首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
维甲酸对人肝癌细胞磷脂酰胆碱专一性磷脂酶D的作用   总被引:3,自引:0,他引:3  
为了解细胞信号转导与细胞分化间的关系,研究了诱导分化剂全反式视黄酸(ATRA)和13顺视黄酸对7721人肝癌细胞中磷脂酰胆碱专一性磷脂酶D(PC-PLD)的影响。发现ATRA和13cis-RA除能抑制7721细胞生长,并在形态上向正常方向分化外,分别在第2或第4天使膜结合性PC-PLD的比活力升高,用每瓶细胞的总活力计算,ATRA的作用在第2天也高于13cis-RA,但13cis-RAd tx 4  相似文献   

2.
磷脂酶D被认为是细胞信号转导途径中的重要成员,受多种因素调节,本主要对本酪氨酸蛋白激酶,非受体PTK以及氧化剂诱导的酪氨酸磷化与磷脂酶D的关系及PTK调节PLD的机理研究进行综述。  相似文献   

3.
血管生成是指在原有血管的基础上形成新血管的过程.病理性血管生成是癌症、心血管类疾病和视网膜病变等一系列疾病的标志.1-磷酸鞘氨醇(sphingosine-1-phosphate,S1P)是一种信号脂质,由鞘氨醇激酶(sphingosine kinases,SPHK)合成,通过5种G蛋白偶联受体(sphingosine-...  相似文献   

4.
鞘氨醇-1-磷酸(sphingosine-1 phosphate,S1P)是来源于鞘脂代谢途径的多效性信号分子,其代谢受到多种因素调控。S1P由细胞内的鞘氨醇激酶(sphingosine kinases,SphKs)催化鞘氨醇的磷酸化而合成,可通过转运蛋白释放至细胞外。S1P可通过在胞外结合其特异性G蛋白偶联受体及胞内作用而调节多种重要生物学效应。作为细胞外介质和细胞内信使,S1P在免疫系统中也发挥重要的调节作用。S1P参与免疫细胞的迁移、增殖、分化及死亡细胞清除等过程。本文对S1P的代谢以及其对于免疫细胞的调节作用进行综述。  相似文献   

5.
为了解细胞信号转导与细胞分化间的关系,研究了诱导分化剂全反式视黄酸(ATRA)和13顺视黄酸(13 cis-RA)对7721人肝癌细胞中磷脂酰胆碱专一性磷脂酶D(PC-PLD)的影响。发现ATRA和13 cis-RA除能抑制7721细胞生长,并在形态上向正常方向分化外,分别在第2或第4天使膜结合性PC-PLD的比活力升高,用每瓶细胞的总活力计算,ATRA的作用在第2天也高于13 cis-RA,但13 cis-RA在第4天的效应却高于ATRA,说明13 cis-RA较ATRA的效应滞后。每天更换培养液的条件较不更换时细胞生长速度较快,且更能引起PC-PLD比活力的上升,提示新鲜培养液中可能存在促进生长和增强维甲酸升高PC-PLD的化合物。ATRA在第2天对PC-PLD比活力的作用高于第4天,可能由于第4天细胞增殖加快,细胞中蛋白质含量上升,以至使以蛋白含量计算的酶比活力下降。进一步研究维甲酸使膜结合性PC-PLD升高与蛋白激酶的关系,发现ATRA不论在第2天和第4天均使膜结合性和胞液中蛋白激酶C(PKC)和酪氨酸蛋白激酶(TPK)的比活力下降,说明ATRA使膜结合性PC-PLD活力的升高不是通过PKC 或TPK对PC-PLD的激活作用来实现,其机理有待进一步研究。对维甲酸引起PC-PLD升高的生物学意义作了讨论。  相似文献   

6.
目的:建立生物样品中鞘氨醇激酶(SPK)活性和1-磷酸鞘氨醇(S1P)含量的测定方法.方法:用Flag标记的SPK基因表达载体转染ECV304细胞,用Western blot方法检测转染后SPK基因的表达,用酶促反应、同住素掺入和薄层层析的方法检测SPK的活性.提取细胞或组织的S1P,碱性磷酸酶消化去除磷酸根,然后利用SPK的催化活性和同位素标记的方法对S1P进行定量.结果:转染基因后细胞的SPK表达明显升高,活性显著增强,细胞内S1P的含量也明显增多.肝细胞生长因子(HGF)刺激能增强ECV304细胞SPK的活性和细胞内S1P水平.结论:建立了SPK活性和S1P含量的测定方法.  相似文献   

7.
鞘氨醇单胞菌(Sphingomonas)不仅细胞膜含有比脂多糖更疏水的鞘糖脂,而且具有高效的代谢调控机制和基因调控能力,使其在威兰胶合成、环境修复和促进植物生长等方面具有巨大的应用潜力。目前国内在鞘氨醇单胞菌代谢机制方面的研究尚无新突破。本文主要综述了鞘氨醇单胞菌的系统分类、基因组学、基因调控机制及其应用等方面的研究,从基因层面分析鞘氨醇单胞菌产威兰胶的合成机制,为后续鞘氨醇单胞菌高密度发酵、工业化生产等研究提供理论基础,以便进一步发掘其在生物技术上的应用潜力。  相似文献   

8.
鞘氨醇杆菌是一类革兰氏阴性非发酵杆状细菌,很少引起人类感染,它的主要特点是含有大量的细胞膜鞘磷脂。由于其广泛的生态分布与石油降解能力,已引起了环境微生物学者的重视。本综述总结分析了鞘氨醇杆菌的分类学地位及其主要成员的进化亲缘关系,重点阐述了它们的生理生化特征方面的研究进展,最后总结了8个鞘氨醇杆菌的基因组特征,以期为深入研究鞘氨醇杆菌的功能及其泛基因组提供理论指导,并进一步对鞘氨醇杆菌的深入研究进行了展望。  相似文献   

9.
在人肺癌表面细胞株A-549中检测到佛波酯诱导的丁醇化鞘脂分子的产生。用[^3H]-丝氨酸标记细胞,其放射性在磷脂酰胆碱、磷脂酰丝氨酸、磷脂酰乙醇胺极性头部的分布很容易被检测到,而在磷脂酸及其直接代谢衍生物中并不存在,提示这种磷脂酶D的酶解产物来源于鞘脂分子的水解,而不同于以甘油磷脂为底物的磷脂酶D的酶解产物。蛋白激酶C的抑制剂或通过佛波酯长时间处理下调细胞内蛋白激酶C水平,可抑制佛波酯诱导的丁酯化鞘脂分子的产生,表明导致这种磷脂酶D的活化需要蛋白激酶C的参与。  相似文献   

10.
四乙酰基植物鞘氨醇(tetraacetyl phytosphingosine, TAPS)是一种性能卓越的天然护肤品原料,经去乙酰化后生成的植物鞘氨醇可作为前体合成保湿护肤品神经酰胺,因此广泛应用于护肤化妆品行业。非常规酵母威克汉姆西弗酵母(Wickerhamomyces ciferrii)是已知的唯一可天然分泌四乙酰基植物鞘氨醇的微生物,目前已成为四乙酰基植物鞘氨醇工业生产的宿主。本文介绍了四乙酰基植物鞘氨醇的发现、功能及其生物合成途径,综述了近年来利用单倍体筛选、诱变育种和代谢工程改造威克汉姆西弗酵母高产四乙酰基植物鞘氨醇的研究进展,并展望了实现四乙酰基植物鞘氨醇工业生产的未来发展方向。  相似文献   

11.
The hydrolytic activity of microsomal phospholipase D from canine cerebral cortex was measured by a radiochemical assay using 1,2-dipalmitoyl-sn-glycerol-3-phosphoryl[3H]choline and 1-palmitoyl-2-[9,10(n)-3H]palmitoyl-sn-glycerol-3-phosphorylcholine as the exogenous substrates. Of several detergents tested, Triton X-100 was found to be the most effective in allowing expression of phospholipase D hydrolytic activity. The microsomal phospholipase D does not require any metal ion for its hydrolytic activity. Calcium and magnesium were slightly inhibitory between concentrations of 1 and 4 mM, but zinc was greatly inhibitory, causing a loss of greater than 90% activity at the 4 mM concentration. Non-hydrolyzable guanine nucleotide analogues such as guanosine 5'-(3-O-thio)triphosphate and guanyl-5'-yl-(beta, gamma-methylene)diphosphonate but not guanosine 5'-(2-thio)diphosphate were able persistently to stimulate phospholipase D hydrolytic activity at micromolar concentrations. Guanosine 5'-(2-thio)diphosphate was capable of partially blocking guanosine 5'-(3-O-thio)triphosphate stimulation of phospholipase D. Aluminum fluoride was able to cause a two- to threefold increase in hydrolytic activity of the phospholipase D. Cholera toxin had a stimulatory effect on the hydrolytic activity of phospholipase D, whereas islet-activating protein pertussis toxin had no effect. These results indicate that regulation of microsomal phosphatidylcholine phospholipase D activity by the guanine nucleotide-binding protein(s) in canine cerebral cortex may play an important role in signal transduction processes as well as in brain choline metabolism.  相似文献   

12.
In the present study, an activation mechanism for phospholipase D (PLD) in [3H]palmitic acid-labeled pheochromocytoma PC12 cells in response to carbachol (CCh) was investigated. PLD activity was assessed by measuring the formation of [3H]phosphatidylethanol ([3H]PEt), the specific marker of PLD activity, in the presence of 0.5% (vol/vol) ethanol. CCh caused a rapid accumulation of [3H]-PEt, which reached a plateau within 1 min, in a concentration-dependent manner. The [3H]PEt formation by CCh was completely antagonized by atropine, demonstrating that the CCh effect was mediated by the muscarinic acetylcholine receptor (mAChR). A tumor promoter, phorbol 12-myristate 13-acetate (PMA), also caused an increase in [3H]-PEt content, which reached a plateau at 30-60 min after exposure, but an inactive phorbol ester, 4 alpha-phorbol 12,13-didecanoate, did not. Although a protein kinase C (PKC) inhibitor, staurosporine (5 microM), blocked PMA-induced [3H]PEt formation by 77%, it had no effect on the CCh-induced formation. These results suggest that mAChR-induced PLD activation is independent of PKC, whereas PLD activation by PMA is mediated by PKC. NaF, a common GTP-binding protein (G protein) activator, and a stable analogue of GTP, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), also stimulated [3H]PEt formation in intact and digitonin-permeabilized cells, respectively. GTP, UTP, and CTP were without effect. Furthermore, guanosine 5'-O-(2-thiodiphosphate) significantly inhibited CCh- and GTP gamma S-induced [3H]PEt formation in permeabilized cells but did not inhibit the formation by PMA, and staurosporine (5 microM) had no effect on [3H]PEt formation by GTP gamma S.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We have investigated the coupling of muscarinic acetylcholine receptors (mAChR) to phospholipid hydrolysis in a human neuroblastoma cell line, LA-N-2, by measuring the formation of 3H-inositol phosphates (3H-IP) and of [3H]phosphatidylethanol ([3H]PEt) in cells prelabeled with [3H]inositol and [3H]oleic acid. The muscarinic agonist carbachol (CCh) stimulated the phospholipase C (PLC)-mediated formation of 3H-IP in a time- and dose-dependent manner (EC50 = 40-55 microM). In addition, in the presence of ethanol (170-300 mM), CCh elevated levels of [3H]PEt [which is regarded as a specific indicator of phospholipase D (PLD) activity] by three- to sixfold. The effect of CCh on PEt formation also was dose dependent (EC50 = 50 microM). Both effects of CCh were antagonized by atropine, indicating that they were mediated by mAChR. Incubation of LA-N-2 cells with the phorbol ester phorbol 12-myristate 13-acetate (PMA, 0.1 microM; 10 min) increased [3H]PEt levels by up to 10-fold. This effect was inhibited by the protein kinase C (PKC) inhibitor staurosporine (1 microM) or by pretreatment for 24 h with 0.1 microM PMA, by 74% and 65%, respectively. In contrast, the effect of CCh on PEt accumulation was attenuated by only 28% in the presence of staurosporine (1 microM). In summary, these results suggest that, in LA-N-2 neuroblastoma cells, mAChR are coupled both to phosphoinositide-specific PLC and to PLD. PKC is capable of stimulating PLD activity in these cells; however, it is not required for stimulation of the enzyme by mAChR activation.  相似文献   

14.
The phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) was found to stimulate phospholipase D activity in cultured primary astrocytes. Both the hydrolysis and the transphosphatidylation reaction catalyzed by phospholipase D were studied in cells labeled with [3H]glycerol. Phosphatidic acid (PA) synthesis was increased after addition of 100 nM TPA. When ethanol was present in the cell culture medium, phosphatidylethanol (Peth), a product of phospholipase D-catalyzed transphosphatidylation, was formed. The half-maximum effective concentrations (EC50) of TPA were 25 nM for PA increase as well as for Peth formation. The formation of Peth in ethanol-treated cells was accompanied by an inhibition of the TPA-induced increase in labeled PA. Increasing ethanol concentrations led to an increase in [3H]Peth and a decrease in [3H]PA. A protein kinase C inhibitor, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H7), inhibited both the synthesis of PA and the formation of Peth observed after TPA addition to the astrocytes. Dioctanoyl-glycerol (100 microM) stimulated the formation of Peth in the presence of ethanol. In addition to the induction of Peth formation in astrocytes, TPA induced Peth formation in ethanol-treated neurons. The present results indicate that phospholipase D activity is stimulated by TPA in cultured primary brain cells. Modulation of phospholipase D activity by protein kinase C is a mechanism that may be important in signal transduction cascades.  相似文献   

15.
The role of lipid-bound second messengers in the regulation of neurotransmitter secretion is an important but poorly understood subject. Both bovine adrenal chromaffin cells and rat phoeochromocytoma (PC12) cells, two widely studied models of neuronal function, respond to bradykinin by generating phosphatidic acid (PA). This putative second messenger may be produced by two receptor-linked pathways: sequential action of phospholipase C (PLC) and diacylglycerol kinase (DAG kinase), or directly by phospholipase D (PLD). Here we show that bradykinin stimulation of chromaffin cells prelabelled (24 h) with 32Pi leads to production of [32P]PA which is not affected by 50 mM butanol. However, bradykinin stimulation of PC12 cells leads to [32P]PA formation, all of which is converted to phosphatidylbutanol in the presence of butanol. When chromaffin cells prelabelled with [3H]choline were stimulated with bradykinin there was no enhancement of formation of water soluble products of phosphatidylcholine hydrolysis. When chromaffin cells were permeabilised with pneumolysin and incubated in the presence of [gamma-32P]ATP, the formation of [32P]PA was still stimulated by bradykinin. These results show that, although both neuronal models synthesize PA in response to bradykinin, they do so by quite different routes: PLC/DAG kinase for chromaffin cells and PLD for PC12 cells. The observation that neither bradykinin nor tetradecanoyl phorbol acetate stimulate PLD in chromaffin cells suggests that these cells lack PLD activity. The conservation of PA formation, albeit by different routes, may indicate an essential role of PA in the regulation of cellular events by bradykinin.  相似文献   

16.
Bradykinin is known to activate phospholipase D in PC12 cells. Because bradykinin may also activate protein kinase C in these cells, the possible role of this kinase in mediating the action of bradykinin was investigated. Phospholipase D activity in PC12 cells was assayed by measuring the formation of [3H]phosphatidylethanol in cells prelabeled with [3H]palmitic acid and incubated in the presence of ethanol. The phorbol ester phorbol dibutyrate mimicked the effect of bradykinin on [3H]phosphatidylethanol formation. The protein kinase C inhibitor staurosporine (1 microM) significantly attenuated the effect of phorbol dibutyrate (35-70%) but did not block bradykinin-stimulated [3H]phosphatidylethanol formation. In addition, the effect of phorbol dibutyrate was additive with that of bradykinin. Prolonged treatment of PC12 cells with phorbol dibutyrate (24 h), which depletes cells of protein kinase C, greatly attenuated bradykinin-stimulated [3H]phosphatidylethanol accumulation in intact cells. This treatment caused a 55% decrease in both fluoride-stimulated [3H]phosphatidylethanol production in the intact cell and phospholipase D activity as assessed by an in vitro assay using an exogenous substrate. Therefore, the effect of prolonged phorbol dibutyrate pretreatment on bradykinin-stimulated [3H]phosphatidylethanol production could not be attributed exclusively to the depletion of protein kinase C. Thus, although the data with phorbol ester suggest that activation of protein kinase C leads to an increase in phospholipase D activity, this kinase probably does not play a role in mediating the effect of bradykinin. Finally, although pretreatment with phorbol dibutyrate completely blocked bradykinin-stimulated [3H]phosphatidylethanol production in the intact cell, it only partially (approximately 50%) inhibited bradykinin-stimulated [3H]diacylglycerol formation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
AMP-activated protein kinase (AMPK), a critical sensor of energy sufficiency, acts as central metabolic switch in cell metabolism. Once activated by low energy status, AMPK phosphorylates key regulatory substrates and turns off anabolic biosynthetic pathways. In contrast, the mammalian/mechanistic target of rapamycin (mTOR) is active when there are sufficient nutrients for anabolic reactions. A critical factor regulating mTOR is phosphatidic acid (PA), a central metabolite of membrane lipid biosynthesis and the product of the phospholipase D (PLD)-catalyzed hydrolysis of phosphatidylcholine. PLD is a downstream target of the GTPase Rheb, which is turned off in response to AMPK via the tuberous sclerosis complex. Although many studies have linked AMPK with mTOR, very little is known about the connection between AMPK and PLD. In this report, we provide evidence for reciprocal regulation of PLD by AMPK and regulation of AMPK by PLD and PA. Suppression of AMPK activity led to an increase in PLD activity, and conversely, activation of AMPK suppressed PLD activity. Suppression of PLD activity resulted in elevated AMPK activity. Exogenously supplied PA abolished the inhibitory effects of elevated AMPK activity on mTOR signaling. In contrast, exogenously supplied PA could not overcome the effect AMPK activation if either mTOR or Raptor was suppressed, indicating that the inhibitory effects of PLD and PA on AMPK activity are mediated by mTOR. These data suggest a reciprocal feedback mechanism involving AMPK and the PLD/mTOR signaling node in cancer cells with therapeutic implications.  相似文献   

18.
Phospholipase D Activity of Rat Brain Neuronal Nuclei   总被引:2,自引:0,他引:2  
Abstract: Phospholipase D activity of rat brain neuronal nuclei, measured with exogenous phosphatidylcholine as substrate, was characterized. The measured activity of neuronal nuclei was at least 36-fold greater than the activity in glia nuclei. The pH optimum was 6.5, and unsaturated but not saturated fatty acids stimulated the enzyme. The optimal concentration of sodium oleate for stimulation of the enzyme activity was 1.2 m M in the presence of 0.75 m M phosphatidylcholine. This phospholipase D activity was cation independent. In the absence of NaF, used as a phosphatidic acid phosphatase inhibitor, the principal product was diglyceride; whereas in the presence of NaF, the principal product was phosphatidic acid. The phospholipase D, in addition to having hydrolytic activity, was able to catalyze a transphosphatidylation reaction. Maximum phosphatidylethanol formation was seen with 0.2–0.3 M ethanol. GTPγS, ATPγS, BeF2, AIF3, phosphatidic acid, and phosphatidylethanol inhibited the neuronal nuclei phospholipase D activity. The addition of the cytosolic fraction of brain, liver, kidney, spleen, and heart to the incubation mixtures resulted in inhibition of the phospholipase D activity. Phospholipase D activity was detectable in nuclei prepared from rat kidney, spleen, heart, and liver.  相似文献   

19.
Phospholipase D (PLD) regulates downstream effectors by generating phosphatidic acid. Growing links of dysregulation of PLD to human disease have spurred interest in therapeutics that target its function. Aberrant PLD expression has been identified in multiple facets of complex pathological states, including cancer and inflammatory diseases. Thus, it is important to understand how the signaling network of PLD expression is regulated and contributes to progression of these diseases. Interestingly, small molecule PLD inhibitors can suppress PLD expression as well as enzymatic activity of PLD and have been shown to be effective in pathological mice models, suggesting the potential for use of PLD inhibitors as therapeutics against cancer and inflammation. Here, we summarize recent scientific developments regarding the regulation of PLD expression and its role in cancer and inflammatory processes.  相似文献   

20.
Abstract: We have previously reported that hydrogen peroxide (H2O2) induced a considerable increase of phospholipase D (PLD) activity and phosphorylation of mitogen-activated protein (MAP) kinase in PC12 cells. H2O2-induced PLD activation and MAP kinase phosphorylation were dose-dependently inhibited by a specific MAP kinase kinase inhibitor, PD 098059. In contrast, carbachol-mediated PLD activation was not inhibited by the PD 098059 pretreatment whereas MAP kinase phosphorylation was prevented. These findings indicated that MAP kinase is implicated in the PLD activation induced by H2O2, but not by carbachol. In the present study, H2O2 also caused a marked release of oleic acid (OA) from membrane phospholipids in PC12 cells. As we have previously shown that OA stimulates PLD activity in PC12 cells, the mechanism of H2O2-induced fatty acid liberation and its relation to PLD activation were investigated. Pretreatment of the cells with methylarachidonyl fluorophosphonate (MAFP), a phospholipase A2 (PLA2) inhibitor, almost completely prevented the release of [3H]OA by H2O2 treatment. From the preferential release of OA and sensitivity to other PLA2 inhibitors, the involvement of a Ca2+-independent cytosolic PLA2-type enzyme was suggested. In contrast, to OA release, MAFP did not inhibit PLD activation by H2O2. The inhibitory profile of the OA release by PD 098059 did not show any correlation with that of MAP kinase. These results lead us to suggest that H2O2-induced PLD activation may be mediated by MAP kinase and also that H2O2-mediated OA release, which would be catalyzed by a Ca2+-independent cytosolic PLA2-like enzyme, is not linked to the PLD activation in PC12 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号