首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ca2+-uptake activities of the sarcoplasmic reticulum (SR) were determined with a Ca2+-sensitive electrode in homogenates from fast- and slow-twitch muscles from both normal and dystrophic mice (C57BL/6J strain) of different ages. Immunochemical quantification of tissue Ca2+-ATPase content allowed determination of the specific Ca2+-transport activity of the enzyme. In 3-week-old mice of the dystrophic strain specific Ca2+ transport was already significantly lower than in the normal strain. It progressively decreased with maturation and reached only 40-50% and 30-50% of the normal values in fast- and slow-twitch muscles of adult dystrophic animals, respectively. Tissue contents of calsequestrin were reduced in both types of muscle leading to an increased Ca2+-ATPase to calsequestrin protein ratio. Equal amounts of the Ca2+-ATPase protein (detected by Coomassie blue staining of polyacrylamide gels) were present in SR vesicles isolated by Ca2+-oxalate loading from adult normal and dystrophic fast-twitch muscles. However, the specific ATP-hydrolysing activity of the enzyme was approximately 50% lower in dystrophic than in normal SR. The reduced ATP-hydrolysing activity was correlated with decreased Ca2+-transport activity, phosphoprotein formation and fluorescein isothiocyanate labeling as determined in total microsomal and heavy SR fractions. Although the Ca2+ and ATP affinities of the enzyme were unaltered, its ATPase activity was reduced at all levels of ATP in the dystrophic SR. Taken together, these findings point to a markedly impaired function of the SR and an increase in the population of inactive SR Ca2+-ATPase molecules in murine muscular dystrophy.  相似文献   

2.
The chronic stimulation of predominantly fast-twitch mammalian skeletal muscle causes a transformation to physiological characteristics of slow-twitch skeletal muscle. Here, we report the effects of chronic stimulation on the protein components of the sarcoplasmic reticulum and transverse tubular membranes which are directly involved in excitation-contraction coupling. Comparison of protein composition of microsomal fractions from control and chronically stimulated muscle was performed by immunoblot analysis and also by staining with Coomassie blue or the cationic carbocyanine dye Stains-all. Consistent with previous experiments, a greatly reduced density was observed for the fast-twitch isozyme of Ca(2+)-ATPase, while the expression of the slow-twitch Ca(2+)-ATPase was found to be greatly enhanced. Components of the sarcolemma (Na+/K(+)-ATPase, dystrophin-glycoprotein complex) and the free sarcoplasmic reticulum (Ca(2+)-binding protein sarcalumenin and a 53-kDa glycoprotein) were not affected by chronic stimulation. The relative abundance of calsequestrin was slightly reduced in transformed skeletal muscle. However, the expression of the ryanodine receptor/Ca(Ca2+)-release channel from junctional sarcoplasmic reticulum and the transverse tubular dihydropyridine-sensitive Ca2+ channel, as well as two junctional sarcoplasmic reticulum proteins of 90 kDa and 94 kDa, was greatly suppressed in transformed muscle. Thus, the expression of the major protein components of the triad junction involved in excitation-contraction coupling is suppressed, while the expression of other muscle membrane proteins is not affected in chronically stimulated muscle.  相似文献   

3.
Two Ca2+ sequestering proteins were studied in fast-twitch (EDL) and slow-twitch (soleus) muscle sarcoplasmic reticulum (SR) as a function of denervation time. Ca2+-ATPase activity measured in SR fractions of normal soleus represented 5% of that measure in SR fractions of normal EDL. Denervation caused a severe decrease in activity only in fast-twich muscle. Ca2+-ATPase and calsequestrin contents were affected differently by denervation. In EDL SR, Ca2+-ATPase content decreased progressively, whereas in soleus SR, no variation was observed. Calsequestrin showed a slight increase in both muscles as a function of denervation time correlated with increased45Ca-binding.These results indicate first that Ca2+-ATPase activity in EDL was under neural control, and that because of low Ca2+-ATPase activity and content in slow-twitch muscle no variation could be detected, and secondly that greater calsequestrin content might represent a relative increasing of heavy vesicles or decreasing of light vesicles as a function of denervation time in the whole SR fraction isolated in both types of muscles.  相似文献   

4.
5.
Antibodies directed against purified Ca-ATPase from sarcoplasmic reticulum, calsequestrin and parvalbumin from rabbit fast-twitch muscle were raised in sheep. The specificity of the antibodies was shown by immunoblot analysis and by enzyme-linked immunoadsorbent assays (ELISAs). IgG against the sarcoplasmic reticulum Ca-ATPase inhibited the catalytic activities of Ca-ATPase from fast-twitch (psoas, tibialis anterior) and slow-twitch (soleus) muscles to the same degree. In non-equilibrium competitive ELISAs the anti(Ca-ATPase) IgG displayed a slightly higher affinity for the Ca-ATPase from fast-twitch muscle than for that from slow-twitch muscle. This suggests a fiber-type-specific polymorphism of the sarcoplasmic reticulum Ca-ATPase. Quantification of Ca-ATPase, calsequestrin and parvalbumin in various rabbit skeletal muscles of histochemically determined fiber composition was achieved by sandwich ELISA. Ca-ATPase was found to be 6-7 times higher in fast than in slow-twitch muscles. A slightly higher concentration was found in fast-twitch muscles with a higher percentage of IIb fibers when compared with fast-twitch muscles with a higher percentage of IIa fibers. Thus Ca-ATPase is distributed as follows, IIb greater than or equal to IIa much greater than I. Calsequestrin was uniformly distributed in fast-twitch muscles independently of their IIa/IIb fiber ratio and displayed 50% lower concentrations in slow than in fast-twitch muscles (IIb = IIa greater than I). Parvalbumin contents were 200-300-fold higher in fast than in slow-twitch muscles. Significantly lower parvalbumin concentrations were found in fast-twitch muscles with a higher percentage of IIa fibers than in fast-twitch muscles with a higher percentage of IIb fibers (IIb greater than IIa much greater than I).  相似文献   

6.
Chronic excitation, at 2 Hz for 6-7 weeks, of the predominantly fast-twitch canine latissimus dorsi muscle promoted the expression of phospholamban, a protein found in sarcoplasmic reticulum (SR) from slow-twitch and cardiac muscle but not in fast-twitch muscle. At the same time that phospholamban was expressed, there was a switch from the fast-twitch (SERCA1) to the slow-twitch (SERCA2a) Ca(2+)-ATPase isoform. Antibodies against Ca(2+)-ATPase (SERCA2a) and phospholamban were used to assess the relative amounts of the slow-twitch/cardiac isoform of the Ca(2+)-ATPase and phospholamban, which were found to be virtually the same in SR vesicles from the slow-twitch muscle, vastus intermedius; cardiac muscle; and the chronically stimulated fast-twitch muscle, latissimus dorsi. The phospholamban monoclonal antibody 2D12 was added to SR vesicles to evaluate the regulatory effect of phospholamban on calcium uptake. The antibody produced a strong stimulation of calcium uptake into cardiac SR vesicles, by increasing the apparent affinity of the Ca2+ pump for calcium by 2.8-fold. In the SR from the conditioned latissimus dorsi, however, the phospholamban antibody produced only a marginal effect on Ca2+ pump calcium affinity. These different effects of phospholamban on calcium uptake suggest that phospholamban is not tightly coupled to the Ca(2+)-ATPase in SR vesicles from slow-twitch muscles and that phospholamban may have some other function in slow-twitch and chronically stimulated fast-twitch muscle.  相似文献   

7.
Ca++-Mg++-dependent ATPase and calsequestrin, the major intrinsic and extrinsic proteins, respectively, of the sarcoplasmic reticulum, were localized in cryostat sections of adult rat skeletal muscle by immunofluorescent staining and phase-contrast microscopy. Relatively high concentrations of both the ATPase and calsequestrin were found in fast-twitch myofibers while a very low concentration of the ATPase and a moderate concentration of calsequestrin were found in slow-twitch myofibers. These findings are consistent with previous biochemical studies of the isolated sarcoplasmic reticulum of slow-twitch and fast-twitch mammalian muscles. The distribution of the ATPase in muscle fibers is distinctly different from that of calsequestrin. While calsequestrin is present only near the interface between the I- and A-band regions of the sarcomere, the ATPase is found throughout the I-band region as well as in the center of the A-band region. In comparing these results with in situ ultrastructural studies of the distribution of sarcoplasmic reticulum in fast-twitch muscle, it appears that the ATPase is rather uniformly distributed throughout the sarcoplasmic reticulum while calsequestrin is almost exclusively confined to those regions of the membrane system which correspond to terminal cisternae. Fluorescent staining with these antisera was not observed in vascular smooth muscle cells present in the cryostat sections of the mammalian skeletal muscle used in this study.  相似文献   

8.
9.
The P light chain of myosin is partially phosphorylated in resting slow and fast twitch skeletal muscles of the rabbit in vivo. The extent of P light-chain phosphorylation increases in both muscles on stimulation. Rabbit slow-twitch muscles contain two forms of the P light chain that migrate with the same electrophoretic mobilities as the two forms of P light chain in rabbit ventricular muscle. The rate of phosphorylation of the P light chain in slow-twitch muscle is slower than its rate of phosphorylation in fast-twitch muscles during tetanus. The rate of P light-chain dephosphorylation is slow after tetanic contraction of fast-twitch muscles in vivo. The time course of dephosphorylation does not correlate with the decline of post-tetanic potentiation of peak twitch tension in rabbit fast-twitch muscles. The frequency of stimulation is an important factor in determining the extent of P light-chain phosphorylation in fast- and slow-twitch muscles.  相似文献   

10.
Parvalbumin in mouse muscle in vivo and in vitro   总被引:1,自引:0,他引:1  
Parvalbumin is a cytosolic calcium-binding protein found in adult fast-twitch mammalian muscle. Using an antibody to paravalbumin, we have shown that its distribution in adult mouse muscles is associated with certain fibre types. It is absent from slow-twitch type 1 fibres, is absent or at low levels in fast-twitch type 2A fibres, but is present at moderate or high levels in fast-twitch type 2B fibres. When adult mouse muscle is cultured with embryonic mouse spinal cord, the regenerated fibres become innervated, express the adult fast isoform of myosin heavy chain and appear histochemically as fast-twitch fibres. We therefore investigated whether these apparently mature fibres also contained parvalbumin. Parvalbumin was not found in any fibres of twenty mature cultures, suggesting that neurotrophic activity in the absence of specific adult nerve activity patterns was insufficient to cause the expression of parvalbumin in the cultures.  相似文献   

11.
Fast-twitch extensor digitorum longus muscles of the rabbit were subjected to chronic low-frequency stimulation during different time periods. Changes in the relative amounts of mRNAs encoding fast and slow/cardiac Ca2+-ATPase isoforms were assessed through the use of an RNase-protection assay. Stimulation-induced increases in slow cardiac Ca2+-ATPase and phospholamban mRNAs were quantified by mRNA hybridization. Prolonged stimulation resulted in an exchange of the fast with the slow/cardiac Ca2+-ATPase isoform mRNAs. The exchange was complete after 72 d of stimulation as compared with normal slow-twitch soleus muscle. The tissue content of phospholamban mRNA reached levels similar to that found in normal slow-twitch soleus muscle by the same time. The conversion of the sarcoplasmic reticulum coincided with the fast-to-slow troponin C isoform transition, previously investigated in the same muscles.  相似文献   

12.
The Ca2+ uptake mechanism of sarcoplasmic reticulum (SR) was comparatively examined in fast-twitch and slow-twitch muscles. The competition of Mg2+ and Ca2+ at the binding sites is important in the function of the Mg2+-activated Ca2+-ATPase of the SR. The best ratio of divalent cations for Ca2+ uptake is not the same in the two kinds of muscle. The formation of the phosphorylated intermediate in more dependent on changes in the concentrations of the two divalent cations in the SR membrane of the fast-twitch than in that of the slow-twitch muscle. The requirement for Mg2+ to an efficient function of the transport ATPase and Ca2+ uptake of SR is greater in the latter than in the former.  相似文献   

13.
Na+/K(+)-ATPase, Mg(2+)-ATPase and sarcoplasmic reticulum (SR) Ca(2+)-ATPase are examined in cultured human skeletal muscle cells of different maturation grade and in human skeletal muscle. Na+/K(+)-ATPase is investigated by measuring ouabain binding and the activities of Na+/K(+)-ATPase and K(+)-dependent 3-O-methylfluorescein phosphatase (3-O-MFPase). SR Ca(2+)-ATPase is examined by ELISA, Ca(2+)-dependent phosphorylation and its activities on ATP and 3-O-methylfluorescein phosphate. Na+/K(+)-ATPase and SR Ca(2+)-ATPase are localized by immunocytochemistry. The activities of Na+/K(+)-ATPase and SR Ca(2+)-ATPase show a good correlation with the other assayed parameters of these ion pumps. All ATPase parameters investigated increase with the maturation grade of the cultured muscle cells. The number of ouabain-binding sites and the activities of Na+/K(+)-ATPase and K(+)-dependent 3-O-MFPase are significantly higher in cultured muscle cells than in muscle. The Mg(2+)-ATPase activity, the content of SR Ca(2+)-ATPase and the activities of SR Ca(2+)-ATPase and Ca(2+)-dependent 3-O-MFPase remain significantly lower in cultured cells than in muscle. The ouabain-binding constant and the molecular activities of Na+/K(+)-ATPase and SR Ca(2+)-ATPase are equal in muscle and cultured cells. During ageing of human muscle the activity as well as the concentration of SR Ca(2+)-ATPase decrease. Thus the changes of the activities of the ATPases are caused by variations of the number of their molecules. Na+/K(+)-ATPase is localized in the periphery of fast- and slow-twitch muscle fibers and at the sarcomeric I-band. SR Ca(2+)-ATPase is predominantly confined to the I-band, whereas fast-twitch fibers are much more immunoreactive than slow-twitch fibers. The presence of cross-striation for Na+/K(+)-ATPase and SR Ca(2+)-ATPase in highly matured cultured muscle cells indicate the development and subcellular organization of a transverse tubular system and SR, respectively, which resembles the in vivo situation.  相似文献   

14.
Calcium uptake in mitochondria from different skeletal muscle types   总被引:5,自引:0,他引:5  
The kinetics of calcium (Ca2+) uptake have been studied in mitochondria isolated from the different types of skeletal muscle. These studies demonstrate that the Ca2+ uptake properties of skeletal mitochondria are similar to those from liver and cardiac mitochondria. The Ca2+ carriers apparently have a high affinity for Ca2+ (Michaelis constants in the microM range). The relationship between Ca2+ uptake and initial Ca2+ concentration (10(-5) to 10(-7) M) is sigmoid in all mitochondria from the different skeletal muscle types suggesting that the uptake process is cooperative. Hill plots reveal coefficients of approximately 2 for mitochondria from fast-twitch muscle and 3.5 for slow-twitch muscle, adding further evidence to the concept that the uptake process is cooperative. An analysis of the potential role of mitochondria in the sequestration of Ca2+ during muscular contraction demonstrated that mitochondria from slow-twitch muscle of both rats and rabbits can potentially account for 100% of the relaxation rate at a low frequency of stimulation (5 Hz). In fast-twitch muscle, the mitochondria appear unable to play a significant role in muscle relaxation, particularly at stimulation frequencies that are considered in the normal physiological range. In summary, it appears that Ca2+ uptake by mitochondria from slow-twitch skeletal muscle has kinetic characteristics which make it important as a potential regulator of Ca2+ within the muscle cell under normal physiological conditions.  相似文献   

15.
Calsequestrin is the main calcium binding protein of the sarcoplasmic reticulum, serving as an important regulator of Ca(2+). In mammalian muscles, it exists as a skeletal isoform found in fast- and slow-twitch skeletal muscles and a cardiac isoform expressed in the heart and slow-twitch muscles. Recently, many excellent reviews that summarised in great detail various aspects of the calsequestrin structure, localisation or function both in skeletal and cardiac muscle have appeared. The present review focuses on skeletal muscle: information on cardiac tissue is given, where differences between both tissues are functionally important. The article reviews the known multiple roles of calsequestrin including pathology in order to introduce this topic to the broader scientific community and to stimulate an interest in this protein. Newly we describe our results on the effect of thyroid hormones on skeletal and cardiac calsequestrin expression and discuss them in the context of available literary data on this topic.  相似文献   

16.
Adult rat fast-twitch skeletal muscle such as extensor digitorum longus contains alpha- and beta-tropomyosin subunits, as is the case in the corresponding muscles of rabbit. Adult rat soleus muscle contains beta-, gamma- and delta-tropomyosins, but no significant amounts of alpha-tropomyosin. Evidence for the presence of phosphorylated forms of at least three of the four tropomyosin subunit isoforms was obtained, particularly in developing muscle. Immediately after birth alpha- and beta-tropomyosins were the major components of skeletal muscle, in both fast-twitch and slow-twitch muscles. Differentiation into slow-twitch skeletal muscles was accompanied by a fall in the amount of alpha-tropomyosin subunit and its replacement with gamma- and delta-subunits. After denervation and during regeneration after injury, the tropomyosin composition of slow-twitch skeletal muscle changed to that associated with fast-twitch muscle. Thyroidectomy slowed down the changes in tropomyosin composition resulting from the denervation of soleus muscle. The results suggest that the 'ground state' of tropomyosin-gene expression in the skeletal muscle gives rise to alpha- and beta-tropomyosin subunits. Innervation by a 'slow-twitch' nerve is essential for the expression of the genes controlling gamma- and delta-subunits. There appears to be reciprocal relationship between expression of the gene controlling the synthesis of alpha-tropomyosin and those controlling the synthesis of gamma- and delta-tropomyosin subunits.  相似文献   

17.
Alpha-sarcoglycan (Sgca) is a transmembrane glycoprotein of the dystrophin complex located at skeletal and cardiac muscle sarcolemma. Defects in the alpha-sarcoglycan gene (Sgca) cause the severe human-type 2D limb girdle muscular dystrophy. Because Sgca-null mice develop progressive muscular dystrophy similar to human disorder they are a valuable animal model for investigating the physiopathology of the disorder. In this study, biochemical and functional properties of fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles of the Sgca-null mice were analyzed. EDL muscle of Sgca-null mice showed twitch and tetanic kinetics comparable with those of wild-type controls. In contrast, soleus muscle showed reduction of twitch half-relaxation time, prolongation of tetanic half-relaxation time, and increase of maximal rate of rise of tetanus. EDL muscle of Sgca-null mice demonstrated a marked reduction of specific twitch and tetanic tensions and a higher resistance to fatigue compared with controls, changes that were not evident in dystrophic soleus. Contrary to EDL fibers, soleus muscle fibers of Sgca-null mice distinctively showed right shift of the pCa-tension (pCa is the negative log of Ca2+ concentration) relationships and reduced sensitivity to caffeine of sarcoplasmic reticulum. Both EDL and soleus muscles showed striking changes in myosin heavy-chain (MHC) isoform composition, whereas EDL showed a larger number of hybrid fibers than soleus. In contrast to the EDL, soleus muscle of Sgca-null mice contained a higher number of regenerating fibers and thus higher levels of embryonic MHC. In conclusion, this study revealed profound distinctive biochemical and physiological modifications in fast- and slow-twitch muscles resulting from alpha-sarcoglycan deficiency.  相似文献   

18.
In this study, the protein expression profile of extensor digitorum longous (EDL) and Soleus (SOL) muscles, representing fast- and slow-twitch skeletal muscles, respectively, was established using high resolution two-dimensional electrophoresis (2-DE). One protein spot was found uniquely expressed in EDL muscle. N-terminal sequence analysis identified the protein as parvalbumin. Parvalbumin is a high affinity calcium binding protein that regulates muscle contraction and relaxation. Our experiments revealed that parvalbumin expression in EDL muscle was down-regulated during aging. In addition, high-intensity exercise could reverse this age-related change. Soleus muscles do not normally express parvalbumin, but high-intensity exercise could ectopically induce its expression in both young and old SOL muscles. We have also confirmed our 2-DE findings by immunohistochemistry on muscle sections. Our results suggest that high-intensity training could be used to improve muscle functions during aging because parvalbumin play an important role in regulating skeletal muscle contraction and relaxation.  相似文献   

19.
Male skeletal muscles are generally faster and have higher maximum power output than female muscles. Conversely, during repeated contractions, female muscles are generally more fatigue resistant and recover faster. We studied the role of estrogen receptor-beta (ERbeta) in this gender difference by comparing contractile function of soleus (mainly slow-twitch) and extensor digitorum longus (fast-twitch) muscles isolated from ERbeta-deficient (ERbeta(-/-)) and wild-type mice of both sexes. Results showed generally shorter contraction and relaxation times in male compared with female muscles, and ERbeta deficiency had no effect on this. Fatigue (induced by repeated tetanic contractions) and recovery of female muscles were not affected by ERbeta deficiency. However, male ERbeta(-/-) muscles were slightly more fatigue resistant and produced higher forces during the recovery period than wild-type male muscles. In fact, female muscles and male ERbeta(-/-) muscles displayed markedly better recovery than male wild-type muscles. Gene screening of male soleus muscles showed 25 genes that were differently expressed in ERbeta(-/-) and wild-type mice. Five of these genes were selected for further analysis: muscle ankyrin repeat protein-2, muscle LIM protein, calsequestrin, parvalbumin, and aquaporin-1. Expression of these genes showed a similar general pattern: increased expression in male and decreased expression in female ERbeta(-/-) muscles. In conclusion, ERbeta deficiency results in increased performance during fatigue and recovery of male muscles, whereas female muscles are not affected. Improved contractile performance of male ERbeta(-/-) mouse muscles was associated with increased expression of mRNAs encoding important muscle proteins.  相似文献   

20.
We have used immunocytological techniques to examine the developmental expression of the Ca2+-binding protein parvalbumin in Xenopus laevis embryos. Western blot experiments show that at least three different forms of parvalbumin are expressed during embryogenesis; the tadpole tail expresses one form, adult brain expresses another, mylohyoid muscle expresses both, and gastrocnemius and sartorius muscles express these two plus a third form. Parvalbumin (PV) is first detectable by immunofluorescence at stages 24-25 of development, a time when myotomal muscles are differentiating and contractile activity occurs spontaneously in embryos. At metamorphosis, PV is expressed in developing limb muscles. While the majority of skeletal muscle fibers express high levels of PV in both embryos and adults, a second fiber type has no detectable PV. The arrangement of PV-containing fibers is stereotyped in each muscle group examined. Histochemical staining of tadpole muscles indicate that PV-containing fibers correspond to fast-twitch skeletal muscles, whereas those without PV correspond to slow-twitch muscles. During tail resorption at metamorphosis, PV appears to be extruded from dying tail muscle cells and taken up by phagocytic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号