proteins were found to be phosphorylated primarily on serine and threonine residues and contained minor amounts of phosphotyrosine. Tryptic peptide analysis of these phosphoproteins revealed several major peptides, and treatment of cells with the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate resulted in the appearance of an additional phosphopeptide. 12-O-Tetradecanoyl-phorbol-13-acetate also inhibited growth of AEV-C23 cells in soft agar and in monolayer culture. In vitro phosphorylation of Mr = 68,000 and 74,000 proteins in immunoprecipitates occurred on tyrosine with lesser amounts of phosphoserine and phosphothreonine detected.  相似文献   

9.
The interaction between type 1 plasminogen activator inhibitor (PAI-1) and fragments of vitronectin (Vn) was investigated. The PAI-1-binding domain was not destroyed when Vn was cleaved by treatment with either acid or CNBr. Acid-cleaved Vn was fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and analyzed by PAI-1 ligand binding. The smallest fragment (Mr 40,000) that retained PAI-1 binding function was sequenced and shown to contain the NH2 terminus of the molecule. Further cleavage of this fragment by treatment with CNBr generated a Mr 35,000 fragment (Pro52-Asp239) that did not interact with PAI-1, and a Mr 6,000 NH2-terminal fragment (Asp1-Met51) that spanned the somatomedin B domain and contained the RGD (cell binding) sequence. The purified Mr 6,000 fragment competed with immobilized Vn for PAI-1 binding, and formed complexes with activated PAI-1. These complexes could be immunoprecipitated by antibodies to PAI-1. Synthetic peptides containing the RGD sequence had no effect on the binding of this fragment to PAI-1. These results suggest that the cell-binding and PAI-1 binding sequences of Vn occupy distinct regions in the NH2-terminal somatomedin B domain of the molecule.  相似文献   

10.
The addition of the tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA) to serum-starved quiescent Reuber H35 hepatoma cells results in a rapid 5- to 11-fold increase in the incorporation of 32Pi into a Mr = 32,000 ribosomal protein. The Mr = 32,000 protein was the major phosphorylated protein extracted from isolated 80 S ribosomes and was identified as the 40 S ribosomal protein S6 based upon its migration in two-dimensional gels. Insulin, which has been demonstrated to increase the phosphorylation of S6 in a number of cell lines, caused a 10- to 20-fold increase in the incorporation of 32Pi into this Mr = 32,000 ribosomal protein. S6 phosphorylation was dose- and time-dependent being detected as early as 5 min following the addition of 1.6 microM TPA. Maximal phosphorylation of ribosomal protein S6 was achieved by 60 min and remained elevated for at least 90 min in the presence of TPA. The 50% effective dose for TPA was estimated to be 0.14 microM. Based upon the altered migration of S6 in pH 8.5 urea-polyacrylamide gels, it was demonstrated that the increased 32Pi labeling of S6 by TPA was due to a net increase in the incorporation of phosphates into the S6 molecule. Non-tumor-promoting phorbol esters were ineffective in increasing the phosphorylation of S6. In whole cells, exogenously added 1 mM 8-bromoadenosine 3':5'-monophosphate failed to substantially increase phosphorylation of S6 suggesting that the TPA-induced phosphorylation of S6 occurs via a cyclic AMP-independent mechanism. The S6 amino acid residue phosphorylated in response to TPA was phosphoserine. A possible role for protein kinase C in the phosphorylation of ribosomal protein S6 is discussed.  相似文献   

11.
The location of phosphorylation sites in the large T antigen of simian virus 40 has been studied both by partial chemical cleavage and by partial proteolysis of various forms of large T. These included the full-size wild-type molecule with an apparent molecular weight of 88,000, deleted molecules coded for by the mutants dl1265 and dl1263, and several shortened derivatives generated by the action of a cellular protease. These molecules differed from each other by variations in the carboxy-terminal end. In contrast, a ubiquitous but minor large T form with a molecular weight of 91,000 was found to be modified in the amino-terminal half of the molecule. In addition to the phosphorylation of threonine at position 701 (K.-H. Scheidtmann et al., J. Virol. 38:59-69, 1981), two other discrete domains of phosphorylation were recognized, one at either side of the molecule. The amino-terminal region was located between positions 81 and 124 and contained both phosphothreonine and phosphoserine residues. The carboxy-terminal region was located between approximate positions 500 and 640 and contained at least one phosphoserine residue but no phosphothreonine. The presence in the phosphorylated domains of large T of known recognition sequences for different types of protein kinases is discussed, together with possible functions of large T associated with these domains.  相似文献   

12.
Phosphorylation of cellular proteins was stimulated in a dose-dependent manner by the surface binding of IgG antibodies to antigens on L cells. Most prominent among the phosphorylated cellular proteins were Mr = 115,000, 93,000, 58,000, 38,000, and 33,000 proteins. Stimulation of protein phosphorylation was maximal at 48 hr of incubation and was preceeded by maximal stimulated uridine incorporation into RNA (0-24 hr) and thymidine incorporation into DNA (24-48 hr), and followed by maximal stimulated cell proliferation occurring at 72 hr (P less than 0.001 for all differences). Modification of the ligand IgG molecule by formation of complexes with protein A (PA) altered the stimulation patterns of protein phosphorylation: [(IgG)2(PA)]2, Mr = 716,000, enhanced and (IgG)(PA), Mr = 200,000, inhibited phosphorylation. The nature of the cell surface antigen(s) was partially clarified by the demonstration that affinity-purified antibodies to cytoskeletal proteins (principally a surface actin molecule) accounted for a significant part of the stimulation effect. Thus, perturbation of the L-cell membrane by certain molecular forms of anti-actin IgG antibody produces a transmembrane signal resulting in an orderly series of metabolic events including enhanced protein phosphorylation at 48 hr occurring just prior to enhanced cell growth.  相似文献   

13.
Exposure of 32P-labelled isolated rat adipocytes or epididymal fat-pads to insulin resulted in an increase in the phosphorylation of a heat-stable acid-soluble protein of Mr 22 000. The phosphorylation of this protein was unaffected by isoprenaline (isoproterenol) in intact cells, nor was its phosphorylation catalysed by exposure in vitro to the cyclic AMP-dependent protein kinase or smooth-muscle myosin light-chain kinase. The properties of the Mr-22 000 protein include: heat-stability; solubility in 1% trichloroacetic acid; pI 4.9; elution at apparent Mr 37 500 on gel filtration; and it contains both phosphoserine and phosphothreonine. It can be distinguished from the heat-stable phosphatase inhibitor 1 of adipose tissue (inhibitor 1A) and the phosphorylated form of adipose-tissue myosin light chain by several criteria. Its identity, and the possible functional significance of the insulin-stimulated phosphorylation, remain problems for future study.  相似文献   

14.
The 18,000-dalton bovine lens fiber cell intrinsic membrane protein MP18 was phosphorylated on a serine residue by both cAMP-dependent protein kinase and protein kinase C. In addition, this protein bound calmodulin and was recognized by a monoclonal antibody (2D10). These different regions were localized using enzymatic and chemical fragmentation of electrophoretically purified MP18 that had been phosphorylated with either cAMP-dependent protein kinase or protein kinase C. Partial digestion of 32P-labeled MP18 with protease V8 resulted in a Mr = 17,000 peptide that bound calmodulin, but neither contained 32P or was recognized by the monoclonal antibody 2D10. Furthermore, the 17-kDa peptide had the same N-terminal amino acid sequence as MP18. Thus, the monoclonal antibody 2D10 recognition site and the protein kinase phosphorylation site(s) are close together and confined to a small region in the C terminus of MP18. This conclusion was confirmed in experiments where MP18 was fragmented with trypsin, endoproteinase Lys-C, or CNBr. The location of the phosphorylation site was confirmed by sequencing the small 32P-labeled, C-terminal peptide that resulted from protease V8 digestion of 32P-labeled MP18. This peptide contained a consensus sequence for cAMP-dependent protein kinase.  相似文献   

15.
NanoLC-MS/MS analysis was used to characterize the phosphorylation pattern in vivo of CDC25B3 (phosphatase splice variant 1) expressed in a human cell line and to compare it to the phosphorylation of CDC25B3 by Cdk1/cyclin B and Chk1 in vitro. Cellular CDC25B3 was purified from U2OS cells conditionally overexpressing the phosphatase. Eighteen sites were detectably phosphorylated in vivo. Nearly all existing (S/T)P sites were phosphorylated in vivo and in vitro. Eight non(S/T)P sites were phosphorylated in vivo. All these sites could be phosphorylated by kinase Chk1, which phosphorylated a total of 11 sites in vitro, with consensus sequence (R/K) X(2-3) (S/P)-non P. Nearly half of the sites identified in this study were not previously described and were not homologous to sites reported to be phosphorylated in other CDC25 species. We also show that in vivo a significant part of CDC25B molecules can be hyperphosphorylated, with up to 13 phosphates per phosphatase molecule.  相似文献   

16.
Contraction of glycerinated porcine carotid artery smooth muscle in response to calcium (20 microM), calmodulin (10 microM), and MgATP was associated with phosphorylation of the 20,000-dalton myosin light chain (LC20) to an average stoichiometry of 1.47 mol of PO4/mol of LC20. Tryptic and chymotryptic phosphopeptide maps of the mono- and diphosphorylated forms of LC20 purified from skinned muscles demonstrated the presence of a single phosphopeptide in all cases. Phosphoamino acid analysis indicated that the monophosphorylated form contained primarily phosphoserine, whereas the diphosphorylated form contained both phosphoserine and phosphothreonine. Thiophosphorylation of LC20 by adenosine 5'-O-(thiotriphosphate) resulted in the incorporation of 1 mol of thiophosphate into phosphoserine. Thiophosphorylated LC20 could be subsequently phosphorylated at a threonine residue to a stoichiometry of 1.7 mol of PO4/mol of LC20 by incubation in the presence of MgATP, calcium, and calmodulin. The extent of multiple site phosphorylation of LC20 was dependent upon both the ionic strength and the free Mg2+ concentration in the muscle bath; increasing either ionic strength (0.07-0.15 M) or [Mg2+] (1-20 mM) resulted in lower stoichiometries of LC20 phosphorylation. The effect of multiple site phosphorylation on contraction was examined in muscles which were seqentially phosphorylated at serine followed by threonine. Full activation (21 degrees C) of both isometric force (1.4 newtons/cm2) and unloaded shortening velocity (0.016 L0/s) was achieved following thiophosphorylation to 1.1 mol of PO4/mol of LC20. No further activation of either isometric force (1.5 newtons/cm2) or unloaded shortening velocity (0.015 L0/s) occurred following phosphorylation to 1.7 mol of PO4/mol of LC20.  相似文献   

17.
Tyrosine phosphorylation of cellular proteins induced by heparin-binding growth factor 1 (HBGF-1) was studied by using the murine fibroblast cell line NIH 3T3 (clone 2.2). HBGF-1 specifically induced the rapid tyrosine phosphorylation of polypeptides of Mr 150,000, 130,000, and 90,000 that were detected with polyclonal and monoclonal antiphosphotyrosine (anti-P-Tyr) antibodies. The concentration of HBGF-1 required for half-maximal induction of tyrosine phosphorylation of the Mr-150,000 Mr-130,000, and Mr-90,000 proteins was approximately 0.2 to 0.5 ng/ml, which was consistent with the half-maximal concentration required for stimulation of DNA synthesis in NIH 3T3 cells. HBGF-1-induced tyrosine phosphorylation of the Mr-150,000 and Mr-130,000 proteins was detected within 30 s, whereas phosphorylation of the Mr-90,000 protein was not detected until 3 min after HBGF-1 stimulation. All three proteins were phosphorylated maximally after 15 to 30 min. Phosphoamino acid analysis of the Mr-150,000 and Mr-90,000 proteins confirmed the phosphorylation of these proteins on tyrosine residues. Phosphorylation of the Mr-150,000 and Mr-90,000 proteins occurred when cells were exposed to HBGF-1 at 37 degrees C but not at 4 degrees C. Exposure of cells to sodium orthovanadate, a potent P-Tyr phosphatase inhibitor, before stimulation with HBGF-1 resulted in enhanced detection of the Mr-150,000, Mr-130,000, and Mr-90,000 proteins by anti-P-Tyr antibodies. Anti-P-Tyr affinity-based chromatography was used to adsorb the HBGF-1 receptor affinity labeled with 125I-HBGF-1. The cross-linked HBGF-1 receptor-ligand complex was eluded with phenyl phosphate as two components: Mr 170,000 and 150,000. P-Tyr, but not phosphoserine or phosphothreonine, inhibited adsorption of the (125)I-HBGF-1-receptor complex to the anti-P-Tyr antibody matrix. Treatment of cells with sodium orthovanadate also enhanced recognition of the cross-linked (125)I-HBGF-1-receptor complex by the anti-P-Tyr matrix. These data suggest that (i) the (125)I-HBGF-1-receptor complex is phosphorylated on tyrosine residues and (ii) HBGF-1-induced signal transduction involves, in part, the tyrosine phosphorylation of at least three polypeptides.  相似文献   

18.
To characterize the sites in human p53 that become phosphorylated in response to DNA damage, we have developed polyclonal antibodies that recognize p53 only when it is phosphorylated at specific sites. Several attempts to generate an antibody to p53 phosphorylated at Ser(6) using a phosphoserine-containing peptide as an immunogen were unsuccessful; however, phosphorylation-specific antibodies were produced by using the phosphoserine mimetic, l-2-amino-4-phosphono-4, 4-difluorobutanoic acid (F(2)Pab), in place of phosphoserine. Fmoc-F(2)Pab was prepared by an improved synthesis and chemically incorporated using solid phase peptide synthesis. Affinity-purified antibodies elicited by immunizing rabbits with an F(2)Pab peptide coupled to keyhole limpet hemocyanin recognized a p53(1-39) peptide phosphorylated only at Ser(6) but not the unphosphorylated peptide or the same peptide phosphorylated at Ser(9), Ser(15), Ser(20), Ser(33), or Ser(37). Untreated A549 cells exhibited a background of constitutive phosphorylation at Ser(6) that increased approximately 10-fold upon exposure to either ionizing radiation or UV light. Similar results were obtained for Ser(9) using antibodies raised against a conventional phosphopeptide. Ser(9) was phosphorylated by casein kinase 1 in vitro in a phosphoserine 6-dependent manner. Our data identify two additional DNA damage-induced phosphorylations in human p53 and show that F(2)Pab-derivatized peptides can be used to develop phosphorylation site-specific polyclonal antibodies.  相似文献   

19.
Because many growth factor receptors are ligand-activated tyrosine protein kinases, the possibility that growth hormone (GH), a hormone implicated in human growth, promotes tyrosyl phosphorylation of its receptor was investigated. 125I-Labeled human GH was covalently cross-linked to receptors in intact 3T3-F442A fibroblasts, a cell line which differentiates into adipocytes in response to GH. The cross-linked cells were solubilized and passed over a column of phosphotyrosyl binding antibody immobilized on protein A-Sepharose. Immunoadsorbed proteins were eluted with a hapten (p-nitrophenyl phosphate) and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The eluate from the antibody column contained an Mr 134,000 125I-GH-receptor complex. A similar result was obtained when the adipocyte form of 3T3-F442A cells was used in place of the fibroblast form. O-Phosphotyrosine prevented 125I-GH-receptor complexes from binding to the antibody column, whereas O-phosphoserine and O-phosphothreonine did not. In studies of GH-promoted phosphorylation in 3T3-F442A fibroblasts labeled metabolically with [32P]Pi, GH was shown to stimulate formation of a 32P-labeled protein which bound to immobilized phosphotyrosyl binding antibodies. The molecular weight of 114,000 obtained for this protein is similar to that expected for non-cross-linked GH receptor. The Mr 114,000 phosphorylated protein could be immunoprecipitated with anti-GH antibody, indicating that GH remained noncovalently bound to this protein during absorption to and elution from the immobilized phosphotyrosyl binding antibody. Phosphoamino acid analysis after both limited acid hydrolysis and extensive base hydrolysis of the Mr 114,000 phosphoprotein confirmed the presence of phosphotyrosyl residues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
lmmunoglobin binding protein (BiP) molecules exist as both monomers and oligomers and phosphorylated BiP is restricted to the oligomeric pool. Modified BiP is not bound to proteins such as immunoglobulin heavy chain and consequently, may constitute an inactive form. Unlike earlier analysis of mammalian BiP isolated by two-dimensional gel electrophoresis, results here demonstrated that immunoprecipitated BiP displayed predominantly threonine phosphorylation with only a trace of detectable phosphoserine. Like other Hsp70 family members, BiP is comprised of three domains: an amino terminal domain which binds nucleotide, an 18 kilodalton domain which binds peptide, and a carboxyl terminal variable domain of unknown function. Cyanogen bromide cleavage and enzymatic digestion experiments mapped threonine phosphorylation to a site within a 47 amino acid sequence of the peptide binding domain which contains seven threonine residues. Partial proteinase K digestion in the presence of ATP independently verified that the in vivo phosphorylation site of mammalian (BiP) is located within the peptide binding domain. Furthermore, phosphorylation did not impede BiPs ATP-induced conformational change. Thus, the peptide binding domain of BiP is phosphorylated on threonine residue(s) mapping to not more than two tryptic fragments within the peptide binding domain. This location on the molecule could explain why phosphorylated BiP is not detected bound to proteins in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号