首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular hallmark of prion disease is the conversion of normal prion protein (PrPC) to an insoluble, proteinase K-resistant, pathogenic isoform (PrPSc). Once generated, PrPSc propagates by complexing with, and transferring its pathogenic conformation onto, PrPC. Defining the specific nature of this PrPSc-PrPC interaction is critical to understanding prion genesis. To begin to approach this question, we employed a prion-infected neuroblastoma cell line (ScN2a) combined with a heterologous yeast expression system to independently model PrPSc generation and propagation. We additionally applied fluorescence resonance energy transfer analysis to the latter to specifically study PrP-PrP interactions. In this report we focus on an N-terminal hydrophobic palindrome of PrP (112-AGAAAAGA-119) thought to feature intimately in prion generation via an unclear mechanism. We found that, in contrast to wild type (wt) PrP, PrP lacking the palindrome (PrPDelta112-119) neither converted to PrPSc when expressed in ScN2a cells nor generated proteinase K-resistant PrP when expressed in yeast. Furthermore, PrPDelta112-119 was a dominant-negative inhibitor of wtPrP in ScN2a cells. Both wtPrP and PrPDelta112-119 were highly insoluble when expressed in yeast and produced distinct cytosolic aggregates when expressed as fluorescent fusion proteins (PrP::YFP). Although self-aggregation was evident, fluorescence resonance energy transfer studies in live yeast co-expressing PrPSc-like protein and PrPDelta112-119 indicated altered interaction properties. These results suggest that the palindrome is required, not only for the attainment of the PrPSc conformation but also to facilitate the proper association of PrPSc with PrPC to effect prion propagation.  相似文献   

2.
Conformational conversion of the cellular PrPC protein to PrPSc is a central aspect of the prion diseases, but how PrP initially converts to this conformation remains a mystery. Here we show that PrP expressed in the yeast cytoplasm, instead of the endoplasmic reticulum, acquires the characteristics of PrPSc, namely detergent insolubility and a distinct pattern of protease resistance. Neuroblastoma cells cultured under reducing, glycosylation-inhibiting conditions produce PrP with the same characteristics. We therefore describe what is, to our knowledge, the first conversion of full-length PrP in a heterologous system, show the importance of reducing and deglycosylation conditions in PrP conformational transitions, and suggest a model for initiating events in sporadic and inherited prion diseases.  相似文献   

3.
Miura T  Yoda M  Takaku N  Hirose T  Takeuchi H 《Biochemistry》2007,46(41):11589-11597
The conformational conversion of prion protein (PrP) from an alpha-helix-rich normal cellular isoform (PrPC) to a beta-sheet-rich pathogenic isoform (PrPSc) is a key event in the development of prion diseases, and it takes place in caveolae, cavelike invaginations of the plasma membrane. A peptide homologous to residues 106-126 of human PrP (PrP106-126) is known to share several properties with PrPSc, e.g., the capability to form a beta-sheet and toxicity against PrPC-expressing cells. PrP106-126 is thus expected to represent a segment of PrP that is involved in the formation of PrPSc. We have examined the effect of lipid membranes containing negatively charged ganglioside, an important component of caveolae, on the secondary structure of PrP106-126 by circular dichroism. The peptide forms an alpha-helical or a beta-sheet structure on the ganglioside-containing membranes. The beta-sheet content increases with an increase of the peptide:lipid ratio, indicating that the beta-sheet formation is linked with self-association of the positively charged peptide on the negatively charged membrane surface. Analogous beta-sheet formation is also induced by membranes composed of negatively charged and neutral glycerophospholipids with high and low melting temperatures, respectively, in which lateral phase separation and clustering of negatively charged lipids occur as shown by Raman spectroscopy. Since ganglioside-containing membranes also exhibit lateral phase separation, clustered negative charges are concluded to be responsible for the beta-sheet formation of PrP106-126. In caveolae, clustered ganglioside molecules are likely to interact with the residue 106-126 region of PrPC to promote the PrPC-to-PrPSc conversion.  相似文献   

4.
Binding of prion proteins to lipid membranes   总被引:5,自引:0,他引:5  
A key molecular event in prion diseases is the conversion of the normal cellular form of the prion protein (PrPC) to an aberrant form known as the scrapie isoform, PrPSc. Under normal physiological conditions PrPC is attached to the outer leaflet of the plasma membrane via a GPI-anchor. It has been proposed that a direct interaction between PrP and lipid membranes could be involved in the conversion of PrPC to its disease-associated corrupted conformation, PrPSc. Recombinant PrP can be refolded into an alpha-helical structure, designated alpha-PrP isoform, or into beta-sheet-rich states, designated beta-PrP isoform. The current study investigates the binding of recombinant PrP isoforms to model lipid membranes using surface plasmon resonance spectroscopy. The binding of alpha- and beta-PrP to negatively charged lipid membranes of POPG, zwitterionic membranes of DPPC, and model raft membranes composed of DPPC, cholesterol, and sphingomyelin is compared at pH 7 and 5, to simulate the environment at the plasma membrane and within endosomes, respectively. It is found that PrP binds strongly to lipid membranes. The strength of the association of PrP with lipid membranes depends on the protein conformation and pH, and involves both hydrophobic and electrostatic lipid-protein interactions. Competition binding measurements established that the binding of alpha-PrP to lipid membranes follows a decreasing order of affinity to POPG>DPPC>rafts.  相似文献   

5.
Infection with any one of three strains of mouse scrapie prion (PrPSc), 139A, ME7, or 22L, results in the accumulation of two underglycosylated, full-length PrP species and an N-terminally truncated PrP species that are not detectable in uninfected animals. The levels of the N-terminally truncated PrP species vary depending on PrPSc strain. Furthermore, 22L-infected brains consistently have the highest levels of proteinase K (PK)-resistant PrP species, followed by ME7- and 139A-infected brains. The three strains of PrPSc are equally susceptible to PK and proteases papain and chymotrypsin. Their protease resistance patterns are also similar. In sucrose gradient velocity sedimentation, the aberrant PrP species partition with PrPSc aggregates, indicating that they are physically associated with PrPSc. In ME7-infected animals, one of the underglycosylated, full-length PrP species is detected much earlier than the other, before both the onset of clinical disease and the detection of PK-resistant PrP species. In contrast, the appearance of the N-terminally truncated PrP species coincides with the presence of PK-resistant species and the manifestation of clinical symptoms. Therefore, accumulation of the underglycosylated, full-length PrP species is an early biochemical fingerprint of PrPSc infection. Accumulation of the underglycosylated, full-length PrP species and the aberrant N-terminally truncated PrP species may be important in the pathogenesis of prion disease.  相似文献   

6.
Insertion of additional octarepeats into the prion protein gene has been genetically linked to familial Creutzfeldt Jakob disease and hence to de novo generation of infectious prions. The pivotal event during prion formation is the conversion of the normal prion protein (PrPC) into the pathogenic conformer PrPSc, which subsequently induces further conversion in an autocatalytic manner. Apparently, an expanded octarepeat domain directs folding of PrP toward the PrPSc conformation and initiates a self-replicating conversion process. Here, based on three main observations, we have provided a model on how altered molecular interactions between wild-type and mutant PrP set the stage for familial Creutzfeldt Jakob disease with octarepeat insertions. First, we showed that wild-type octarepeat domains interact in a copper-dependent and reversible manner, a "copper switch." This interaction becomes irreversible upon domain expansion, possibly reflecting a loss of function. Second, expanded octarepeat domains of increasing length gradually form homogenous globular multimers of 11-21 nm in the absence of copper ions when expressed as soluble glutathione S-transferase fusion proteins. Third, octarepeat domain expansion causes a gain of function with at least 10 repeats selectively binding PrPSc in a denaturant-resistant complex in the absence of copper ions. Thus, the combination of both a loss and gain of function profoundly influences homomeric interaction behavior of PrP with an expanded octarepeat domain. A multimeric cluster of prion proteins carrying expanded octarepeat domains may therefore capture and incorporate spontaneously arising short-lived PrPSc-like conformers, thereby providing a matrix for their conversion.  相似文献   

7.
The "protein only" hypothesis postulates that the infectious agent of prion diseases, PrP(Sc), is composed of the prion protein (PrP) converted into an amyloid-specific conformation. However, cell-free conversion of the full-length PrP into the amyloid conformation has not been achieved. In an effort to understand the mechanism of PrP(Sc) formation, we developed a cell-free conversion system using recombinant mouse full-length PrP with an intact disulfide bond (rPrP). We demonstrate that rPrP will convert into the beta-sheet-rich oligomeric form at highly acidic pH (<5.5) and at high concentrations, while at slightly acidic or neutral pH (>5.5) it assembles into the amyloid form. As judged from electron microscopy, the amyloid form had a ribbon-like assembly composed of two non-twisted filaments. In contrast to the formation of the beta-oligomer, the conversion to the amyloid occurred at concentrations close to physiological and displayed key features of an autocatalytic process. Moreover, using a shortened rPrP consisting of 106 residues (rPrP 106, deletions: Delta23-88 and Delta141-176), we showed that the in vitro conversion mimicked a transmission barrier observed in vivo. Furthermore, the amyloid form displayed a remarkable resistance to proteinase K (PK) and produced a PK-resistant core identical with that of PrP(Sc). Fourier transform infrared spectroscopy analyses showed that the beta-sheet-rich core of the amyloid form remained intact upon PK-digestion and accounted for the extremely high thermal stability. Electron and real-time fluorescent microscopy revealed that proteolytic digestion induces either aggregation of the amyloid ribbons into large clumps or further assembly into fibrils composed of several ribbons. Fibrils composed of ribbons were very fragile and had a tendency to fragment into short pieces. Remarkably, the amyloid form treated with PK preserved high seeding activity. Our work supports the protein only hypothesis of prion propagation and demonstrates that formation of the amyloid form that recapitulates key physical properties of PrP(Sc) can be achieved in vitro in the absence of cellular factors or a PrP(Sc) template.  相似文献   

8.
We have isolated artificial ligands or aptamers for infectious prions in order to investigate conformational aspects of prion pathogenesis. The aptamers are 2'-fluoro-modified RNA produced by in vitro selection from a large, randomized library. One of these ligands (aptamer SAF-93) had more than 10-fold higher affinity for PrPSc than for recombinant PrPC and inhibited the accumulation of PrPres in near physiological cell-free conversion assay. To understand the molecular basis of these properties and to distinguish specific from non-specific aptamer-PrP interactions, we studied deletion mutants of bovine PrP in denatured, alpha-helix-rich and beta-sheet-rich forms. We provide evidence that, like scrapie-associated fibrils (SAF), the beta-oligomer of PrP bound to SAF-93 with at least 10-fold higher affinity than did the alpha-form. This differential affinity could be explained by the existence of two binding sites within the PrP molecule. Site 1 lies within residues 23-110 in the unstructured N terminus and is a nonspecific RNA binding site found in all forms of PrP. The region between residue 90 and 110 forms a hinge region that is occluded in the alpha-rich form of PrP but becomes exposed in the denatured form of PrP. Site 2 lies in the region C-terminal of residue 110. This site is beta-sheet conformation-specific and is not recognized by control RNAs. Taken together, these data provide for the first time a specific ligand for a disease conformation-associated site in a region of PrP critical for conformational conversion. This aptamer could provide tools for the further analysis of the processes of PrP misfolding during prion disease and leads for the development of diagnostic and therapeutic approaches to TSEs.  相似文献   

9.
Soluble oligomers of prion proteins (PrP), produced during amyloid aggregation, have emerged as the primary neurotoxic species, instead of the fibrillar end-products, in transmissible spongiform encephalopathies. However, whether the membrane is among their direct targets, that mediate the downstream adverse effects, remains a question of debate. Recently, questions arise from the formation of membrane-active oligomeric species generated during the β-aggregation pathway, either in solution, or in lipid environment. In the present study, we characterized membrane interaction of off-pathway oligomers from recombinant prion protein generated along the amyloid aggregation and compared to lipid-induced intermediates produced during lipid-accelerated fibrillation. Using calcein-leakage assay, we show that the soluble prion oligomers are the most potent in producing leakage with negatively charged vesicles. Binding affinities, conformational states, mode of action of the different PrP assemblies were determined by thioflavin T binding-static light scattering experiments on DOPC/DOPS vesicles, as well as by FTIR-ATR spectroscopy and specular neutron reflectivity onto the corresponding supported lipid bilayers. Our results indicate that the off-pathway PrP oligomers interact with lipid membrane via a distinct mechanism, compared to the inserted lipid-induced intermediates. Thus, separate neurotoxic mechanisms could exist following the puzzling intermediates generated in the different cell compartments. These results not only reveal an important regulation of lipid membrane on PrP behavior but may also provide clues for designing stage-specific and prion-targeted therapy.  相似文献   

10.
A conformational transition between the normal cellular prion protein (PrPC) and the beta-sheet-rich pathological isoform (PrPSc) is a central event in the pathogenesis of spongiform encephalopathies. The prion infectious agent seems to contain mainly, if not exclusively, PrPSc, which has the ability to propagate its abnormal conformation by transforming the host PrPC into the pathological isoform. We have developed an in vitro system to induce the PrPC --> PrPSc conversion by incubating a cell-lysate containing mouse PrPC with partially purified mouse PrPSc. After 48 h of incubation with a 10-fold molar excess of PrPSc, the cellular protein acquired PK-resistance resembling a PrPSc-like state. Time course experiments suggest that the conversion follows a stepwise mechanism involving kinetic intermediates. The conversion was induced by PrPSc extracted from mice infected with two different prion strains, each propagating its characteristic Western blot profile. The latter results and the fact that all the cellular components are present in the conversion reaction suggest that PrPC-PrPSc interaction is highly specific and required for the conversion. No transformation was observed under the same conditions using purified proteins without cell-lysate. However, when PrPC-depleted cell-lysate was added to the purified proteins the conversion was recovered. These findings provide direct evidence for the participation of a chaperone-like activity involved in catalyzing the conversion of PrPC into PrPSc.  相似文献   

11.
A key molecular event in prion diseases is the conversion of the prion protein (PrP) from its normal cellular form (PrPC) to the disease-specific form (PrPSc). The transition from PrPC to PrPSc involves a major conformational change, resulting in amorphous protein aggregates and fibrillar amyloid deposits with increased beta-sheet structure. Using recombinant PrP refolded into a beta-sheet-rich form (beta-PrP) we have studied the fibrillization of beta-PrP both in solution and in association with raft membranes. In low ionic strength thick dense fibrils form large networks, which coexist with amorphous aggregates. High ionic strength results in less compact fibrils, that assemble in large sheets packed with globular PrP particles, resembling diffuse aggregates found in ex vivo preparations of PrPSc. Here we report on the finding of a beta-turn-rich conformation involved in prion fibrillization that is toxic to neuronal cells in culture. This is the first account of an intermediate in prion fibril formation that is toxic to neuronal cells. We propose that this unusual beta-turn-rich form of PrP may be a precursor of PrPSc and a candidate for the neurotoxic molecule in prion pathogenesis.  相似文献   

12.
PrPSc [abnormal disease-specific conformation of PrP (prion-related protein)] accumulates in prion-affected individuals in the form of amorphous aggregates. Limited proteolysis of PrPSc results in a protease-resistant core of PrPSc of molecular mass of 27-30 kDa (PrP27-30). Aggregated forms of PrP co-purify with prion infectivity, although infectivity does not always correlate with the presence of PrP27-30. This suggests that discrimination between PrPC (normal cellular PrP) and PrPSc by proteolysis may underestimate the repertoire and quantity of PrPSc subtypes. We have developed a CDI (conformation-dependent immunoassay) utilizing time-resolved fluorescence to study the conformers of disease-associated PrP in natural cases of sheep scrapie, without using PK (proteinase K) treatment to discriminate between PrPC and PrPSc. The capture-detector CDI utilizes N-terminal- and C-terminal-specific anti-PrP monoclonal antibodies that recognize regions of the prion protein differentially buried or exposed depending on the extent of denaturation of the molecule. PrPSc was precipitated from scrapie-infected brain stem and cerebellum tissue following sarkosyl extraction, with or without the use of sodium phosphotungstic acid, and native and denatured PrPSc detected by CDI. PrPSc was detectable in brain tissue from homozygous VRQ (V136 R154 Q171) and ARQ (A136 R154 Q171) scrapie-infected sheep brains. The highest levels of PrPSc were found in homozygous VRQ scrapie-infected brains. The quantity of PrPSc was significantly reduced, up to 90% in some cases, when samples were treated with PK prior to the CDI. Collectively, our results show that the level of PrPSc in brain samples from cases of natural scrapie display genotypic differences and that a significant amount of this material is PK-sensitive.  相似文献   

13.
Liemann S  Glockshuber R 《Biochemistry》1999,38(11):3258-3267
Transmissible spongiform encephalopathies (TSEs) are caused by a unique infectious agent which appears to be identical with PrPSc, an oligomeric, misfolded isoform of the cellular prion protein, PrPC. All inherited forms of human TSEs, i.e., familial Creutzfeldt-Jakob disease, Gerstmann-Str?ussler-Scheinker syndrome, and fatal familial insomnia, segregate with specific point mutations or insertions in the gene coding for human PrP. Here we have tested the hypothesis that these mutations destabilize PrPC and thus facilitate its conversion into PrPSc. Eight of the disease-specific amino acid replacements are located in the C-terminal domain of PrPC, PrP(121-231), which constitutes the only part of PrPC with a defined tertiary structure. Introduction of all these replacements into PrP(121-231) yielded variants with the same spectroscopic characteristics as wild-type PrP(121-231) and similar to full-length PrP(23-231), which excludes the possibility that the exchanges a priori induce a PrPSc-like conformation. The thermodynamic stabilities of the variants do not correlate with specific disease phenotypes. Five of the amino acid replacements destabilize PrP(121-231), but the other variants have the same stability as the wild-type protein. These data suggest that destabilization of PrPC is neither a general mechanism underlying the formation of PrPSc nor the basis of disease phenotypes in inherited human TSEs.  相似文献   

14.
The coexistence of multiple strains or subtypes of the disease-related isoform of prion protein (PrP) in natural isolates, together with the observed conformational heterogeneity of PrP amyloid fibrils generated in vitro, indicates the importance of probing the conformation of single particles within heterogeneous samples. Using an array of PrP-specific antibodies, we report the development of a novel immunoconformational assay. Uniquely, application of this new technology allows the conformation of multimeric PrP within a single fibril or particle to be probed without pretreatment of the sample with proteinase K. Using amyloid fibrils prepared from full-length recombinant PrP, we demonstrated the utility of this assay to define (i) PrP regions that are surface-exposed or buried, (ii) the susceptibility of defined PrP regions to GdnHCl-induced denaturation, and (iii) the conformational heterogeneity of PrP fibrils as measured for either the entire fibrillar population or for individual fibrils. Specifically, PrP regions 159-174 and 224-230 were shown to be buried and were the most resistant to denaturation. The 132-156 segment of PrP was found to be cryptic under native conditions and solvent-exposed under partially denaturing conditions, whereas the region 95-105 was solvent-accessible regardless of the solvent conditions. Remarkably, a subfraction of fibrils showed immunoreactivity to PrPSc-specific antibodies designated as IgGs 89-112 and 136-158. The immunoreactivity of the conformational epitopes was reduced upon exposure to partially denaturing conditions. Unexpectedly, PrPSc -specific antibodies revealed conformational polymorphisms even within individual fibrils. Our studies provide valuable new insight into fibrillar substructure and offer a new tool for probing the conformation of single PrP fibrils.  相似文献   

15.
A soluble, oligomeric beta-sheet-rich conformational variant of recombinant full-length prion protein, PrP beta, was generated that aggregates into amyloid fibrils, PrP betaf. These fibrils have physico-chemical and structural properties closely similar to those of pathogenic PrP Sc in scrapie-associated fibrils and prion rods, including a closely similar proteinase K digestion pattern and Congo red birefringence. The conformational transition from PrP C to PrP beta occurs at pH 5.0 in bicellar solutions containing equimolar mixtures of dihexanoyl-phosphocholine and dimyristoyl-phospholipids, and a small percentage of negatively charged dimyristoyl-phosphoserine. The same protocol was applicable to human, cow, elk, pig, dog and mouse PrP. Comparison of full-length hPrP 23-230 with the N-terminally truncated human PrP fragments hPrP 90-230, hPrP 96-230, hPrP 105-230 and hPrP 121-230 showed that the flexible peptide segment 105-120 must be present for the generation of PrP beta. Dimerization of PrP C represents the rate-limiting step of the PrP C-to-PrP beta conformational transition, which is dependent on the amino acid sequence. The activation enthalpy of dimerization is about 130 kJ/mol for the recombinant full-length human and bovine prion proteins, and between 260 and 320 kJ/mol for the other species investigated. The in vitro conversion assay described here permits direct molecular characterization of processes that might be closely related to conformational transitions of the prion protein in transmissible spongiform encephalopathies.  相似文献   

16.
Prion diseases are associated with the conversion of cellular prion protein, PrPC, into a misfolded oligomeric form, PrPSc. Previous studies indicate that salts promote conformational conversion of the recombinant prion protein into a PrPSc-like form. To gain insight into the mechanism of this effect, here we have studied the influence of a number of salts (sodium sulfate, sodium fluoride, sodium acetate, and sodium chloride) on the thermodynamic stability of the recombinant human prion protein. Chemical unfolding studies in urea show that at low concentrations (below approximately 50 mm), all salts tested significantly reduced the thermodynamic stability of the protein. This highly unusual response to salts was observed for both the full-length prion protein as well as the N-truncated fragments huPrP90-231 and huPrP122-231. At higher salt concentrations, the destabilizing effect was gradually reversed, and salts behaved according to their ranking in the Hofmeister series. The present data indicate that electrostatic interactions play an unusually important role in the stability of the prion protein. The abnormal effect of salts is likely because of the ion-induced destabilization of salt bridges (Asp144-Arg148 and/or Asp147-Arg151) in the extremely hydrophilic helix 1. Contrary to previous suggestions, this effect is not due to the interaction of ions with the glycine-rich flexible N-terminal region of the prion protein. The results of this study suggest that ionic species present in the cellular environment may control the PrPC to PrPSc conversion by modulating the thermodynamic stability of the native PrPC isoform.  相似文献   

17.
The prion protein (PrP) in a living cell is associated with cellular membranes. However, all previous biophysical studies with the recombinant prion protein have been performed in an aqueous solution. To determine the effect of a membrane environment on the conformational structure of PrP, we studied the interaction of the recombinant human prion protein with model lipid membranes. The protein was found to bind to acidic lipid-containing membrane vesicles. This interaction is pH-dependent and becomes particularly strong under acidic conditions. Spectroscopic data show that membrane binding of PrP results in a significant ordering of the N-terminal part of the molecule. The folded C-terminal domain, on the other hand, becomes destabilized upon binding to the membrane surface, especially at low pH. Overall, these results show that the conformational structure and stability of the recombinant human PrP in a membrane environment are substantially different from those of the free protein in solution. These observations have important implications for understanding the mechanism of the conversion between the normal (PrP(C)) and pathogenic (PrP(Sc)) forms of prion protein.  相似文献   

18.
The prion protein (PrP) is an essential, and probably the only, component of the infectious agent responsible for the transmissible spongiform encephalopathies. In its cellular (PrP(C)) form, it is a soluble, alpha-helix-rich protein of yet unknown function attached to the outer membrane of neurons through a glycosylphosphatidyl inositol anchor. In its pathogenic, "scrapie" form (PrP(Sc)), it appears as an aggregate showing no detectable covalent modifications but displaying a profoundly altered conformation enriched in beta-sheet structure. Reduction of the single disulfide bridge in the prion protein with millimolar concentrations of dithiothreitol results in transformation of the alpha-helix-rich to the beta-sheet-rich conformation, with concomitant decrease in solubility. We report here that thioredoxin coupled with thioredoxin reductase and NADPH efficiently reduces recombinant Syrian hamster (29-231) prion protein under physiologically relevant conditions. The reduced prion protein immediately becomes insoluble and precipitates, although it does not gain significant resistance to proteinase K. The thioredoxin/thioredoxin reductase system is approximately 7000 times more efficient than dithiothreitol.  相似文献   

19.
We used anti-prion (PrP) monoclonal antibodies (Mabs) in different combinations to scan changes in the availability of antibody binding epitopes--using an epitope scanning assay--in brain homogenates from normal mice, and from mice infected with either ME7 or 139 A strains of infectious scrapie prion (PrPSc). In ME7-infected brains, the epitope detected by the Mab pair 8B4/8H4 is reduced, while the epitope detected by the Mab pair 8F9/11G5 is increased. Mab 8F9/11G5 detect a conformational epitope on PrPSc because the rise in Mab 8F9/11G5 binding is sensitive to a denaturing agent but resistant to proteinase K (PK). While the increase in Mab 8F9/11G5 binding correlates with the presence of PK-resistant PrP and clinical signs of infection, the reduction in Mab 8B4/8H4 binding is detected earlier. Fractionation of the ME7-infected brain homogenate in sucrose gradient revealed that the PrPSc species detected by the epitope scanning assay are heterogeneous in size, with a molecular mass of approximately > or = 2000-kDa. We also investigated whether these findings were applicable to two other strains of PrPSc, namely 87 V and 22 L. We found that the decrease in Mab 8B4/8H4 binding detected in ME7-infected brains was also detected in 87 V-infected brains but not in 22 L-infected brains. In contrast, the increase in Mab 8F9/11G5 binding detected in ME7- and 139 A-infected brains was also detected in 22 L-infected brains but not in 87 V-infected brains. Therefore, each prion strain has its unique conformation, and we can monitor the conversion of normal cellular prion (PrPC) to PrPSc based on the changes in the antibody binding patterns. The epitope can be decreased or increased, linear or conformational, detected late or early during infection, in a strain specific manner.  相似文献   

20.
The central event in the pathogenesis of prion diseases, a group of fatal, transmissible neurodegenerative disorders including Creutzfeldt-Jakob disease (CJD) in humans, is the conversion of the normal or cellular prion protein (PrPC) into the abnormal or scrapie isoform (PrPSc). The basis of the PrPC to PrPSc conversion is thought to involve the diminution of alpha-helical domains accompanied by the increase of beta structures within the PrP molecule. Consequently, treatment of PrPSc with proteinase K (PK) generates a large PK-resistant C-terminal core fragment termed PrP27-30 that in human prion diseases has a gel mobility of approximately 19-21 kDa for the unglycosylated form, and a ragged N terminus between residues 78 and 103. PrP27-30 is considered the pathogenic and infectious core of PrPSc. Here we report the identification of two novel PK-resistant, but much smaller C-terminal fragments of PrP (PrP-CTF 12/13) in brains of subjects with sporadic CJD. PrP-CTF 12/13, like PrP27-30, derive from both glycosylated as well as unglycosylated forms. The unglycosylated PrPCTF 12/13 migrate at 12 and 13 kDa and have the N terminus at residues 162/167 and 154/156, respectively. Therefore, PrP-CTF12/13 are 64-76 amino acids N-terminally shorter than PrP27-30 and are about half of the size of PrP27-30. PrP-CTF12/13 are likely to originate from a subpopulation of PrPSc distinct from that which generates PrP27-30. The finding of PrP-CTF12/13 in CJD brains widens the heterogeneity of the PK-resistant PrP fragments associated with prion diseases and may provide useful insights toward the understanding of the PrPSc structure and its formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号