首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bioremediation of polluted groundwater and toxic waste sites requires that bacteria come into close physical contact with pollutants. This can be accomplished by chemotaxis. Five motile strains of bacteria that use five different pathways to degrade toluene were tested for their ability to detect and swim towards this pollutant. Three of the five strains (Pseudomonas putida F1, Ralstonia pickettii PKO1, and Burkholderia cepacia G4) were attracted to toluene. In each case, the response was dependent on induction by growth with toluene. Pseudomonas mendocina KR1 and P. putida PaW15 did not show a convincing response. The chemotactic responses of P. putida F1 to a variety of toxic aromatic hydrocarbons and chlorinated aliphatic compounds were examined. Compounds that are growth substrates for P. putida F1, including benzene and ethylbenzene, were chemoattractants. P. putida F1 was also attracted to trichloroethylene (TCE), which is not a growth substrate but is dechlorinated and detoxified by P. putida F1. Mutant strains of P. putida F1 that do not oxidize toluene were attracted to toluene, indicating that toluene itself and not a metabolite was the compound detected. The two-component response regulator pair TodS and TodT, which control expression of the toluene degradation genes in P. putida F1, were required for the response. This demonstration that soil bacteria can sense and swim towards the toxic compounds toluene, benzene, TCE, and related chemicals suggests that the introduction of chemotactic bacteria into selected polluted sites may accelerate bioremediation processes.  相似文献   

2.
A strain of Pseudomonas putida (TMB) was found to resemble P. putida mt-2 (PaW1) in its ability to degrade 1,2,4-trimethylbenzene, toluene, m-xylene, and p-xylene via oxidation of a methyl substituent and reaction of the meta fission pathway, but a different regulatory model is suggested. The ability of P. putida TMB to degrade these substrates was encoded by plasmid pGB (85 kilobase pairs), which showed considerable differences in size, restriction patterns, and DNA sequence from those of plasmid pWWO of strain PaW1.  相似文献   

3.
Three indigenous groundwater bacterial strains and Pseudomonas putida harboring plasmids TOL (pWWO) and RK2 were introduced into experimentally contaminated groundwater aquifer microcosms. Maintenance of the introduced genotypes was measured over time by colony hybridization with gene probes of various specificity. On the basis of the results of colony hybridization quantitation of the introduced organisms and genes, all introduced genotypes were stably maintained at approximately 10(5) positive hybrid colonies g-1 of aquifer microcosm material throughout an 8-week incubation period. Concomitant removal of the environmental contaminants, viz., toluene, chlorobenzene, and styrene, in both natural (uninoculated) and inoculated aquifer microcosms was also demonstrated. The results indicate that introduced catabolic plasmids, as well as indigenous organisms, can be stably maintained in groundwater aquifer material without specific selective pressure for the introduced genotypes. These results have positive implications for in situ treatment and biodegradation in contaminated aerobic groundwater aquifers.  相似文献   

4.
Three indigenous groundwater bacterial strains and Pseudomonas putida harboring plasmids TOL (pWWO) and RK2 were introduced into experimentally contaminated groundwater aquifer microcosms. Maintenance of the introduced genotypes was measured over time by colony hybridization with gene probes of various specificity. On the basis of the results of colony hybridization quantitation of the introduced organisms and genes, all introduced genotypes were stably maintained at approximately 10(5) positive hybrid colonies g-1 of aquifer microcosm material throughout an 8-week incubation period. Concomitant removal of the environmental contaminants, viz., toluene, chlorobenzene, and styrene, in both natural (uninoculated) and inoculated aquifer microcosms was also demonstrated. The results indicate that introduced catabolic plasmids, as well as indigenous organisms, can be stably maintained in groundwater aquifer material without specific selective pressure for the introduced genotypes. These results have positive implications for in situ treatment and biodegradation in contaminated aerobic groundwater aquifers.  相似文献   

5.
The activities of the TOL plasmid-coded xylene oxygenase, benzylalcohol dehydrogenase, benzaldehyde dehydrogenase of Pseudomonas putida strain PaW1 were tested with substituted toluenes, benzylalcohols and benzaldehydes, respectively, as substrates. Several chlorinated toluenes were shown to induce enzymes of the xylene degradation sequence. Conjugative transfer of the TOL plasmid from Pseudomonas putida strain PaW1 to Pseudomonas sp. strain B13 and Pseudomonas cepacia strain JH230 allowed the isolation of hybrid strains capable of growing in the presence of 3-chloro-, 4-chloro- and 3,5-dichlorotoluene. Hybrid strains revealed new ways to prevent the dead-end meta-pathway for cholorocatechols.  相似文献   

6.
As a representative member of the toluene-degrading population in a biofilter for waste gas treatment, Pseudomonas putida was investigated with a 16S rRNA targeting probe. The three-dimensional distribution of P. putida was visualized in the biofilm matrix by scanning confocal laser microscopy, demonstrating that P. putida was present throughout the biofilm. Acridine orange staining revealed a very heterogeneous structure of the fully hydrated biofilm, with cell-free channels extending from the surface into the biofilm. This indicated that toluene may penetrate to deeper layers of the biofilm, and consequently P. putida may be actively degrading toluene in all regions of the biofilm. Furthermore, measurements of growth rate-related parameters for P. putida showed reduced rRNA content and cell size (relative to that in a batch culture), indicating that the P. putida population was not degrading toluene at a maximal rate in the biofilm environment. Assuming that the rRNA content reflected the cellular activity, a lower toluene degradation rate for P. putida present in the biofilm could be estimated. This calculation indicated that P. putida was responsible for a significant part (65%) of the toluene degraded by the entire community.  相似文献   

7.
Pseudomonas putida BN210, carrying the self- transferable clc-element encoding degradation of 3-chlorobenzoate on the chromosome, was used as inoculum in different membrane biofilm reactors treating 3-chlorobenzoate-contaminated model wastewater. Analysis of the bacterial population in the effluent and in the biofilm showed the loss of BN210 beyond detection from the reactors and the appearance of several novel 3-chlorobenzoate mineralizing bacteria mainly belonging to the beta-proteobacteria. In contrast, in non-inoculated reactors, no 3-chlorobenzoate degradation was observed and no 3-chlorobenzoate degraders could be recovered. Southern blots hybridization of genomic DNA using clc-element-specific probes and FIGE analysis indicated the presence of the complete clc-element in one or more copies in the isolates. Moreover, the isolates could transfer the clc genes to Ralstonia metallidurans recipients. Two representative reactor isolates, Ralstonia sp. strains KP3 and KP9 demonstrated a higher growth rate on 3-chlorobenzoate than strain BN210 in batch cultures. When BN210, KP3 and KP9 were simultaneously inoculated in a membrane reactor supplied with 3-chlorobenzoate, strain KP3 outcompeted the two other strains and remained the major 3-chlorobenzoate degrading population in the reactor. Our data suggest that in situ horizontal transfer of the clc-element from the inoculum to contaminant bacteria in the reactors was involved in the establishment of novel 3-chlorobenzoate degrading populations that were more competitive under the defined reactor conditions than the inoculum strain.  相似文献   

8.
Flagellin gene (fliC) sequences from 18 strains of Pseudomonas sensu stricto representing 8 different species, and 9 representative fliC sequences from other members of the gamma sub-division of proteobacteria, were compared. Analysis was performed on N-terminal, C-terminal and whole fliC sequences. The fliC analyses confirmed the inferred relationship between P. mendocina, P. oleovorans and P. aeruginosa based on 16S rRNA sequence comparisons. In addition, the analyses indicated that P. putida PRS2000 was closely related to P. fluorescens SBW25 and P. fluorescens NCIMB 9046T, but suggested that P. putida PaW8 and P. putida PRS2000 were more closely related to other Pseudomonas spp. than they were to each other. There were a number of inconsistencies in inferred evolutionary relationships between strains, depending on the analysis performed. In particular, whole flagellin gene comparisons often differed from those obtained using N- and C-terminal sequences. However, there were also inconsistencies between the terminal region analyses, suggesting that phylogenetic relationships inferred on the basis of fliC sequence should be treated with caution. Although the central domain of fliC is highly variable between Pseudomonas strains, there was evidence of sequence similarities between the central domains of different Pseudomonas fliC sequences. This indicates the possibility of recombination in the central domain of fliC genes within Pseudomonas species, and between these genes and those from other bacteria.  相似文献   

9.
On equal parts of benzene, toluene and p-xylene (BTX), a stable bacterial consortium was enriched for removal of BTX vapours from air. As demonstrated by gas chromatographic monitoring, this consortium removed all three BTX components but was able to grow only on benzene and/or toluene. A Pseudomonas putida strain, PPO1, isolated from this consortium behaved in an identical manner. When immobilized on a porous peat/perlite column, both the consortium and the PPO1 isolated removed all three BTX components from metered air streams. However, due to the accumulation of products from the incompletely metabolized p-xylene, the removal rates were unsatisfactory and declined further with time. P. putida ATCC 33015 bearing the TOL plasmid was capable of growing on toluene, on para- and on meta- xylene isomers, but not on benzene. When the PPO1 and ATCC 33015 strains were immobilized, in equal parts, on peat/perlite columns a much improved and sustainable removal of all three BTX components was observed at the rate of 40–50 g/h. m3 filter bed. Due to the dominance of the ring-hydroxylating pathways over the TOL pathway, the classical enrichment approach did not result in a consortium capable of the sustained removal of all BTX components. However, a rationally formulated consortium consisting of members with complementary metabolic abilities was capable of this task and should be of use both in industrial emission control and in soil venting operations.  相似文献   

10.
Microbial community structure was linked to degradation potential in benzene-, toluene- or xylene- (BTX) degrading, iron-reducing enrichments derived from an iron-reducing aquifer polluted with landfill leachate. Enrichments were characterized using 16S rRNA gene-based analysis, targeting of the benzylsuccinate synthase-encoding bssA gene and phospholipid fatty acid (PLFA) profiling in combination with tracking of labelled substrate. 16S rRNA gene analysis indicated the dominance of Geobacteraceae, and one phylotype in particular, in all enrichments inoculated with polluted aquifer material. Upon cultivation, progressively higher degradation rates with a concomitant decrease in species richness occurred in all primary incubations and successive enrichments. Yet, the same Geobacteraceae phylotype remained common and dominant, indicating its involvement in BTX degradation. However, the bssA gene sequences in BTX degrading enrichments differed considerably from those of Geobacter isolates, suggesting that the first steps of toluene, but also benzene and xylene oxidation, are carried out by another member of the enrichments. Therefore, BTX would be synthrophically degraded by a bacterial consortium in which Geobacteraceae utilized intermediate metabolites. PLFA analysis in combination with (13)C-toluene indicated that the enriched Geobacteraceae were assimilating carbon originally present in toluene. Combined with previous studies, this research suggests that Geobacteraceae play a key role in the natural attenuation of each BTX compound in situ.  相似文献   

11.
AIMS: The applicability of plasmid pNB2 for bioaugmentation of bacteria in model wastewater treatment reactors receiving 3-chloroaniline (3-CA) was investigated. METHODS AND RESULTS: A setup of three biofilm reactors was studied, all initially inoculated with bacteria from activated sludge. Reactor PB received a Pseudomonas putida pNB2 donor strain not able to degrade 3-CA. Positive control reactor P received a 3-CA degrading Comamonas testosteroni pNB2-transconjugant. The negative control reactor N remained unchanged. Reactor P showed 3-CA degradation from the beginning of the experiment whereas in reactor PB, degradation started after an initial lag period. No degradation was observed in reactor N. PCR analysis showed that the P. putida donor abundance dropped in reactor PB, whereas the plasmid abundance did not, indicating transfer to other bacteria. A number of different 3-CA degrading C. testosteroni strains carrying pNB2 could be isolated from reactor PB. CONCLUSIONS: A successful plasmid-mediated bioaugmentation was achieved with C. testosteroni being the dominant 3-CA degrading pNB2 transconjugant species active in reactor PB. SIGNIFICANCE AND IMPACT OF THE STUDY: The study underlines the potential of gene transfer to contribute to establishment and spread of genetic information in general, particularly emphasizing the spread of xenobiotic degrading potential by dissemination of catabolic genes.  相似文献   

12.
A hybrid metabolic pathway through which benzene, toluene, and p-xylene (BTX) mixture could be simultaneously mineralized was previously constructed in Pseudomonas putida TB101 (Lee, Roh, Kim, Biotechnol. Bioeng 43: 1146-1152, 1994). In this work, we improved the performance of the hybrid pathway by cloning the todC1C2BA genes in the broad-host-range multicopy vector RSF1010 and by introducing the resulting plasmid pTOL037 into P. putida mt-2 which harbors the archetypal TOL plasmid. As a result, a new hybrid strain, P. putida TB103, possessing the enhanced activity of toluene dioxygenase in the hybrid pathway was constructed. The degradation rates of benzene, toluene, and p-xylene by P. putida TB103 were increased by about 9.3-, 3.7-, and 1.4-fold, respectively, compared with those by previously constructed P. putida TB101. Apparently, this improved capability of P. putida TB103 for the degradation of BTX mixture resulted from the amplification of the todC1C2BA genes. Furthermore, a relatively long lag period for benzene degradation observed when P. putida TB101 was used for the degradation of BTX mixture at low dissolved oxygen (DO) tension disappeared when P. putida TB103 was employed. (c) 1995 John Wiley & Sons, Inc.  相似文献   

13.
Twenty different strains of Pseudomonas, Mycobacterium, Gordona, Sphingomonas, Rhodococcus and Xanthomonas which degrade polycyclic aromatic hydrocarbons (PAH) were characterized in respect to genes encoding degradation enzymes for PAH. Genomic DNA from these strains was hybridized with a fragment of ndoB, coding for the large iron sulfur protein (ISP alpha) of the naphthalene dioxygenase from Pseudomonas putida PaW736 (NCIB 9816). A group of seven naphthalene-degrading Pseudomonas strains showed strong hybridization with the ndoB probe, and five Gordona, Mycobacterium, Rhodococcus and Pseudomonas strains able to degrade higher molecular weight PAH showed weaker hybridization signals. Using a polymerase chain reaction (PCR) approach, seven naphthalene-degrading Pseudomonas strains showed a PCR fragment of the expected size with ndoB-specific primers and additionally ten strains of Gordona, Mycobacterium, Pseudomonas, Sphingomonas and Xanthomonas able to degrade higher molecular weight PAH were detected with degenerate primer-pools specific for the ISP alpha [2Fe-2S]-Rieske center of diverse aromatic hydrocarbon dioxygenases. This suggests a molecular relationship between genes coding for PAH catabolism in various PAH-degrading bacterial taxa, which could be used to evaluate the PAH-degradation potential of mixed populations.  相似文献   

14.
We studied the degradation of toluene for bacteria isolated from hypoxic (i.e., oxygen-limited) petroleum-contaminated aquifers and compared such strains with other toluene degraders. Three Pseudomonas isolates, P. pickettii PKO1, Pseudomonas sp. strain W31, and P. fluorescens CFS215, grew on toluene when nitrate was present as an alternate electron acceptor in hypoxic environments. We examined kinetic parameters (K(m) and Vmax) for catechol 2,3-dioxygenase (C230), a key shared enzyme of the toluene-degradative pathway for these strains, and compared these parameters with those for the analogous enzymes from archetypal toluene-degrading pseudomonads which did not show enhanced, nitrate-dependent toluene degradation. C230 purified from strains W31, PKO1, and CFS215 had a significantly greater affinity for oxygen as well as a significantly greater rate of substrate turnover than found for the analogous enzymes from the TOL plasmid (pWW0) of Pseudomonas putida PaW1, from Pseudomonas cepacia G4, or from P. putida F1. Analysis of the nucleotide and deduced amino acid sequences of C23O from strain PKO1 suggests that this extradiol dioxygenase belongs to a new cluster within the subfamily of C23Os that preferentially cleave monocyclic substrates. Moreover, deletion analysis of the nucleotide sequence upstream of the translational start of the meta-pathway operon that contains tbuE, the gene that encodes the C230 of strain PKO1, allowed identification of sequences critical for regulated expression of tbuE, including a sequence homologous to the ANR-binding site of Pseudomonas aeruginosa PAO. When present in cis, this site enhanced expression of tbuE under oxygen-limited conditions. Taken together, these results suggest the occurrence of a novel group of microorganisms capable of oxygen-requiring but nitrate-enhanced degradation of benzene, toluene, ethylbenzene, and xylenes in hypoxic environments. Strain PKO1, which exemplifies this novel group of microorganisms, compensates for a low-oxygen environment by the development of an oxygen-requiring enzyme with kinetic parameters favorable to function in hypoxic environments, as well as by elevating synthesis of such an enzyme in response to oxygen limitation.  相似文献   

15.
Due to its pathogenic traits and agricultural benefits, there is some challenge in detecting Burkholderia in the soil environment. In this perspective, an existing semi-selective medium, (PCAT), was combined with a Burkholderia specific molecular probe. Using the complete 16S rRNA sequences of all available Burkholderia species type strains, we selected the following sequence: 5'-ACCCTCTGTTCCGACCATTGTATGA-3'. The probe was validated against GenBank sequences, with dot blots and colony hybridization tests. A diversity study of all strains growing on a PCAT plate after plating a soil dilution (75 strains) was carried out with ARDRA analysis and colony hybridization tests. All the hybridizing strains belonged to genus Burkholderia. The major type of non-hybridizing isolates belonged to Pseudomonas (16S rRNA sequencing). Both tools were combined to compare the Burkholderia populations in a rhizosphere (maize) and a non-rhizosphere soil. Based on hybridizing PCAT isolates, we were able to show an increase in Burkholderia populations in the maize rhizosphere. This genus represented 2% and 16% of the total cultivable microflora in the non-rhizosphere and rhizosphere soils, respectively. Although PCAT was shown not to be appropriate to routinely enumerate Burkholderia populations in soil, it allowed environmental investigations at the genus level, when combined with a molecular specific probe.  相似文献   

16.
A method was developed to detect a specific strain of bacteria in wheat root rhizoplane using fluorescence in situ hybridization and confocal microscopy. Probes targeting both 23S rRNA and messenger RNA were used simultaneously to achieve detection of recombinant Pseudomonas putida (TOM20) expressing toluene o-monooxygenase (tom) genes and synthetic phytochelatin (EC20). The probe specific to P. putida 23S rRNA sequences was labeled with Cy3 fluor, and the probe specific to the tom genes was labeled with Alexa647 fluor. Probe specificity was first determined, and hybridization temperature was optimized using three rhizosphere bacteria pure cultures as controls, along with the P. putida TOM20 strain. The probes were highly specific to the respective targets, with minimal non-specific binding. The recombinant strain was inoculated into wheat seedling rhizosphere. Colonization of P. putida TOM20 was confirmed by extraction of root biofilm and growth of colonies on selective agar medium. Confocal microscopy of hybridized root biofilm detected P. putida TOM20 cells emitting both Cy3 and Alexa647 fluorescence signals.  相似文献   

17.
During growth on benzoate-minimal medium Pseudomonas putida mt-2 (PaW1) segregates derivative ('cured') strains which have lost the ability to use the pathway encoded by its resident catabolic plasmid pWW0. Experiments with two plasmids identical to pWW0 but each with an insert of Tn401, which confers resistance to carbenicillin, suggested that the 'benzoate curing' occurs far more frequently by the specific deletion of the 39 kbp region carrying the catabolic genes than by total plasmid loss. This effect was not pH-dependent, and was not produced during growth on other weak organic acids, such as succinate or propionate, or when benzoate was present in the medium with an alternative, preferentially used carbon source such as succinate. Growth on benzoate did not cause loss from strain PaW174 of the plasmid pWW0174, a derivative of pWW0 which has deleted the 39 kbp region but carries Tn401. Similarly the naphthalene-catabolic plasmid pWW60-1, of the same incompatibility group as pWW0, was not lost from PaW701 during growth on benzoate. Competition between wild-type PaW1 and PaW174, which has the 'cured' phenotype, showed that the latter has a distinct growth advantage on benzoate over the wild-type even when initially present as only 1% of the population: when PaW174 was seeded at lower cell ratios, spontaneously 'cured' derivatives of PaW1 took over the culture after 60-80 generations, indicating that they are present in PaW1 cultures at frequencies between 10(-2) and 10(-3). We conclude that the progressive takeover of populations of PaW1 only occurs when benzoate is present as the sole growth source and that neither benzoate, nor other weak acids, affect plasmid segregation or deletion events: a sufficient explanation is that the 'cured' segregants grow faster than the wild-type using the chromosomally determined beta-ketoadipate pathway.  相似文献   

18.
The attachment of motile and non-motile strains of Pseudomonas putida PaW8 to sterile wheat roots was assessed in both non-competitive and intra-specific competitive assays. The motile strain showed significantly greater attachment to wheat roots than non-motile strains in phosphate buffer. Overall, the motile strain attached better than the non-motile strain at 10(6), 10(7) and 10(8) cfu ml(-1) in competitive assays and at 10(6) and 10(7) cfu ml(-1) in non-competitive assays. When attachment was studied in Luria broth no significant difference between motile and non-motile strains was detected. P. putida PaW8 cells marked with the luxAB genes were used to compare direct detection of attached cells by luminometry with indirect detection by dilution plate counts following extraction from root material. Although direct detection permitted a rapid assessment (60 s) of attachment to surfaces, dilution plate counts provided a more sensitive method for quantification of bacteria. The detection limits were approximately 10 cfu root(-1) using dilution plate counts compared with 1000 cfu root(-1) using luminometry. All results highlighted the importance of motility for the attachment of P. putida to plant roots in simple model systems. To take this work further, studies to assess the role of motility using complex non-sterile systems are needed.  相似文献   

19.
A biological trickling filter for treatment of toluene-containing waste gas was studied. The overall kinetics of the biofilm growth was followed in the early growth phase. A rapid initial colonization took place during the first three days. The biofilm thickness increased exponentially, whereas the incease of active biomass and polymers was linear. In order to investigate the toluene degradation, various toluene degraders from the multispecies biofilm were isolated, and a Pseudomonas putida was chosen as a representative of the toluene-degrading population. A specific rRNA oligonucleotide probe was used to follow the toluene-degrading P. putida in the multispecies biofilm in the filter by means of number and cellular rRNA content. P. putida appeared to detach from the biofilm during the first three days of growth, after which P. putida was found at a constant level of 10% of the active biomass in the biofilm. Based on the rRNA content, the in situ activity was estimated to be reduced to 20% of cells grown at maximum conditions in batch culture. The toluene degraded by P. putida was estimated to be a minor part (11%) of the overall toluene degradation. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 131-141, 1997.  相似文献   

20.
The survival and colonization patterns of Pseudomonas putida PRD16 and Enterobacter cowanii PRF116 in the rhizosphere of greenhouse-grown tomato plants and the effects of their inoculation on the indigenous bacterial community were followed by selective plating, molecular fingerprinting, and confocal laser scanning microscopy (CLSM) over 3 weeks. Both strains, which showed in vitro antagonistic activity against Ralstonia solanacearum, were previously tagged with gfp. Seed and root inoculation were compared. Although plate counts decreased for both gfp-tagged antagonists, PRD16 showed a better survival in the rhizosphere of tomato roots independent of the inoculation method. Analysis of 16S rRNA gene fragments amplified from total community DNA by denaturing gradient gel electrophoresis and CLSM confirmed the decrease in the relative abundance of the inoculant strains. Pronounced differences in the Pseudomonas community patterns for plants inoculated with PRD16 compared to the control were detected 3 weeks after root inoculation, indicating a longer-lasting effect. Analysis by CLSM showed rather heterogeneous colonization patterns for both inoculant strains. In comparison with seed inoculation, root inoculation led to a much better colonization as evidenced by all three methods. The colonization patterns observed by CLSM provide important information on the sampling strategy required for monitoring inoculant strains in the rhizosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号