首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Soy phytoestrogens, isoflavones, are a primary class of plant-based estrogen alternatives being sold over the counter nowadays. Genistein, daidzein and glycitein are the major isoflavones found in soybeans, as aglycones and glycosides. Each isoflavone shows distinctive estrogenic activity and pharmacokinetics. Soy dry extracts, employed as pharmaceutical raw material for manufacturing isoflavone supplements, are standardized to contain 40% of total isoflavones, but the amount of each isoflavone is highly diverse. The influence of these compositional differences on the estrogenic potency of soy extracts was evaluated by uterotrophic bioassay. Five commercial samples of standardized soy dry extract, homogeneously suspended in arachis oil, were administered per os in serial doses (125-4150 mg/kg bw/day) to immature female rats for 3 days. Soy extract samples with considerable diversity in isoflavone composition revealed different estrogenic potencies. Our results indicate a need of standardization of the individual isoflavone content in soy extracts.  相似文献   

2.
A recombinant Thermotoga maritima β-glucosidase A (BglA) was purified to homogeneity for performing enzymatic hydrolysis of isoflavone glycosides from soy flour. The kinetic properties K m, k cat, and k cat/K m of BglA towards isoflavone glycosides, determined using high-performance liquid chromatography, confirmed the higher efficiency of BglA in hydrolyzing malonylglycosides than non-conjugated glycosides (daidzin and genistin). During hydrolysis of soy flour by BglA at 80°C, the isoflavone glycosides (soluble form) were extracted from soy flour (solid state) into the solution (liquid state) in thermal condition and converted to their aglycones (insoluble form), which mostly existed in the pellet to be separated from BglA in the reaction solution. The enzymatic hydrolysis in one-step and two-step approaches yielded 0.38 and 0.35 mg genistein and daidzein per gram of soy flour, respectively. The optimum conditions for conversion of isoflavone aglycones were 100 U per gram of soy flour, substrate concentration 25% (w/v), and incubation time 3 h for 80°C.  相似文献   

3.
A mixture of isoflavones was obtained by acid hydrolysis of isoflavone glycosides isolated from the products of soybean processing by successive extraction with aqueous acetone and methanol. The homogeneous isoflavones daidzein and genistein were isolated from the aglycone mixture by adsorption chromatography and identified by spectral and chromatographic methods. The effect of both isoflavones on lipid peroxidation of soy phospholipids in multilamellar vesicles was studied at various concentrations. These aglycones were found to inhibit the formation of lipid hydroperoxides and malonic dialdehyde at concentrations as low as 1 mM.  相似文献   

4.
An improved method of detection of the isoflavone aglycones, genistein and daidzein, is reported using solid-phase microextraction–high-performance liquid chromatography–electrospray ionization mass spectrometry (SPME–HPLC–ESI-MS). Extraction of the isoflavonoids from urine using SPME with a Carbowax–templated resin fiber coating allows rapid preconcentration of the analytes without the usual sample preparation required by other methods. Detection of the analytes is accomplished by HPLC–ESI-MS. Analysis of spiked samples of urine resulted in a linear range of 0.25 to 250 ng/ml for daidzein and 0.27 to 27.0 ng/ml for genistein. Limits of detection of daidzein and genistein were measured at 25.4 pg/ml for daidzein and 2.70 pg/ml for genistein. Daidzein and genistein were detected in urine following consumption of a soy drink.  相似文献   

5.
The objective of this study was to follow the metabolic fate of isoflavone glucosides from the soybean meal in a model industrial fermentation to determine if commercially useful isoflavones could be harvested as coproducts from the spent broth at the end of the fermentation. The isoflavone aglycones, genistein, and daidzein together make up 0.1–0.2 % of the soybean meal by weight but serve no known function in the manufacturing process. After feeding genistein to washed cells of the erythromycin-producing organism, Saccharopolyspora erythraea, the first biotransformation product (Gbp1) was determined by X-ray crystallography to be genistein-7-O-α-rhamnoside (rhamnosylgenistein). Subsequent feeding of rhamnosylgenistein to growing cells of Saccharopolyspora erythraea led to the production of a second biotransformation product, Gbp2. Chromatographic evidence suggested that Gbp2 accumulated in the spent broth of the erythromycin fermentation. When the spent broth was hydrolyzed with acid or industrial enzyme preparations, the isoflavone biotransformation products were returned back to their parental forms, genistein and daidzein, which were then recovered as coproducts. Desirable features of this method are that it does not require modification of the erythromycin manufacturing process or genetic engineering of the producing organism to be put into practice. A preliminary investigation of five additional antibiotic fermentations of industrial importance also found isoflavone coproduct potential.  相似文献   

6.
A decrease of erythrocyte membrane fluidity can contribute to the pathophysiology of hypertension. Soy products, which are used as alternative therapeutics in some cardiovascular conditions, contain various isoflavones (genistein, daidzein, and their glucosides, genistin and daidzin), which can incorporate cellular membrane and change its fluidity. The aim of this study was to examine the effects of soy extract (which generally corresponds to the soy products of isoflavone composition) on erythrocyte membrane fluidity at graded depths. We used electron paramagnetic resonance spectroscopy and fatty acid spin probes (5-DS and 12-DS), the spectra of which are dependent on membrane fluidity. After being treated with soy extract, erythrocytes showed a significant (P = 0.016) decrease of membrane fluidity near the hydrophilic surface, while there were no significant changes of fluidity in deeper hydrophobic membrane regions. These results suggest that soy products containing high levels of genistein and isoflavone glucosides may not be suitable for use in hypertension because they decrease erythrocyte membrane fluidity.  相似文献   

7.
Dietary isolated soy protein (ISP, containing approximately equal amounts of daidzein and genistein), ethanol-extracted ISP (ISP (-)), soygerm or soygerm extract (containing large amounts of daidzein and glycitein and little genistein) and the isoflavone, daidzein, were hypothesized to lessen plasma cholesterol in comparison with casein. Sixty male and 60 female golden Syrian hamsters (6-8 weeks of age) were randomly assigned to six treatments fed for 10 weeks. Four of the experimental diets (ISP, daidzein, soygerm, and soygerm extract) contained 1.3 mmol total isoflavones/kg. The ISP (-) diet contained 0.013 mmol isoflavone/kg, whereas the casein diet contained no isoflavones. Hamsters fed ISP, ISP (-), daidzein, soygerm, and soygerm extract had significantly less plasma total cholesterol (by 16%-28%), less non-HDL cholesterol (by 15%-50%) and less non-HDL/HDL cholesterol ratios compared with hamsters fed casein (P < 0.01). For male hamsters, there were no differences among treatments in plasma HDL concentrations. Female hamsters fed ISP (-) had significantly greater HDL levels (P < 0.01) than females fed casein or daidzein. Triglyceride concentration was significantly less in hamsters fed ISP (-) compared with the casein-fed females. Because soy protein with or without isoflavones, soygerm and soygerm extract, and daidzein lessened plasma cholesterol to an approximately equal extent, soy protein alone, varying mixtures of isoflavones, and other extractable components of soy are responsible for cholesterol-lessening effects of soy foods, mainly due to their effects to lessen LDL cholesterol.  相似文献   

8.
Products containing phytoestrogens are increasingly promoted as the "natural" alternative to estrogen replacement therapy. In the present study, we have used the in vitro micronucleus assay in L5178Y mouse lymphoma cells to investigate the genotoxic potential of the isoflavone daidzein, and of four daidzein metabolites known to be formed in humans. Whereas no induction of micronuclei was observed with daidzein up to the limit of solubility (100 microM), all four daidzein metabolites, i.e. equol (2.3-fold induction at 100 microM), O-desmethylangolensin (6.2-fold induction at 10 microM), 4',6,7-isoflavone (6.7-fold induction at 100 microM) and 3',4',7-isoflavone (8.2-fold induction at 100 microM) induced micronuclei in a concentration-dependent manner. Thus, both reductive and oxidative metabolites of the soy isoflavone daidzein exhibit genotoxic potential in vitro.  相似文献   

9.
A marine Streptomyces sp. 060524 capable of hydrolyzing the glycosidic bond of isoflavone glycosides, was isolated by detecting its β-glucosidase activity. 5 isoflavone aglycones were isolated from culture filtrates in soybean meal glucose medium. They were identified as genistein (1), glycitein (2), daidzein (3), 3′,4′,5,7-tetrahydroxyisoflavone (4), and 3′,4′,7-trihydroxyisoflavone (5), based on UV, NMR and mass spectral analysis. The Streptomyces can selectively hydroxylate at the 3′-position in the daidzein and genistein to generate 3′-hydroxydaidzein and 3′-hydroxygenistein, respectively. The Strain biotransformed more than 90% of soybean isoflavone glycosides into their aglycones within 108 h. 3′-hydroxydaidzein and 3′-hydroxygenistein exhibited stronger cytotoxicity against K562 human chronic leukemia than daidzein and genistein.  相似文献   

10.
The objective of this investigation was to examine the pharmacokinetics of isoflavone concentrations over a 24-h period among healthy adults consuming either soy foods or soy isoflavone tablets at different doses. This randomized, cross-over trial was conducted with 12 generally healthy adults. The three phases of the intervention included isoflavone tablets at (1) 144 mg/day or (2) 288 mg/day and (3) soy foods designed to provide a calculated 96 mg isoflavones/day (doses in aglycone equivalents). Doses were spread out over three meals per day. After 6 days on each study phase, plasma isoflavone concentrations were determined on the seventh day at 0, 4, 8, 10, 12 and 24 h. Average levels of total isoflavone concentrations at 8, 10 and 12 h were >4 micromol/L for the soy food phase and for the higher dose tablet phase. Genistein concentrations were higher overall in the soy food vs. both the lower and the higher dose supplement phases of the study (P<.05). When comparing plasma concentrations for the two doses of tablets, saturation appeared more evident for genistein than for daidzein at the higher dose level. In conclusion, we observed important differences in the pharmacokinetics of genistein and daidzein contrasting the sources and doses of isoflavones when administered three times daily, including a possible advantage for increasing serum concentrations of isoflavones from consuming soy foods relative to isoflavone supplements.  相似文献   

11.
We have recently reported that dietary intake of soybean isoflavone phytoestrogens resulted in increased oxidation resistance of isolated low density lipoprotein (LDL). In order to explore the underlying mechanisms we designed two types of in vitro experiments. First, we prepared several different isoflavone fatty acid esters to increase their lipid solubility and studied their incorporation into LDL. Second, the oxidation resistance of the isoflavone-containing LDLs was investigated with Esterbauer's 'conjugated diene' method using Cu2+ as prooxidant. Unesterified daidzein and genistein as well as genistein stearic acid esters were incorporated into LDL to a relatively small extent (0.33 molecules per LDL particle, or less) and they did not significantly influence oxidation resistance. The oleic acid esters of isoflavones were incorporated more effectively, reaching a level of 2.19 molecules per LDL particle or more, and the 4',7-O-dioleates of daidzein and genistein exhibited prolongations of lag times by 46% (P<0.05) and 202% (P<0.01), respectively. A smaller but significant increase in lag time (20.5%, P<0.01) was caused by daidzein 7-mono-oleate. In summary, esterification of soybean isoflavones daidzein and genistein with fatty acids at different hydroxyl groups provided lipophilicity needed for incorporation into LDL. Some isoflavone oleic acid esters increased oxidation resistance of LDL following their incorporation.  相似文献   

12.
Products containing phytoestrogens are increasingly promoted as the “natural” alternative to estrogen replacement therapy. In the present study, we have used the in vitro micronucleus assay in L5178Y mouse lymphoma cells to investigate the genotoxic potential of the isoflavone daidzein, and of four daidzein metabolites known to be formed in humans. Whereas no induction of micronuclei was observed with daidzein up to the limit of solubility (100 μM), all four daidzein metabolites, i.e. equol (2.3-fold induction at 100 μM), O-desmethylangolensin (6.2-fold induction at 10 μM), 4′,6,7-isoflavone (6.7-fold induction at 100 μM) and 3′,4′,7-isoflavone (8.2-fold induction at 100 μM) induced micronuclei in a concentration-dependent manner. Thus, both reductive and oxidative metabolites of the soy isoflavone daidzein exhibit genotoxic potential in vitro.  相似文献   

13.
In order to produce isoflavone aglycosides effectively, a process of isoflavone hydrolysis by Bacillus subtilis natto NTU-18 (BCRC 80390) was established. This process integrates the three stages for the production of isoflavone aglycosides in one single fermenter, including the growth of B. subtilis natto, production of β-glucosidase, deglycosylation of fed isoflavone glycosides. After 8 h of batch culture of B. subtilis natto NTU-18 in 2 L of soy medium, a total of 3 L of soy isoflavone glucoside solution containing 3.0 mg/mL of daidzin and 1.0 mg/mL of genistin was fed continuously over 34 h. The percentage deglycosylation of daidzin and genistin was 97.7% and 94.6%, respectively. The concentration of daidzein and genistein in the broth reached 1,066.8 μg/mL (4.2 mM) and 351 μg/mL (1.3 mM), respectively, and no residual daidzin or genistin was detected. The productivity of the bioconversion of daidzein and genistein over the 42 h of culture was 25.6 mg/L/h and 8.5 mg/L/h, respectively. This showed that this is an efficient bioconversion process for selective estrogen receptor modulator production.  相似文献   

14.
In this study, the possible application of Lactobacillus strains as a functional starter culture to ferment Samso-Eum (SE), an oriental herbal medicine formula, and the production of bioactive isoflavones (daidzein, genistein) were investigated. Four strains of Lactobacillus (Lactobacillus plantarum KFRI 144, L. amylophilus KFRI 161, L. curvatus KFRI 166, and L. bulgaricus KFRI 344) were used for SE fermentation. Declines in pH and in viable cell counts during fermentation were investigated and the quantification of isoflavones using HPLC were performed after fermentation at 37°C for 48 h. All the tested Lactobacillus strains lowered the pH level to approximately 3.6 after 48 h and showed the highest level of growth at 24 h during SE fermentation. During the SE fermentation of the four Lactobacillus strains, the conversion of isoflavone glycosides (daidzin, genistin) into bioactive aglycones (daidzein, genistein) was observed in all of the fermentations, but with different rates depending on the strains. L. plantarum KFRI 144 and L. amylophilus KFRI 161 exhibited the highest bioconversion rate of isoflavone glycosides into their bioactive aglycones. These results demonstrate that L. plantarum KFRI 144 and L. amylophilus KFRI 161 have potentials as functional starter cultures for manufacturing fermented SE with higher isoflavone bioavailability.  相似文献   

15.
16.
An experiment was conducted to determine the effects of soy isoflavone daidzein on carcass characteristics, fat deposition, meat quality, and blood metabolites in finishing steers. Fourteen crossbred steers were used in a 120-d finishing study. These steers were stratified by weight into groups and randomly allotted by group to one of two dietary treatments: (1) control and (2) daidzein (500 mg/kg concentrate). The steers were fed a 90% concentrate diet. Supplemental daidzein did not affect slaughter weight, hot carcass weight, and dressing percentage, but tended to reduce fat proportion (not including intramuscular fat) in carcass and backfat thickness of steers. The carcass bone proportion was greater in steers fed daidzein diets than those fed control diets. Daidzein supplementation reduced pH at 24 h after slaughtered and moisture content and increased isocitrate dehydrogenase activity, fat content (16.28% and 7.94%), marbling score (5.29 and 3.36), redness (a*), and chroma (C*) values in longissimus muscle relative to control treatment. The concentrations of blood metabolites including glucose, blood urea nitrogen, triglyceride, total cholesterol, non-esterified fatty acid, high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) were all lower in steers fed daidzein diets than those fed control diets. Current results suggest that supplemental daidzein can affect lipid metabolism, increase intramuscular fat content and marbling score, and improve meat quality in finishing steers. Daidzein should be a promising feed additive for production of high-quality beef meat.  相似文献   

17.
Bioavailability of isoflavones   总被引:15,自引:0,他引:15  
Isoflavones are disease protective components of soybeans. Isoflavone metabolism and bioavailability are key to understanding their biological effects. Isoflavone glucuronides, dominant biotransformation products in humans that are more hydrophilic than isoflavone aglycones, activate human natural killer cells in vitro but are less toxic to NK cells than the parent aglycones. Gut microbial isoflavone metabolites have also been identified, but remain to be well characterized. Gut transit time (GTT) seems to be a significant determinant of isoflavone bioavailability because women with more rapid GTT (<40 h) experienced 2-3-fold greater absorption of isoflavones than did women with longer GTT (>65 h). Isoflavone metabolism varies a great deal among individuals, thus limiting the quantitative value of urine or plasma isoflavones as biomarkers of soy ingestion. Defining and lessening interindividual variation in isoflavone bioavailability, and characterizing health-related effects of key isoflavone metabolites are likely to be crucial to further understanding of the health benefits of isoflavones.  相似文献   

18.
Aim: To study the role of β‐glucosidase producing probiotic bacteria and yeast in the biotransformation of isoflavone glycosides to aglycones, mineral bioavailability and vitamin B complex in fermented soymilk. Methods and Results: Five isolates of probiotic lactic acid bacteria (LAB), Lactobacillus acidophilus B4496, Lactobacillus bulgaricus CFR2028, Lactobacillus casei B1922, Lactobacillus plantarum B4495 and Lactobacillus fermentum B4655 with yeast Saccharomyces boulardii were used to ferment soymilk to obtain the bioactive isoflavones, genistein and daidzein. High‐performance liquid chromatography was used to analyse the concentration of isoflavones. Bioactive aglycones genistein and daidzein after 24 and 48 h of fermentation ranged from 97·49 to 98·49% and 62·71 to 92·31% respectively with different combinations of LAB with yeast. Increase in bioavailability of minerals and vitamin B complex were also observed in fermented soymilk. Conclusions: LAB in combination with yeast S. boulardii has great potential for the enrichment of bioactive isoflavones, enhancing the viability of LAB strains, decreasing the antinutrient phytic acid and increasing the mineral bioavailability in soymilk fermentation. Significance and Impact of the Study: Fermentation of soymilk with probiotic organisms improves the bioavailability of isoflavones, assists in digestion of protein, provides more soluble calcium, enhances intestinal health and supports immune system. Increased isoflavone aglycone content in fermented soymilk improves the biological functionality of soymilk.  相似文献   

19.
Equol is metabolized from daidzein, a soy isoflavone, by the gut microflora. In this study, we identified a novel dihydrodaidzein racemase (L-DDRC) that is involved in equol biosynthesis in a lactic acid bacterium, Lactococcus sp. strain 20-92, and confirmed that histidine-tagged recombinant L-DDRC (L-DDRC-His) was able to convert both the (R)- and (S)-enantiomers of dihydrodaidzein to the racemate. Moreover, we showed that recombinant L-DDRC-His was essential for in vitro equol production from daidzein by a recombinant enzyme mixture and that efficient in vitro equol production from daidzein was possible using at least four enzymes, including L-DDRC. We also proposed a model of the metabolic pathway from daidzein to equol in Lactococcus strain 20-92.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号