首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromomycin A3 is a member of the aureolic acid group family of antitumour drugs. Three tailoring modification steps occur during its biosynthesis affecting the sugar moieties: two O-acetylations and one O-methylation. The 4-O-methylation in the 4-O-methyl-D-oliose moiety of the disaccharide chain is catalysed by the cmmMIII gene product. Inactivation of this gene generated a chromomycin-non-producing mutant that accumulated three unmethylated derivatives containing all sugars but differing in the acylation pattern. Two of these compounds were shown to be substrates of the methyltransferase as determined by their bioconversion into chromomycin A2 and A3 after feeding these compounds to a Streptomyces albus strain expressing the cmmMIII gene. The same single membrane-bound enzyme, encoded by the cmmA gene, is responsible for both acetyl transfer reactions, which convert a relatively inactive compound into the bioactive chromomycin A3. Insertional inactivation of this gene resulted in a mutant accumulating a dideacetylated chromomycin A3 derivative. This compound, lacking both acetyl groups, was converted in a two-step reaction via the 4E-monoacetylated intermediate into chromomycin A3 when fed to cultures of S. albus expressing the cmmA gene. This acetylation step would occur as the last step in chromomycin biosynthesis, being a very important event for self-protection of the producing organism. It would convert a molecule with low biological activity into an active one, in a reaction catalysed by an enzyme that is predicted to be located in the cell membrane.  相似文献   

2.
The anthracycline-like polyketide drug elloramycin is produced by Streptomyces olivaceus Tü2353. Elloramycin has antibacterial activity against Gram-positive bacteria and also exhibits antitumor activity. From a cosmid clone (cos16F4) containing part of the elloramycin biosynthesis gene cluster, three genes (elmMI, elmMII, and elmMIII) have been cloned. Sequence analysis and data base comparison showed that their deduced products resembled S-adenosylmethionine-dependent O-methyltransferases. The genes were individually expressed in Streptomyces albus and also coexpressed with genes involved in the biosynthesis of l-rhamnose, the 6-deoxysugar attached to the elloramycin aglycon. The resulting recombinant strains were used to biotransform three different elloramycin-type compounds: l-rhamnosyl-tetracenomycin C, l-olivosyl-tetracenomycin C, and l-oleandrosyl-tetracenomycin, which differ in their 2'-, 3'-, and 4'-substituents of the sugar moieties. When only the three methyltransferase-encoding genes elmMI, elmMII, and elmMIII were individually expressed in S. albus, the methylating activity of the three methyltransferases was also assayed in vitro using various externally added glycosylated substrates. From the combined results of all of these experiments, it is proposed that methyltransferases ElmMI, ElmMII, and ElmMIII are involved in the biosynthesis of the permethylated l-rhamnose moiety of elloramycin. ElmMI, ElmMII, and ElmMIII are responsible for the consecutive methylation of the hydroxy groups at the 2'-, 3'-, and 4'-position, respectively, after the sugar moiety has been attached to the aglycon.  相似文献   

3.
4.
Abstract A total of 16 idiotrophic mutants unable to produce the aminoglycoside antibiotic streptomycin ( smi ) were isolated from Streptomyces griseus N2-3-11. Cosynthesis of streptomycin, its formation from various precursors and analysis of accumulated intermediates allowed grouping of the mutants in 3 classes, blocked: (I) in the first transamination step of the streptidine pathway; (II) in later steps of the streptidine pathway; or (III) outside streptidine biosynthesis.  相似文献   

5.
Cascading regulation of histidase activity in Streptomyces griseus.   总被引:2,自引:2,他引:0       下载免费PDF全文
Mutants of Streptomyces griseus unable to utilize histidine as the sole nitrogen source have been isolated and characterized. Using a mutant defective in the production of histidase, we have demonstrated that urocanate functions as the inducer of the histidine utilization system. Another mutant produced histidase that was locked in an inactive form but could be activated by treatment with an extract from the wild-type strain or the histidase-negative strain. This mutant was deficient in the activity of a protein of Mr ca. 90,000 to 100,000 that is required for the activation of histidase. Histidase was synthesized constitutively but was maintained in an inactive form until after histidine or urocanate was added to the medium. At least four components were implicated in the activation of histidase: histidase, the activation protein, urocanate, and a phosphatase that is apparently inactive in cells grown without inducer. The functions of the last three factors could be supplanted in vitro by incubation of histidase with snake venom phosphodiesterase or 5' nucleotidase. The results suggest that histidine utilization by S. griseus is controlled posttranslationally by an activation cascade that involves at least two regulatory proteins.  相似文献   

6.
7.
8.
9.
10.
Combinatorial biosynthesis was applied to Streptomyces deoxysugar biosynthesis genes in order to reconstitute "unnatural natural gene clusters" for the biosynthesis of four D-deoxysugars (D-olivose, D-oliose, D-digitoxose, and D-boivinose). Expression of these gene clusters in Streptomyces albus 16F4 was used to prove the functionality of the designed clusters through the generation of glycosylated tetracenomycins. Three glycosylated tetracenomycins were generated and characterized, two of which (D-digitoxosyl-tetracenomycin C and D-boivinosyl-tetracenocmycin C) were novel compounds. The constructed gene clusters may be used to increase the capabilities of microorganisms to synthesize new deoxysugars and therefore to produce new glycosylated bioactive compounds.  相似文献   

11.
Ca2+-ATPase activity has been characterized in Streptomyces griseus. The enzyme has a pH optimum of 8.5 at 37 degrees C. Its Ca2+ requirement can be substituted by Cd2+, Zn2+ and Mn2+. Mg2+ inhibits the enzyme non-competitively.  相似文献   

12.
The 2.8 A (1 A = 0.1 nm) resolution structure of the crystalline orthorhombic form of the microbial serine protease Streptomyces griseus protease B (SGPB) has been solved by the method of multiple isomorphous replacement using five heavy-atom derivatives. The geometrical arrangement of the active site quartet, Ser-214, Asp-102, His-57, and Ser-195, is similar to that found for pancreatic alpha-chymotrypsin. SGPB and alpha-chymotrypsin have only 18% identity of primary structure but their tertiary structures are 63% topologically equivalent within a root mean square deviation of 2.07 A. The major tertiary structural differences between the bacterial enzyme SGPB and the pancreatic enzymes is due to the zymogen requirement of the multicellular organisms in order to protect themselves against autolytic degradation. The two pronase enzymes, SGPB and Streptomyces griseus protease A (SGPA), have 61% identity of sequence and their tertiary structures are 85% topologically equivalent within a root mean square deviation of 1.46 A. The active site regions of SGPA and SGPB are similar and their tertiary structures differ only in three minor regions of surface loops.  相似文献   

13.
14.
15.
16.
Chromomycin A3 (CHRA3) is an antitumor antibiotic which binds to Mg2+. In the present communication, we show, by means of equilibrium spectroscopic studies (such as absorption, fluorescence and circular dichroism), that two types of CHRA3-Mg2+ complexes (of 1:1 and 1.9:1 stoichiometries in terms of CHRA3:Mg2+, respectively) are formed depending on the concentrations of CHRA3 and Mg2+. The rate constant and activation energy for the formation of two complexes are different, thereby reinforcing the proposition that they are different molecular species. This observation is novel and significant in order to understand the anticancer property of the drug. It also provides explanation for earlier observations that site, affinity parameters and mode of interaction of the drug with DNA in the presence of Mg2+ depend on the relative concentration of Mg2+.  相似文献   

17.
A gene cluster responsible for the biosynthesis of validamycin, an aminocyclitol antibiotic widely used as a control agent for sheath blight disease of rice plants, was identified from Streptomyces hygroscopicus subsp. jinggangensis 5008 using heterologous probe acbC, a gene involved in the cyclization of D-sedoheptulose 7-phosphate to 2-epi-5-epi-valiolone of the acarbose biosynthetic gene cluster originated from Actinoplanes sp. strain SE50/110. Deletion of a 30-kb DNA fragment from this cluster in the chromosome resulted in loss of validamycin production, confirming a direct involvement of the gene cluster in the biosynthesis of this important plant protectant. A sequenced 6-kb fragment contained valA (an acbC homologue encoding a putative cyclase) as well as two additional complete open reading frames (valB and valC, encoding a putative adenyltransferase and a kinase, respectively), which are organized as an operon. The function of ValA was genetically demonstrated to be essential for validamycin production and biochemically shown to be responsible specifically for the cyclization of D-sedoheptulose 7-phosphate to 2-epi-5-epi-valiolone in vitro using the ValA protein heterologously overexpressed in E. coli. The information obtained should pave the way for further detailed analysis of the complete biosynthetic pathway, which would lead to a complete understanding of validamycin biosynthesis.  相似文献   

18.
An str gene cluster containing at least four genes (strR, strA, strB, and strC) involved in streptomycin biosynthesis or streptomycin resistance or both was self-cloned in Streptomyces griseus by using plasmid pOA154. The strA gene was verified to encode streptomycin 6-phosphotransferase, a streptomycin resistance factor in S. griseus, by examining the gene product expressed in Escherichia coli. The other three genes were determined by complementation tests with streptomycin-nonproducing mutants whose biochemical lesions were clearly identified. strR complemented streptomycin-sensitive mutant SM196 which exhibited impaired activity of both streptomycin 6-phosphotransferase and amidinotransferase (one of the streptomycin biosynthetic enzymes) due to a regulatory mutation; strB complemented strain SD141, which was specifically deficient in amidinotransferase; and strC complemented strain SD245, which was deficient in linkage between streptidine 6-phosphate and dihydrostreptose. By deletion analysis of plasmids with appropriate restriction endonucleases, the order of the four genes was determined to be strR-strA-strB-strC. Transformation of S. griseus with plasmids carrying both strR and strB genes enhanced amidinotransferase activity in the transformed cells. Based on the gene dosage effect and the biological characteristics of the mutants complemented by strR and strB, it was concluded that strB encodes amidinotransferase and strR encodes a positive effector required for the full expression of strA and strB genes. Furthermore, it was found that amplification of a specific 0.7-kilobase region of the cloned DNA on a plasmid inhibited streptomycin biosynthesis of the transformants. This DNA region might contain a regulatory apparatus that participates in the control of streptomycin biosynthesis.  相似文献   

19.
Fredericamycin (FDM) A is a pentadecaketide natural product that features an amide linkage. Analysis of the fdm cluster from Streptomyces griseus ATCC 43944, however, failed to reveal genes encoding the types of amide synthetases commonly seen in natural product biosynthesis. Here, we report in vivo and in vitro characterizations of FdmV, an asparagine synthetase (AS) B-like protein, as an amide synthetase that catalyzes the amide bond formation in FDM A biosynthesis. This is supported by the findings that (i) inactivation of fdmV in vivo afforded the ΔfdmV mutant strain SB4027 that abolished FDM A and FDM E production but accumulated FDM C, a biosynthetic intermediate devoid of the characteristic amide linkage; (ii) FdmV in vitro catalyzes conversion of FDM C to FDM B, a known intermediate for FDM A biosynthesis (apparent K(m) = 162 ± 67 μM and k(cat) = 0.11 ± 0.02 min(-1)); and (iii) FdmV also catalyzes the amidation of FDM M-3, a structural analog of FDM C, to afford amide FDM M-6 in vitro, albeit at significantly reduced efficiency. Preliminary enzymatic studies revealed that, in addition to the common nitrogen sources (L-Gln and free amine) of class II glutamine amidotransferases (to which AS B belongs), FdmV can also utilize L-Asn as a nitrogen donor. The amide bond formation in FDM A biosynthesis is proposed to occur after C-8 hydroxylation but before the carbaspirocycle formation.  相似文献   

20.
A-factor is a potent pleiotropic effector produced by Streptomyces griseus and is essential for streptomycin production and spore formation in this organism. Its production is widely distributed among various actinomycetes including Streptomyces coelicolor A3(2). Genetic analysis of A-factor production was carried out with S. coelicolor A3(2), and two closely linked loci for A-factor mutations (afsA and B) were identified between cysD and leuB on the chromosomal linkage map. In contrast, genetic crosses of A-factor-negative mutants of S. griseus, using a protoplast fusion technique, failed to give a fixed locus for A-factor gene(s) and suggested involvement of an extrachromosomal or transposable genetic element in A-factor synthesis in this organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号